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Abstract

We present CDStore, which disperses users’ backup data

across multiple clouds and provides a unified multi-

cloud storage solution with reliability, security, and cost-

efficiency guarantees. CDStore builds on an augmented

secret sharing scheme called convergent dispersal, which

supports deduplication by using deterministic content-

derived hashes as inputs to secret sharing. We present

the design of CDStore, and in particular, describe how

it combines convergent dispersal with two-stage dedupli-

cation to achieve both bandwidth and storage savings and

be robust against side-channel attacks. We evaluate the

performance of our CDStore prototype using real-world

workloads on LAN and commercial cloud testbeds. Our

cost analysis also demonstrates that CDStore achieves a

monetary cost saving of 70% over a baseline cloud stor-

age solution using state-of-the-art secret sharing.

1 Introduction

Cloud storage provides cost-efficient means for organi-

zations to host backups off-site [40]. However, from

users’ perspectives, putting all data in one cloud raises

reliability concerns regarding the single point of fail-

ure [8] and vendor lock-in [5], especially when cloud

storage providers can spontaneously terminate their busi-

ness [35]. Cloud storage also raises security concerns,

since data management is now outsourced to third par-

ties. Users often want their outsourced data to be pro-

tected with guarantees of confidentiality (i.e., data is kept

secret from unauthorized parties) and integrity (i.e., data

is uncorrupted).

Multi-cloud storage coalesces multiple public cloud

storage services into a single storage pool, and provides

a plausible way to realize both reliability and security

in outsourced storage. It disperses data with some form

of redundancy across multiple clouds, operated by inde-

pendent vendors, such that the stored data can be recov-

ered from a subset of clouds even if the remaining clouds

are unavailable. Redundancy can be realized through

erasure coding (e.g., Reed-Solomon codes [51]) or se-

cret sharing (e.g., Shamir’s scheme [54]). Recent multi-
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cloud storage systems (e.g., [5, 19, 29, 33, 60]) leverage

erasure coding to tolerate cloud failures, but do not ad-

dress security; DepSky [13] uses secret sharing to further

achieve both reliability and security. Secret sharing often

comes with high redundancy, yet its variants are shown

to reduce the redundancy of secret sharing to be slightly

higher than that of erasure coding, while achieving secu-

rity in the computational sense (see §2). Secret sharing

has a side benefit of providing keyless security (i.e., elim-

inating encryption keys), which builds on the difficulty

for an attacker to compromise multiple cloud services

rather than a secret key. This removes the key manage-

ment overhead as found in key-based encryption [56].

However, existing secret sharing algorithms prohibit

storage savings achieved by deduplication. Since backup

data carries substantial identical content [58], organiza-

tions often use deduplication to save storage costs, by

keeping only one physical data copy and having it shared

by other copies with identical content. On the other hand,

secret sharing uses random pieces as inputs when gen-

erating dispersed data. Users embed different random

pieces, making the dispersed data different even if the

original data is identical.

This paper presents a new multi-cloud storage system

called CDStore, which makes the first attempt to provide

a unified cloud storage solution with reliability, secu-

rity, and cost efficiency guarantees. CDStore builds on

our prior proposal of an enhanced secret sharing scheme

called convergent dispersal [37], whose core idea is to

replace the random inputs of traditional secret sharing

with deterministic cryptographic hashes derived from the

original data, while the hashes cannot be inferred by at-

tackers without knowing the whole original data. This

allows deduplication, while preserving the reliability and

keyless security features of secret sharing. Using con-

vergent dispersal, CDStore offsets dispersal-level redun-

dancy due to secret sharing by removing content-level

redundancy via deduplication, and hence achieves cost

efficiency. To summarize, we extend our prior work [37]

and make three new contributions.

First, we propose a new instantiation of convergent

dispersal called CAONT-RS, which builds on AONT-RS

[52]. CAONT-RS maintains the properties of AONT-RS,

and makes two enhancements: (i) using OAEP-based



AONT [20] to improve performance and (ii) replacing

random inputs with deterministic hashes to allow dedu-

plication. Our evaluation also shows that CAONT-RS

generates dispersed data faster than our prior AONT-RS-

based instantiation [37].

Second, we present the design and implementation of

CDStore. It adopts two-stage deduplication, which first

deduplicates data of the same user on the client side to

save upload bandwidth, and then deduplicates data of

different users on the server side to further save storage.

Two-stage deduplication works seamlessly with conver-

gent dispersal, achieves bandwidth and storage savings,

and is robust against side-channel attacks [27, 28]. We

also carefully implement CDStore to mitigate computa-

tion and I/O bottlenecks.

Finally, we thoroughly evaluate our CDStore proto-

type using both microbenchmarks and trace-driven ex-

periments. We use real-world backup and virtual im-

age workloads, and conduct evaluation on both LAN

and commercial cloud testbeds. We show that CAONT-

RS encoding achieves around 180MB/s with only two-

thread parallelization. We also identify the bottlenecks

when CDStore is deployed in a networked environment.

Furthermore, we show via cost analysis that CDStore can

achieve a monetary cost saving of 70% via deduplication

over AONT-RS-based cloud storage.

2 Secret Sharing Algorithms

We conduct a study of the state-of-the-art secret shar-

ing algorithms. A secret sharing algorithm operates by

transforming a data input called secret into a set of coded

outputs called shares, with the primary goal of providing

both fault tolerance and confidentiality guarantees for the

secret. Formally, a secret sharing algorithm is defined

based on three parameters (n, k, r): an (n, k, r) secret

sharing algorithm (where n > k > r ≥ 0) disperses a

secret into n shares such that (i) the secret can be recon-

structed from any k shares, and (ii) the secret cannot be

inferred (even partially) from any r shares.

The parameters (n, k, r) define the protection strength

of a secret sharing algorithm. Specifically, n and k de-

termine the fault tolerance degree of a secret, such that

the secret remains available as long as any k out of n

shares are accessible. In other words, it can tolerate the

loss of n − k shares. The parameter r determines the

confidentiality degree of a secret, such that the secret re-

mains confidential as long as no more than r shares are

compromised by an attacker. On the other hand, a secret

sharing algorithm makes the trade-off of incurring addi-

tional storage. We define the storage blowup as the ratio

of the total size of n shares to the size of the original se-

cret. Note that the storage blowup must be at least n

k
, as

the secret is recoverable from any k out of n shares.

