
A Lock-Free, Cache-Efficient Shared Ring Buffer for
Multi-Core Architectures

Patrick P. C. Lee1, Tian Bu2, Girish Chandranmenon2

1Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
2Alcatel-Lucent, Bell Laboratories, USA

pclee@cse.cuhk.edu.hk, {tbu, girishc}@alcatel-lucent.com

ABSTRACT
We proposeMCRingBuffer, a lock-free, cache-efficient shared
ring buffer that provides fast data accesses among threads
running in multi-core architectures. MCRingBuffer seeks
to reduce the cost of inter-core communication by allowing
concurrent lock-free data accesses and improving the cache
locality of accessing control variables used for thread syn-
chronization. Evaluation on an Intel Xeon multi-core ma-
chine shows that MCRingBuffer achieves a throughput gain
of up to 4.9× over existing concurrent lock-free ring buffers.
A motivating application of MCRingBuffer is parallel net-
work traffic monitoring, in which MCRingBuffer facilitates
multi-core architectures to process packets at line rate.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Syn-

chronization

General Terms
Design, Experimentation, Performance

1. INTRODUCTION
We proposeMCRingBuffer, a lock-free, cache-efficient ring

buffer that speeds up the shared data accesses in multi-
threaded, multi-core traffic monitoring systems. MCRing-
Buffer minimizes the memory access overhead of thread syn-
chronization by improving the cache locality of accessing the
control variables that reference the buffer slots. Note that
MCRingBuffer is a software-based solution that does not use
any hardware synchronization primitives, and it works on
general-purpose CPUs. Also, its performance gain is inde-
pendent of the data types of the elements being transferred
and the implementation of the multi-threaded applications.
One motivating application of MCRingBuffer is data traf-

fic monitoring in high-speed networks. Multi-core architec-
tures provide a potential solution to line-rate traffic moni-
toring by parallelizing the executions of packet processing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’09, October 19-20, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-630-4/09/0010 ...$10.00.

MCRingBuffer seeks to exploit the full potential of multi-
core architectures, as it minimizes the inter-core communi-
cation cost so that threads residing in different cores can
efficiently exchange information for network data analysis.

2. MCRINGBUFFER DESIGN
We focus on the single-producer/single-consumer model.

Lamport [2] considers a concurrent lock-free ring buffer,
which we call BasicRingBuffer, that does not require any
hardware synchronization primitive (e.g., compare-and-swap).
The correctness of BasicRingBuffer assumes that reading
and writing the control variables (which are of integer type)
are indivisible, atomic operations. Such an assumption gen-
erally holds for modern hardware architectures.
Other lock-free ring buffers [1, 3] improve BasicRingBuffer

by comparing control variables directly with the buffer slots
that hold data elements. However, this data/control cou-
pling requires that the ring buffer must define a null data
element that cannot be used by applications, thereby intro-
ducing an additional constraint when the ring buffer is to be
used for generic data types.
We propose MCRingBuffer, a shared ring buffer that sup-

ports concurrent lock-free accesses. MCRingBuffer is built
upon BasicRingBuffer, with a key objective to improve the
cache locality of accessing control variables. Figure 1 shows
the skeleton of MCRingBuffer, including the placement of
control variables as well as the pseudo-code of the insert
and extract procedures executed by the producer and the
consumer, respectively. MCRingBuffer comprises two ma-
jor design features: (i) cache-line protection, and (ii) batch
updates of control variables.
Cache-line protection. When a variable has been ac-

cessed, it is placed in cache. To avoid false sharing (i.e.,
two threads each access different variables in the same cache
line), we place the control variables so that the local, non-
shared variables of different threads do not reside in the same
cache line. With cache-line protection, we can also minimize
the accesses to shared control variables. When the producer
(consumer) is about to insert (extract) an element, it first
checks the local control variable localRead (localWrite) re-
siding in its own cache line to decide whether the buffer is
potentially full (empty). If so, then the producer (consumer)
further checks read (write) to decide whether the buffer is
actually full (empty). The producer (consumer) will insert
(extract) elements whenever the buffer is neither potentially
nor actually full (empty). The intuition is that when read

(write) is reloaded from main memory, it may have been
incremented multiple times by the consumer (producer) to