Several secret sharing algorithms have been proposed

Algorithm Confidentiality

degree

Storage

blowup†

SSSS [54] r = k − 1 n

IDA [50] r = 0 n
k

RSSS [16] r ∈ [0, k − 1] n
k−r

SSMS [34] r = k − 1 n
k
+ n ·

Skey

Ssec

AONT-RS [52] r = k − 1 n
k
+ n

k
·
Skey

Ssec

† Ssec: size of a secret; Skey : size of a random key.

Table 1: Comparison of secret sharing algorithms.

in the literature. Table 1 compares them in terms of the

confidentiality degree and the storage blowup, subject to

the same n and k. Two extremes of secret sharing algo-

rithms are Shamir’s secret sharing scheme (SSSS) [54]

and Rabin’s information dispersal algorithm (IDA) [50].

SSSS achieves the highest confidentiality degree (i.e.,

r = k − 1), but its storage blowup is n (same as repli-

cation). IDA has the lowest storage blowup n

k
, but its

confidentiality degree is the weakest (i.e., r = 0), and

any share can reveal the information of the secret. Ramp

secret sharing scheme (RSSS) [16] generalizes both IDA

and SSSS to make a trade-off between the confidential-

ity degree and the storage blowup. It evenly divides a

secret into k − r pieces, and generates r additional ran-

dom pieces of the same size. It then transforms the k

pieces into n shares using IDA.

Secret sharing made short (SSMS) [34] combines IDA

and SSSS using traditional key-based encryption. It first

encrypts the secret with a random key and then disperses

the encrypted secret and the key using IDA and SSSS,

respectively. Its storage blowup is slightly higher than

that of IDA, while it has the highest confidentiality de-

gree r = k − 1 as in SSSS. Note that the confidentiality

degree is defined in the computational sense, that is, it is

computationally infeasible to break the encryption algo-

rithm without knowing the key.

AONT-RS [52] further reduces the storage blowup of

SSMS, while preserving the highest confidentiality de-

gree r = k−1 (in the computational sense). It combines

Rivest’s all-or-nothing transform (AONT) [53] for con-

fidentiality and Reed-Solomon coding [17, 51] for fault

tolerance. It first transforms the secret into an AONT

package with a random key, such that an attacker can-

not infer anything about the AONT package unless the

whole package is obtained. Specifically, it splits a secret

into a number s ≥ 1 of words, and adds an extra ca-

nary word for integrity checking. It masks each of the

s words by XOR’ing it with an index value encrypted

by a random key. The s masked words are placed at the

start of an AONT package. One more word, obtained

by XOR’ing the same random key with the hash of the

masked words, is added to the end of the AONT package.

The final AONT package is then divided into k equal-size

shares, which are encoded into n shares using a system-
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Figure 1: CDStore architecture.

atic Reed-Solomon code (a systematic code means that

the n shares include the original k shares).

The security of existing secret sharing algorithms lies

in the embedded random inputs (e.g., a random key in

AONT-RS). Due to randomness, secrets with identical

content lead to distinct sets of shares, thereby prohibiting

deduplication. This motivates CDStore, which enables

secret sharing with deduplication.

3 CDStore Design

CDStore is designed for an organization to outsource the

storage of data of a large group of users to multiple cloud

vendors. It builds on the client-server architecture, as

shown in Figure 1. Each user of the same organization

runs the CDStore client to store and access its data in

multiple clouds over the Internet. In each cloud, a co-

locating virtual machine (VM) instance owned by the

organization runs the CDStore server between multiple

CDStore clients and the cloud storage backend.

CDStore targets backup workloads. We consider a

type of backups obtained by snapshotting some applica-

tions, file systems, or virtual disk images. Backups gen-

erally have significant identical content, and this makes

deduplication useful. Field measurements on backup

workloads show that deduplication can reduce the stor-

age overhead by 10× on average, and up to 50× in some

cases [58]. In CDStore deployment, each user machine

submits a series of backup files (e.g., in UNIX tar for-

mat) to the co-located CDStore client, which then pro-

cesses the backups and uploads them to all clouds.

3.1 Goals and Assumptions

We state the design goals and assumptions of CDStore in

three aspects: reliability, security, and cost efficiency.

Reliability: CDStore tolerates failures of cloud storage

providers and even CDStore servers. Outsourced data is

accessible if a tolerable number of clouds (and their co-

locating CDStore servers) are operational. CDStore also

tolerates client-side failures by offloading metadata man-

agement to the server side (see §4.3). In the presence

of cloud failures, CDStore reconstructs original secrets

and then rebuilds the lost shares as in Reed-Solomon

codes [51]. We do not consider cost-efficient repair [29].

Security: CDStore exploits multi-cloud diversity to

ensure confidentiality and integrity of outsourced data

against outsider attacks, as long as a tolerable number

of clouds are uncompromised. Note that the confiden-

tiality guarantee requires that the secrets be drawn from

a very large message space, so that brute-force attacks

are infeasible [10]. CDStore also uses two-stage dedu-

plication (see §3.3) to avoid insider side-channel attacks

[27, 28] launched by malicious users. Here, we do not

consider strong attack models, such as Byzantine faults

in cloud services [13]. We also assume that the client-

server communication over the network is protected, so

that an attacker cannot infer the secrets by eavesdropping

the transmitted shares.

Cost efficiency: CDStore uses deduplication to reduce

both bandwidth and storage costs. It also incurs limited

overhead in computation (e.g., VM usage) and storage

(e.g., metadata). We assume that there is no billing for

the communication between a co-locating VM and the

storage backend of the same cloud, based on today’s pric-

ing models of most cloud vendors [30].

3.2 Convergent Dispersal

Convergent dispersal enables secret sharing with dedu-

plication by replacing the embedded random input with a

deterministic cryptographic hash derived from the secret.

Thus, two secrets with identical content must generate

identical shares, making deduplication possible. Also,

it is computationally infeasible to infer the hash with-

out knowing the whole secret. Our idea is inspired by

convergent encryption [24] used in traditional key-based

encryption, in which the random key is replaced by the

cryptographic hash of the data to be encrypted. Figure 2

shows the main idea of how we augment a secret sharing

algorithm with convergent dispersal.

This paper proposes a new instantiation of conver-

gent dispersal called CAONT-RS, which inherits the re-

liability and security properties of the original AONT-

RS, and makes two key modifications. First, to improve

performance, CAONT-RS replaces Rivest’s AONT [53]

with another AONT based on optimal asymmetric en-

cryption padding (OAEP) [11, 20]. The rationale is that

Rivest’s AONT performs multiple encryptions on small-

size words (see §2), while OAEP-based AONT performs

a single encryption on a large-size, constant-value block.

Also, OAEP-based AONT provably provides no worse

security than any AONT scheme [20]. Second, CAONT-

RS replaces the random key in AONT with a determin-

istic cryptographic hash derived from the secret. Thus,

it preserves content similarity in dispersed shares and al-

lows deduplication. Our prior work [37] also proposes

instantiations for RSSS [16] and AONT-RS (based on

Rivest’s AONT) [52]. Our new CAONT-RS shows faster

encoding performance than our prior AONT-RS-based

instantiation (see §5.3).
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We now elaborate on the encoding and decoding of

CAONT-RS, both of which are performed by a CDStore

client. Figure 3 shows an example of CAONT-RS with

n = 4 and k = 3 (and hence r = k − 1 = 2).

Encoding: We first transform a given secret X into a

CAONT package. Specifically, we first generate a hash

key h, instead of a random key, derived from X using a

(optionally salted) hash function H (e.g., SHA-256):

h = H(X). (1)

To achieve confidentiality, we transform (X,h) into

a CAONT package (Y, t) using OAEP-based AONT,

where Y and t are the head and tail parts of the CAONT

package and have the same size as X and h, respectively.

To elaborate, Y is generated by:

Y = X ⊕G(h), (2)

where ‘⊕’ is the XOR operator and G is a generator

function that takes h as input and constructs a mask block

with the same size as X . Here, we implement the gener-

ator G as:

G(h) = E(h,C), (3)

where C is a constant-value block with the same size as

X , and E is an encryption function (e.g., AES-256) that

encrypts C using h as the encryption key.

The tail part t is generated by:

t = h⊕H(Y ). (4)

Finally, we divide the CAONT package into k equal-

size shares (we pad zeroes to the secret if necessary to

ensure that the CAONT package can be evenly divided).

We encode them into n shares using the systematic Reed-

Solomon codes [17, 46, 47, 51].

To enable deduplication, we ensure that the same share

is located in the same cloud. Since the number of clouds

for multi-cloud storage is usually small, we simply dis-

perse shares to all clouds. Suppose that CDStore spans

n clouds, which we label 0, 1, · · · , n − 1. After encod-

ing each secret using convergent dispersal, we label the

n generated shares 0, 1, · · · , n − 1 in the order of their

positions in the Reed-Solomon encoding result, such that

share i is to be stored on cloud i, where 0 ≤ i ≤ n − 1.

This ensures that the same cloud always receives the

same share from the secrets with identical content, ei-

ther generated by the same user or different users. This

also enables us to easily locate the shares during restore.

Decoding: To recover the secret, we retrieve any k out of

n shares and use them to reconstruct the original CAONT

package (Y, t). Then we deduce hash h by XOR’ing t

with H(Y ) (see Equation (4)). Finally, we deduce secret

X by XOR’ing Y with G(h) (see Equation (2)), and re-

move any padded zeroes introduced in encoding.

We can also verify the integrity of the deduced secret

X . We simply generate a hash value from the deduced

X as in Equation (1) and compare if it matches h. If the

match fails, then the decoded secret is considered to be

corrupted. To obtain a correct secret, we can follow a

brute-force approach, in which we try a different subset

of k shares until the secret is correctly decoded [19].

Remarks: We briefly discuss the security properties of

CAONT-RS. CAONT-RS ensures confidentiality against

outsider attacks, provided that an attacker cannot gain

unauthorized accesses to k out of n clouds, and ensures

integrity through the embedded hash in each secret. It

leverages AONT to ensure that no information of the

original secret can be inferred from fewer than k shares.

We note that an attacker can identify the deduplication

status of the shares of different users and perform brute-

force dictionary attacks [9, 10] inside the clouds, and we

require that the secrets be drawn from a large message

space (see §3.1). To mitigate brute-force attacks, we may

replace the hash key in CAONT-RS with a more sophisti-

cated key generated by a key server [9], with the trade-off

of introducing the key management overhead.

3.3 Two-Stage Deduplication

We first overview how deduplication works. Deduplica-

tion divides data into fixed-size or variable-size chunks.

This work assumes variable-size chunking, which de-

fines boundaries based on content and is robust to con-

tent shifting. Each chunk is uniquely identified by a fin-

gerprint computed by a cryptographic hash of the chunk

content. Two chunks are said to be identical if their fin-

gerprints are the same, and fingerprint collisions of two

different chunks are very unlikely in practice [15]. Dedu-

plication stores only one copy of a chunk, and refers any



duplicate chunks to the copy via small-size references.

To realize deduplication in cloud storage, a naı̈ve ap-

proach is to perform global deduplication on the client

side. Specifically, before a user uploads data to a cloud,

it first generates fingerprints of the data. It then checks

with the cloud by fingerprint for the existence of any du-

plicate data that has been uploaded by any user. Finally,

it uploads only the unique data to the cloud. Although

client-side global deduplication saves upload bandwidth

and storage overhead, it is susceptible to side-channel

attacks [27, 28]. One side-channel attack is to infer the

existence of data of other users [28]. Specifically, an at-

tacker generates the fingerprints of some possible data of

other users and queries the cloud by fingerprint if such

data is unique and needs to be uploaded. If no upload

is needed, then the attacker infers that other users own

the data. Another side-channel attack is to gain unautho-

rized access to data of other users [27]. Specifically, an

attacker uses the fingerprints of some sensitive data of

other users to convince the cloud of the data ownership.