/* Variable definitions */
1: char cachePad0[CACHE LINE];
2: /*shared control variables*/
3: volatile int read;
4: volatile int write;
5: char cachePad1[CACHE LINE - 2 * sizeof(int)];
6: /*consumer’s local control variables*/
7: int localWrite;
8: int nextRead;
9: int rBatch;
10: char cachePad2[CACHE LINE - 3 * sizeof(int)];
11: /*producer’s local control variables*/
12: int localRead;
13: int nextWrite;
14: int wBatch;
15: char cachePad3[CACHE LINE - 3 * sizeof(int)];
16: /*constants*/
17: int max;
18: int blockOnEmpty;
19: int batchSize;
20: char cachePad4[CACHE LINE - 3 * sizeof(int)];
21: T* element;

function Insert(T element)
1: int afterNextWrite = NEXT(nextWrite);
2: if afterNextWrite == localRead then
3: while afterNextWrite == read do
4: /*busy waiting*/
5: end while
6: localRead = read;
7: end if
8: buffer[nextWrite] = element;
9: nextWrite = afterNextWrite;
10: wBatch++;
11: if wBatch ≥ batchSize then
12: write = nextWrite;
13: wBatch = 0;
14: end if

function Extract(T* element)
1: if nextRead == localWrite then
2: while nextRead == write do
3: if blockOnEmpty == 0 then
4: return -1; /*no element is read*/
5: end if
6: /*busy waiting*/
7: end while
8: localWrite = write;
9: end if
10: *element = buffer[nextRead];
11: nextRead = NEXT(nextRead);
12: rBatch++;
13: if rBatch ≥ batchSize then
14: read = nextRead;
15: rBatch = 0;
16: end if
17: return 0; /*an element is read*/

Figure 1: MCRingBuffer.

refer to a few buffer slots ahead. Thus, the producer (con-
sumer) only needs to access read (write) after more than
one insert (extract) operation. Thus, MCRingBuffer reduces

the frequency of reading the shared control variables from

main memory.
Batch updates of control variables. In BasicRing-

Buffer, the shared variable read (write) is updated after
every extract (insert) operation. Here, we apply batch up-
dates on the shared control variables read and write so as to
have them modified less frequently. We divide a ring buffer
into blocks, each of which contains batchSize slots. We ad-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 64 128 256 512 1024

Th
ro

ug
hp

ut
 (m

ill
io

n
el

em
en

ts
/s

ec
)

Element size (bytes)

BasicRingBuffer
MCRingBuffer, batchSize=1

MCRingBuffer, batchSize=10
MCRingBuffer, batchSize=50

 0

 2

 4

 6

 8

 10

 12

 64 128 256 512 1024

Th
ro

ug
hp

ut
 (m

ill
io

n
el

em
en

ts
/s

ec
)

Element size (bytes)

BasicRingBuffer
MCRingBuffer, batchSize=1

MCRingBuffer, batchSize=10
MCRingBuffer, batchSize=50

(a) Sibling cores (b) Non-sibling cores

Figure 2: Throughput vs. element size.

vance read (write) to the next block only after a batchSize
number of elements have been extracted (inserted). Thus,
MCRingBuffer reduces the frequency of writing the shared

control variables to main memory. Note that our batch up-
date scheme is applied to control variables and is transpar-
ent to how the insert and extract operations on the data
elements are scheduled.
The batch update scheme assumes that data elements are

constantly available so that the control variables can be up-
dated. This is justified for the ring buffers that share packet
information for high-speed networks that contain a high vol-
ume of packets.

3. EVALUATION
We evaluate BasicRingBuffer and MCRingBuffer on an

Intel Xeon 5355 quad-core Linux machine with 2.66 GHz
CPU and 32 GB RAM. The CPU comprises two replicas of
dual-core modules, each with a pair of cores and a shared
second-level (L2) cache. We call a pair of cores sibling cores

if they reside in the same module, or non-sibling cores oth-
erwise. The ring buffers are written in C++ and compiled
using GCC 4.1.2 with the -O2 option.
In our evaluation, the producer thread inserts 10 M ele-

ments, and the consumer thread extracts the inserted ele-
ments in order. We measure the throughput, i.e., the number
of pairs of insert/extract operations performed per second.
Each data point is averaged over 30 trials.
Figures 2 shows the throughput of BasicRingBuffer and

different MCRingBuffer variants versus the data element
size, where each ring buffer has capacity 2,000 elements.
Overall, MCRingBuffer achieves higher throughput than Ba-
sicRingBuffer. For example, when the element size is 64 bytes,
the throughput of MCRingBuffer with batchSize = 50 is
4.9× and 2.5× over BasicRingBuffer for sibling and non-
sibling cores, respectively.

4. CONCLUSIONS
We present MCRingBuffer, a lock-free, cache-efficient ring

buffer that achieves efficient thread synchronization in multi-
core architectures. MCRingBuffer improves cache locality
of accessing control variables via cache-line protection and
batch updates of control variables.

5. REFERENCES
[1] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward

for Efficient Pipeline Parallelism - A Cache-Optimized
Concurrent Lock-Free Queue. In PPoPP, 2008.

[2] L. Lamport. Proving the Correctness of Multiprocess Programs.
IEEE Trans. on Software Engineering, 3(2), Mar 1977.

[3] J. Wang, H. Cheng, B. Hua, and X. Tang. Practice of
Parallelizing Network Applications on Multi-core Architectures.
In ISC, 2009.