To prevent side-channel attacks, CDStore adopts two-

stage deduplication, which eliminates duplicates first on

the client side and then on the server side. We require

that each CDStore server maintains a deduplication in-

dex that keeps track of which shares have been stored by

each user and how shares are deduplicated (see imple-

mentation details in §4.4). Then the two deduplication

stages are implemented as follows.

Intra-user deduplication: A CDStore client first runs

deduplication only on the data owned by the same user,

and uploads the unique data of the user to the cloud.

Before uploading shares to a cloud, the CDStore client

first checks with the CDStore server by fingerprint if it

has already uploaded the same shares. Specifically, the

CDStore client first sends the fingerprints generated from

the shares to the CDStore server. The CDStore server

then looks up its deduplication index, and replies to the

CDStore client a list of share identifiers that indicate

which shares have been uploaded by the CDStore client.

Finally, the CDStore client uploads only unique shares to

the cloud based on the list.

Inter-user deduplication: A CDStore server runs dedu-

plication on the data of all users and stores the glob-

ally unique data in the cloud storage backend. After the

CDStore server receives shares from the CDStore client,

it generates a fingerprint from each share (instead of us-

ing the one generated by the CDStore client for intra-

user deduplication), and checks if the share has already

been stored by other users by looking up the dedupli-

cation index. It stores only the unique shares that are

not yet stored at the cloud backend. It also updates the

deduplication index to keep track of which user owns the

shares. Here, we cannot directly use the fingerprint gen-

erated by the CDStore client for intra-user deduplication.

Otherwise, an attacker can launch a side-channel attack,

by using the fingerprint of a share of other users to gain

unauthorized access to the share [27, 43].

Remarks: Two-stage deduplication prevents side-

channel attacks by making deduplication patterns inde-

pendent across users’ uploads. Thus, a malicious insider

cannot infer the data content of other users through dedu-

plication occurrences.

Both intra-user and inter-user deduplications effec-

tively remove duplicates. Intra-user deduplication elimi-

nates duplicates of the same user’s data. This is effective

for backup workloads, since the same user often makes

repeated backups of the same data as different versions

[32]. Inter-user deduplication further removes duplicates

of multiple users. For example, multiple users within the

same organization may share a large proportion of busi-

ness files. Some workloads exhibit large proportions of

duplicates across different users’ data, such as VM im-

ages [31], workstation file system snapshots [42], and

backups [58]. The removal of duplicates translates to

cost savings (see §5.6).

4 CDStore Implementation

We present the implementation details of CDStore. Our

CDStore prototype is written in C++ on Linux. We

use OpenSSL [4] to implement cryptographic opera-

tions: AES-256 and SHA-256 for the encryption and

hash algorithms of convergent dispersal, respectively,

and SHA-256 for fingerprints in deduplication. We use

GF-Complete [48] to accelerate Galois Field arithmetic

in the Reed-Solomon coding of CAONT-RS.

4.1 Architectural Overview

We follow a modular approach to implement CDStore,

whose client and server architectures are shown in Fig-

ure 4. During file uploads, a CDStore client splits the

file into a sequence of secrets via the chunking module.

It then encodes each secret into n shares via the cod-

ing module. It performs intra-user deduplication, and up-

loads unique shares to the CDStore servers in n different

clouds via both client-side and server-side communica-

tion modules. To reduce network I/Os, we avoid sending

many small-size shares over the Internet. Instead, we first

batch the shares to be uploaded to each cloud in a 4MB

buffer and upload the buffer when it is full. Upon receiv-

ing the shares, each CDStore server performs inter-user

deduplication via the deduplication module and updates

the deduplication metadata via the index module. Finally,

it packs the unique shares as containers and writes the

containers to the cloud storage backend through the in-

ternal network via the container module.

File downloads work in the reverse way. A CDStore

client connects to any k clouds to request to download

a file. Each CDStore server retrieves the corresponding

containers and metadata, and returns all required shares
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and file metadata. The CDStore client decodes the se-

crets and assembles the secrets back to the file.

4.2 Chunking

We implement both fixed-size chunking and variable-

size chunking in the chunking module of a CDStore

client, and enable variable-size chunking by default. To

make deduplication effective, the size of each secret

should be on the order of kilobytes (e.g., 8KB [62]). We

implement variable-size chunking based on Rabin finger-

printing [49], in which the average, minimum, and max-

imum secret (chunk) sizes are configured at 8KB, 2KB,

and 16KB, respectively.

4.3 Metadata Offloading

One important reliability requirement is to tolerate

client-side failures, as we expect that a CDStore client

is deployed in commodity hardware. Thus, our current

implementation makes CDStore servers keep and man-

age all metadata on behalf of CDStore clients.

When uploading a file, a CDStore client collects two

types of metadata. First, after chunking, it collects file

metadata for the upload file, including the full pathname,

file size, and number of secrets. Second, after encoding

a secret into shares, it collects share metadata for each

share, including the share size, fingerprint of the share

(for intra-user deduplication), sequence number of the

input secret, and secret size (for removing padded zeroes

when decoding the original secret).

The CDStore client uploads the file and share metadata

to the CDStore servers along with the uploaded file. The

metadata will serve as input for each CDStore server to

maintain index information (see §4.4).

We distribute metadata across all CDStore servers for

reliability. For non-sensitive information (e.g., the size

and sequence number of each secret), we can simply

replicate it, so that each CDStore server can directly use

it to manage data transfer and deduplication. However,

for sensitive information (e.g., a file’s full pathname), we

encode and disperse it via secret sharing.

4.4 Index Management

Each CDStore server uses the metadata from CDStore

clients to generate index information of the uploaded

files and keep it in the index module. There are two types

of index structures: the file index and the share index.

The file index holds the entries for all files uploaded

by different users. Each entry describes a file, identi-

fied by the full pathname (which has been encoded as

described in §4.3) and the user identifier provided by a

CDStore client. We hash the full pathname and the user

identifier to obtain a unique key for the entry. The entry

stores a reference to the file recipe, which describes the

complete details of the file, including the fingerprint of

each share (for retrieving the share) and the size of the

corresponding secret (for decoding the original secret).

The file recipe will be saved at the cloud backend by the

container module (see §4.5).

The share index holds the entries for all unique shares

of different files. Each entry describes a share, and is

keyed by the share fingerprint. It stores the reference

to the container that holds the share. To support intra-

user deduplication, each entry also holds a list of user

identifiers to distinguish who owns the share, as well as

a reference count for each user to support deletion.

Our prototype manages file and share indices using

LevelDB [26], an open-source key-value store. Lev-

elDB maintains key-value pairs in a log-structured merge

(LSM) tree [44], which supports fast random inserts, up-

dates, and deletes, and uses a Bloom filter [18] and a

block cache to speed up lookups. We can also leverage

the snapshot feature provided by LevelDB to store peri-

odic snapshots in the cloud backend for reliability. We

currently do not consider this feature in our evaluation.

4.5 Container Management

The container module maintains two types of contain-

ers in the storage backend: share containers, which hold

the globally unique shares, and recipe containers, which

hold the file recipes of different files. We cap the con-

tainer size at 4MB, except that if a file recipe is very

large (due to a particularly large file), we keep the file

recipe in a single container and allow the container to go

beyond 4MB. We avoid splitting a file recipe in multiple

containers to reduce I/Os.

We make two optimizations to reduce the I/O overhead

of storing and fetching the containers via the storage

backend. First, we maintain in-memory buffers for hold-

ing shares and file recipes before writing them into con-

tainers. We organize the shares or file recipes by users,

so that each container contains only the data of a single

user. This retains spatial locality of workloads [62]. Sec-

ond, we maintain a least-recently-used (LRU) disk cache

to hold the most recently accessed containers to reduce

I/Os to the storage backend.

4.6 Multi-Threading

Advances of multi-core architectures enable us to ex-

ploit multi-threading for parallelization. First, the client-



side coding module uses multi-threading for the CPU-

intensive encoding/decoding operations of CAONT-RS.

We parallelize encoding/decoding at the secret level: in

file uploads, we pass each secret output from the chunk-

ing module to one of the threads for encoding; in file

downloads, we pass the shares of a secret received by the

communication module to a thread for decoding.

Furthermore, both client-side and server-side commu-

nication modules use multi-threading to fully utilize the

network transfer bandwidth. The client-side communica-

tion module creates multiple threads, one for each cloud,

to upload/download shares. The server-side communi-

cation module also uses multiple threads to send/receive

shares for different CDStore clients.

4.7 Open Issues

Our current CDStore prototype implements the basic

backup and restore operations. We discuss some open

implementation issues.

Storage efficiency: We can reclaim more storage space

via different techniques in addition to deduplication. For

example, garbage collection can reclaim space of ex-

pired backups. By exploiting historical information, we

can accelerate garbage collection in deduplication stor-

age [25]. Compression also effectively reduces storage

space of both data [58] and metadata (e.g., file recipes

[41]). Implementations of garbage collection and com-

pression are posed as future work.

Scalability: We currently deploy one CDStore server per

cloud. In large-scale deployment, we can run CDStore

servers on multiple VMs per cloud and evenly distribute

user backup jobs among them for load balance. Imple-

menting a distributed deduplication system is beyond the

scope of this paper.

Consistency: Our prototype is tailored for backup work-

loads that are immutable. We do not address consistency

issues due to concurrent updates as mentioned in [13].

5 Evaluation

We evaluate CDStore under different testbeds and work-

loads. We also analyze its monetary cost advantages.

5.1 Testbeds

We consider three types of testbeds in our evaluation.

(i) Local machines: We use two machines: Local-

Xeon, which has a quad-core 2.4GHz Intel Xeon E5530

and 16GB RAM, and Local-i5, which has a quad-core

3.4GHz Intel Core i5-3570 and 8GB RAM. Both ma-

chines run 64-bit Ubuntu 12.04.2 LTS. We use them to

evaluate the encoding performance of CDStore clients.

(ii) LAN: We configure a LAN of multiple machines

with the same configuration as Local-i5. All nodes are

connected via a 1Gb/s switch. We run CDStore clients

and servers on different machines. Each CDStore server

mounts the storage backend on a local 7200RPM SATA

hard disk. We use the LAN testbed to evaluate the data

transfer performance of CDStore.

(iii) Cloud: We deploy a CDStore client on the Local-

Xeon machine (in Hong Kong) and connect it via the In-

ternet to four commercial clouds (i.e., n = 4): Ama-

zon (in Singapore), Google (in Singapore), Azure (in

Hong Kong), and Rackspace (in Hong Kong). We set up

the testbed in the same continent to limit the differences

among the client-to-server connection bandwidths. Each

cloud runs a VM with similar configurations: four CPU

cores and 4∼15GB RAM. We use the cloud testbed to

evaluate the real deployment performance of CDStore.

5.2 Datasets

We use two real-world datasets to drive our evaluation.

(i) FSL: This dataset is published by the File systems

and Storage Lab (FSL) at Stony Brook University [3,57].

Due to the large dataset size, we use the Fslhomes

dataset in 2013, containing daily snapshots of nine stu-

dents’ home directories from a shared network file sys-

tem. We select the snapshots every seven days (which are

not continuous) to mimic weekly backups. The dataset is

represented in 48-bit chunk fingerprints and correspond-

ing chunk sizes obtained from variable-size chunking.

Our filtered FSL dataset contains 16 weekly backups of

all nine users, covering a total of 8.11TB of data.

(ii) VM: This dataset is collected by ourselves and

is unpublished. It consists of weekly snapshots of 156

VM images for students in a university programming

course in Spring 2014. We create a 10GB master image

with Ubuntu 12.04.2 LTS and clone all VMs. We treat

each VM image snapshot as a weekly backup of a user.

The dataset is represented in SHA-1 fingerprints on 4KB

fixed-size chunks. It spans 16 weeks, totaling 24.38TB

of data. For fair comparisons, we remove all zero-filled

chunks (which dominate in VM images [31]) from the

dataset, and the size reduces to 11.12TB.

5.3 Encoding Performance

We evaluate the computational overhead of CAONT-

RS when encoding secrets into shares. We compare

CAONT-RS with two variants: (i) AONT-RS [52], which

builds on Rivest’s AONT [53] and does not support dedu-

plication, and (ii) our prior proposal CAONT-RS-Rivest

[37], which uses Rivest’s AONT as in AONT-RS and

replaces the random key in AONT-RS with a SHA-256

hash for convergent dispersal. CAONT-RS uses OAEP-

based AONT instead (see §3.2).

We conduct our experiments on the Local-Xeon and

Local-i5 machines. We create 2GB of random data in

memory (to remove I/O overhead), generate secrets using

variable-size chunking with an average chunk size 8KB,

and encode them into shares. We measure the encoding

speed, defined as the ratio of the original data size to the

total time of encoding all secrets into shares. Our results
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Figure 5: Encoding speeds of a CDStore client.

are averaged over 10 runs. We observe similar results for

decoding, and omit them here.

We first examine the benefits of multi-threading (see

§4.6). Figure 5(a) shows the encoding speeds versus the

number of threads, while we fix (n, k) = (4, 3). The

encoding speeds of all schemes increase with the num-

ber of threads. If two encoding threads are used, the

encoding speeds of CAONT-RS are 83MB/s on Local-

Xeon and 183MB/s on Local-i5. Also, OAEP-based

AONT in CAONT-RS brings remarkable performance

gains. Compared to CAONT-RS-Rivest, which performs

encryptions on small words based on Rivest’s AONT,

CAONT-RS improves the encoding speed by 40∼61%

on Local-Xeon and 54∼61% on Local-i5; even though

compared to AONT-RS, which uses one fewer hash op-

eration, CAONT-RS still increases the encoding speed by

12∼35% on Local-Xeon and 19∼27% on Local-i5.

We next evaluate the impact of n (number of clouds).

We vary n from 4 to 20, and fix two encoding threads.

We configure k as the largest integer that satisfies k

n
≤ 3

4

(e.g., n = 4 implies k = 3), so as to maintain a similar

storage blowup due to secret sharing. Figure 5(b) shows

the encoding speeds versus n. The encoding speeds of

all schemes slightly decrease with n (e.g., by 8% from

n = 4 to 20 for CAONT-RS on Local-i5), since more

encoded shares are generated via Reed-Solomon codes

for a larger n. However, Reed-Solomon coding only

accounts for small overhead compared to AONT, which

runs cryptographic operations. We have also tested other

ratios of k

n
and obtained similar speed results.

The above results only report encoding speeds, while

a CDStore client performs both chunking and encod-

ing operations when uploading data to multiple clouds.

We measure the combined chunking (using variable-size
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Figure 6: Deduplication efficiency of CDStore.

chunking) and encoding speeds with (n, k) = (4, 3) and

two encoding threads, and find that the combined speeds

drop by around 16%, to 69MB/s on Local-Xeon and

154MB/s on Local-i5.

5.4 Deduplication Efficiency

We evaluate the effectiveness of both intra-user and inter-

user deduplications (see §3.3). We extract the deduplica-

tion characteristics of both datasets, assuming that they

are stored as weekly backups. We define four types of

data: (i) logical data, the original user data to be encoded

into shares, (ii) logical shares, the shares before two-

stage deduplication, (iii) transferred shares, the shares

that are transferred over Internet after intra-user dedupli-

cation, and (iv) physical shares, the shares that are finally

stored after two-stage deduplication. We also define two

metrics: (i) intra-user deduplication saving, which is one

minus the ratio of the size of the transferred shares to

that of the logical shares, and (ii) inter-user deduplica-

tion saving, which is one minus the ratio of the size of

the physical shares to that of the transferred shares. We

fix (n, k) = (4, 3). Figure 6 summarizes the results.

Figure 6(a) first shows the intra-user and inter-user

deduplication savings. The intra-user deduplication sav-

ings are very high for both datasets, especially in subse-

quent backups after the first week (at least 94.2% for FSL

and at least 98.0% for VM). The reason is that the users

only modify or add a small portion of data. The sav-

ings translate to performance gains in file uploads (see

§5.5). However, the inter-user deduplication savings dif-

fer across datasets. For the FSL dataset, the savings fall

to no more than 12.9%. In contrast, for the VM dataset,

the saving for the first backup reaches 93.4%, mainly be-

cause the VM images are initially installed with the same



operating system. The savings for subsequent backups

then drop to the range between 11.8% and 47.0%. Nev-

ertheless, the VM dataset shows higher savings for sub-

sequent backups than the FSL dataset; we conjecture the

reason is that students make similar changes to the VM

images when doing programming assignments.

Figure 6(b) then shows cumulative data and share sizes

before and after intra-user and inter-user deduplications.

After 16 weekly backups, for the FSL dataset, the total

size of physical shares is only 0.51TB, about 6.3% of the

logical data size; for the VM dataset, the total size of

physical shares is only 0.09TB, about 0.8% of the logi-

cal data size. This shows that dispersal-level redundancy

(i.e., n

k
= 4

3
) is significantly offset by removing content-

level redundancy via two-stage deduplication. Also, if

we compare the sizes of transferred shares and physical

shares for the VM dataset, we see that inter-user dedupli-

cation is crucial for reducing storage space.

5.5 Transfer Speeds

Single-client baseline transfer speeds: We first evalu-

ate the baseline transfer speed of a CDStore client us-

ing both LAN and cloud testbeds. Each testbed has one

CDStore client and four CDStore servers with (n, k) =
(4, 3). We first upload 2GB of unique data (i.e., no dupli-

cates), then upload another 2GB of duplicate data iden-

tical to the previous one, and finally download the 2GB

data from three CDStore servers (for the cloud testbed,

we choose Google, Azure, and Rackspace for down-

loads). We measure the upload and download speeds,

averaged over 10 runs.

Figure 7(a) presents the results. On the LAN testbed,

the upload speed for unique data is 77MB/s. Our mea-

surements find that the effective network speed in our

LAN testbed is around 110MB/s. Thus, the upload speed

for unique data is close to k

n
of the effective network

speed. Uploading duplicate data has speed 150MB/s.

Since it does not transfer actual data after intra-user

deduplication, the performance is bounded by the chunk-

ing and CAONT-RS encoding operations (see §5.3). The

download speed is 99MB/s, about 10% less than the ef-

fective network speed. The reason is that the CDStore

servers need to retrieve data from the disk backend be-

fore returning it to the CDStore client.

On the cloud testbed, the upload and download per-

formance is limited by the Internet bandwidth. For ref-

erences, we measure the upload and download speeds

of each individual cloud when transferring 2GB of

unique data divided in 4MB units (see §4.1), and Ta-

ble 2 presents the averaged results over 10 runs. Since

CDStore transfers data through multiple clouds in paral-

lel via multi-threading, its upload speed of unique data

and download speed are higher than those of individual

clouds (e.g., Amazon and Google). The upload speed for

unique data is smaller than the download speed because

Cloud Upload speed Download speed

Amazon 5.87 (0.19) 4.45 (0.30)

Google 4.99 (0.23) 4.45 (0.21)

Azure 19.59 (1.20) 13.78 (0.72)

Rackspace 19.42 (1.06) 12.93 (1.47)

Table 2: Measured speeds (MB/s) of each of four clouds,

in terms of the average (standard deviation) over 10 runs.

of sending redundancy and connecting to more clouds.

The upload speed for duplicate data is over 9× that for

unique data, and this difference is more significant than

on the LAN testbed.

Single-client trace-driven transfer speeds: We now

evaluate the upload and download speeds of a single

CDStore client using datasets as opposed to unique and

duplicate data above. We focus on the FSL dataset,

which allows us to test the effect of variable-size chunk-

ing. We again consider both LAN and cloud testbeds

with (n, k) = (4, 3). Since the FSL dataset only has

chunk fingerprints and chunk sizes, we reconstruct a

chunk by writing the fingerprint value repeatedly to a

chunk with the specified size, so as to preserve content

similarity. Each chunk is treated as a secret, which will

be encoded into shares. We first upload all backups to

CDStore servers, followed by downloading them. To re-

duce evaluation time, we only run part of the dataset. On

the LAN testbed, we run seven weekly backups for five

users (1.06TB data in total). We feed the first week of

backups of each user one by one through the CDStore

client, followed by the second week of backups, and so

on. On the other hand, on the cloud testbed, we run two

weekly backups for a single user (21.35GB data in total).

Figure 7(b) presents three results: (i) the average up-

load speed for the first backup (averaged over five users

for the LAN testbed), (ii) the average upload speed for

the subsequent backups, and (iii) the average download

speed of all backups. The presented results are obtained

from a single run, yet the evaluation time is long enough

to give steady-state results. We compare the results with

those for unique and duplicate data in Figure 7(a).

We see that the upload speed for the first backup ex-

ceeds that for unique data (e.g., by 19% on the LAN

testbed), mainly because the first backup contains dupli-

cates, which can be removed by intra-user deduplication

(see Figure 6(a)). The upload speed for the subsequent

backups approximates to that for duplicate data, as most

duplicates are again removed by intra-user deduplication.

The trace-driven download speed is lower than the

baseline one in Figure 7(a) (e.g., by 10% on the LAN

testbed), since deduplication now introduces chunk frag-

mentation [38] for subsequent backups. Nevertheless,

we find that the variance of the download speeds of the

backups is very small (not shown in the figure), although
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Figure 7: Upload and download speeds of a CDStore client (the numbers are

the speeds in MB/s).
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of multiple CDStore clients.

the number of accessed containers increases for subse-

quent backups. The download speed will gradually de-

grade due to fragmentation as we store more backups.

We do not explicitly address fragmentation in this work.

Multi-client aggregate upload speeds: We evaluate the

aggregate upload speed when multiple CDStore clients

connect to multiple CDStore servers. We mainly con-

sider data uploads on the LAN testbed, in which we vary

the number of CDStore clients, each hosted on a dedi-

cated machine, and configure four CDStore servers with

(n, k) = (4, 3). All CDStore clients perform uploads

concurrently, such that each of them first uploads 2GB

of unique data, and then uploads another 2GB of dupli-

cate data. We measure the aggregate upload speed, de-

fined as the total upload size (i.e., 2GB times the number

of clients) divided by the duration when all clients finish

uploads. Our results are averaged over 10 runs.

Figure 8 presents the aggregate upload speeds for

both unique and duplicate data, which we observe in-

crease with the number of CDStore clients. For unique

data, the aggregate upload speed reaches 282MB/s for

eight CDStore clients. The speed is limited by the net-

work bandwidth and disk I/O, where the latter is for the

CDStore servers to write containers to disk. If we ex-

clude disk I/O (i.e., without writing data), the aggregate

upload speed can reach 310MB/s (not shown in the fig-

ure), which approximates to the aggregate effective Eth-

ernet speed of k = 3 CDStore servers. For duplicate

data, there is no actual data transfer, so the aggregate up-

load speed can reach 572MB/s. Note that the knee point

at four CDStore clients is due to the saturation of CPU

resources in each CDStore server.

5.6 Cost Analysis

We now analyze the cost saving of CDStore. We com-

pare it with two baseline systems: (i) an AONT-RS-based

multi-cloud system that has the same levels of reliability

and security as CDStore but does not support deduplica-

tion, and (ii) a single-cloud system that incurs zero re-

dundancy for reliability, but encrypts user data with ran-

dom keys and does not support deduplication. We aim

to show that CDStore incurs less cost than AONT-RS

through deduplication; even though CDStore incurs re-

dundancy for reliability, it still incurs less cost than the

single-cloud system without deduplication.

We develop a tool to estimate the monetary costs us-

ing the pricing models of Amazon EC2 [1] and S3 [2]

in September 2014. Free charges apply to data trans-

fers between co-locating EC2 instances and S3 storage,

and also inbound transfers to both EC2 and S3. We only

study backup operations, and do not consider restore op-

erations as they are relatively infrequent in practice. Note

that both EC2 and S3 follow tiered pricing, so the exact

charges depend on the actual usage. Our tool takes into

account tiered pricing in cost calculations. For CDStore,

we also consider the storage costs of file recipes.

We briefly describe how we derive the EC2 and S3

costs. For EC2, we consider the category of high-

utilization reserved instances, which are priced based on

an upfront fee and hourly bills. We focus on two types

of instances, namely compute-optimized and storage-

optimized, to host CDStore servers on all clouds. Each

instance charges around US$60∼1,300 per month, de-

pending on the CPU, memory, and storage settings. Note

that both file and share indices (see §4.4) are kept in the

local storage of an EC2 instance, and the total index size

is determined by how much data is stored and how much

data can be deduplicated. Our tool chooses the cheap-

est instance that can keep the entire indices according

to the storage size and deduplication efficiency, both of

which can be estimated in practice. On the other hand,

S3 storage is mainly priced based on storage size, and

it charges around US$30 per TB per month. Note that

in backup operations, the costs due to outbound transfer

(e.g., a CDStore server replies the intra-user deduplica-

tion status to a CDStore client) and storage requests (e.g.,

PUT) are negligible compared to VM and storage costs.

We consider a case study. An organization schedules

weekly backups for its user data, for a retention time

of half a year (26 weeks). We fix (n, k) = (4, 3) (i.e.,

we host four EC2 instances for CDStore servers). We

vary the weekly backup size and the deduplication ratio,

where the latter is defined as the ratio of the size of logi-

cal shares to the size of physical shares (see §5.4).

Figure 9(a) shows the cost savings of CDStore ver-

sus different weekly backup sizes, while we fix the

deduplication ratio as 10× [58]. The cost savings in-

crease with the weekly backup size. For example, if we
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Figure 9: Cost savings of CDStore over an AONT-RS-

based multi-cloud system and a single-cloud system.

keep a weekly backup size of 16TB, the single-cloud

and AONT-RS-based systems incur total storage costs

(with tiered pricing) of around US$12,250/month and

US$16,400/month, respectively; CDStore incurs addi-

tional VM costs of around US$660/month but reduces

the storage cost to around US$2,880/month, resulting in

around US$3,540/month in total and thus achieving at

least 70% of cost savings as a whole. The cost saving of

CDStore over AONT-RS is higher than that over a sin-

gle cloud, as the former introduces dispersal-level redun-

dancy for fault tolerance. The increase slows down as the

weekly backup size further increases, since the overhead

of file recipes becomes significant when the total backup

size is large while the backups have a high deduplica-

tion ratio [41]. Note that the jagged curves are due to the

switch of the cheapest EC2 instance to fit the indices.

Figure 9(b) shows the cost savings of CDStore versus

different deduplication ratios, where the weekly backup

size is fixed at 16TB. The cost saving increases with the

deduplication ratio. The saving is about 70∼80% when

the deduplication ratio is between 10× and 50×.

6 Related Work

Multi-cloud storage: Existing multi-cloud storage sys-

tems mainly focus on data availability in the presence of

cloud failures and vendor lock-ins. For example, Safe-

Store [33], RACS [5], Scalia [45], and NCCloud [29] dis-

perse redundancy across multiple clouds using RAID or

erasure coding. Some multi-cloud systems additionally

address security. HAIL [19] proposes proof of retriev-

ability to support remote integrity checking against data

corruptions. MetaStorage [12] and SPANStore [60] pro-

vide both availability and integrity guarantees by repli-

cating data across multiple clouds using quorum tech-

niques [39], but do not address confidentiality. Hy-

bris [23] achieves confidentiality by dispersing encrypted

data over multiple public clouds via erasure coding and

keeping secret keys in a private cloud.

Applications of secret sharing: We discuss several se-

cret sharing algorithms in §2. They have been real-

ized by storage systems. POTSHARDS [56] realizes

Shamir’s scheme [54] for archival storage. ICStore

[21] achieves confidentiality via key-based encryption,

where the keys are distributed across multiple clouds via

Shamir’s scheme. DepSky [13] and SCFS [14] distribute

keys across clouds using SSMS [34]. Cleversafe [52]

uses AONT-RS to achieve security with reduced storage

space. All the above systems rely on random inputs to

secret sharing, and do not address deduplication.

Deduplication security: Convergent encryption [24]

provides confidentiality guarantees for deduplication

storage, and has been adopted in various storage sys-

tems [6, 7, 22, 55, 59]. However, the key management

overheads of convergent encryption are significant [36].

Bellare et al. [10] generalize convergent encryption into

Message-locked encryption (MLE) and provide formal

security analysis on confidentiality and tag consistency.

The same authors also prototype a server-aided MLE

system DupLESS [9], which uses more complicated en-

cryption keys to prevent brute-force attacks. DupLESS

maintains the keys in a dedicated key server, yet the key

server is a single point of failure.

Client-side inter-user deduplication poses new secu-

rity threats, including the side-channel attack [27,28] and

some specific attacks against Dropbox [43]. CDStore ad-

dresses this problem through two-stage deduplication. A

previous work [61] proposes a similar two-stage dedu-

plication approach (i.e., inner-VM and cross-VM dedu-

plications) to reduce system resources for VM backups,

while our approach is mainly to address security.

7 Conclusions

We propose a multi-cloud storage system called CDStore

for organizations to outsource backup and archival stor-

age to public cloud vendors, with three goals in mind:

reliability, security, and cost efficiency. The core de-

sign of CDStore is convergent dispersal, which aug-

ments secret sharing with the deduplication capabil-

ity. CDStore also adopts two-stage deduplication to

achieve bandwidth and storage savings and prevent side-

channel attacks. We extensively evaluate CDStore via

different testbeds and datasets from both performance

and cost perspectives. We demonstrate that dedupli-

cation enables CDStore to achieve cost savings. The

source code of our CDStore prototype is available at

http://ansrlab.cse.cuhk.edu.hk/software/cdstore.
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