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Abstract

Modern key-value (KV) stores adopt the LSM-tree as the core
data structure for managing KV pairs, but suffer from high
write and read amplifications. Existing LSM-tree optimiza-
tions often make design trade-offs and are unable to simulta-
neously achieve high performance in writes, reads, and scans.
To resolve the design tensions, we propose DiffKV, which
builds on KV separation to carefully manage the ordering for
keys and values. DiffKV manages keys using the conventional
LSM-tree with fully-sorted ordering (within each level of the
LSM-tree), while managing values with partially-sorted or-
dering with respect to the fully-sorted ordering of keys in a
coordinated way for preserving high scan performance. We
further propose fine-grained KV separation to differentiate
KV pairs by size, so as to realize balanced performance under
mixed workloads. Experimental results show that DiffKV can
simultaneously achieve the best performance in all aspects
among existing LSM-tree-optimized KV stores.

1 Introduction
Key-value (KV) storage, which abstracts data as KV pairs,
becomes a critical storage paradigm for supporting a variety of
applications, such as search engines [4,11,23,53], distributed
file systems [1, 28], data deduplication [18, 41], graph stores
[7, 22, 37, 64], and OLTP/OLAP databases [3, 8, 11, 19, 30, 31,
33, 43, 50, 65]. Such storage paradigms mainly provide three
operations: (i) writes, which insert KV pairs, (ii) reads, which
retrieve the value of a single key, and (iii) scans, which retrieve
the values over a key range. In particular, scans are essential
operations for KV stores in various applications; for example,
graph computation tasks may traverse multiples nodes or
edges [2,7,37], and OLAP databases traverse multiple entries
in a table for data filtering or aggregation [8,30,33,50]. Thus,
optimizations for scans have also been specifically studied in
the literature [43, 55, 62, 65].

To better leverage the efficiency of sequential I/Os and
preserve the data ordering for fast scans, modern KV stores
(e.g., [10, 24, 27, 42, 52]) often adopt the Log-Structured-
Merge-tree (LSM-tree) [46]. At a high level, the LSM-tree
builds on three properties (see §2.1 for details): (i) it orga-
nizes KV pairs in a log-structured layout, in which updating
KV pairs is treated as issuing sequential writes of KV pairs
to persistent storage with high performance; (ii) it adopts a

multi-level structure that keeps KV pairs fully sorted within
each level, so as to support efficient reads and scans without
specialized in-memory index structures; and (iii) it mitigates
the write overhead by gradually moving KV pairs from lower
levels to higher levels via compaction, so as to maintain high
storage scalability. However, the compaction incurs substan-
tial amounts of I/Os, as the KV pairs in adjacent levels need
to be retrieved and written back to maintain sorted ordering.
It is well known that LSM-tree KV stores suffer from severe
write and read amplifications, especially when the number of
levels of the LSM-tree increases with the growing volume of
KV pairs being managed [42, 52, 58].

To reduce the compaction overhead, a number of LSM-
tree optimization techniques have been proposed in the lit-
erature. One direction of work is to relax the fully-sorted
nature in each level of the LSM-tree, thereby alleviating the
compaction overhead [17, 52, 55]. However, as the degree of
fully-sorted ordering is relaxed, the scan performance also
degrades. Another direction of work is based on KV sepa-
ration, which separates the storage of keys and values by
keeping only keys (in fully-sorted ordering) in the LSM-tree
and performing value management in a dedicated storage
area [10, 20, 38, 42, 49, 51, 63]. KV separation alleviates the
compaction overhead as the LSM-tree size now significantly
decreases without storing the values, and is particularly suited
for practical KV workloads whose KV pairs are composed
of large-size values [5, 9, 30, 38, 44, 59] (see §2.2 for details).
However, it degrades the scan performance, especially for the
values with small-to-medium sizes that are also common in
practice [5, 9], since each scan needs to issue random I/Os
to the values over a key range that are no longer fully sorted
(in contrast, the random I/O overhead is amortized for large
values). Also, KV separation incurs extra garbage collec-
tion (GC) overhead [10], thereby triggering additional I/O
overhead beyond the compaction in the LSM-tree. In short,
existing LSM-tree optimizations are still limited by tight per-
formance tensions between reads/writes and scans, in terms
of (i) the degrees of ordering in keys and values, and (ii) the
management of KV pairs of varying sizes.

To this end, we design a novel KV store, DiffKV, that real-
izes balanced I/O performance on commodity storage devices
(e.g., solid-state drives (SSDs)). Its main idea builds on the
differentiated KV management in two aspects. First, DiffKV



differentiates the storage management of keys and values as
in conventional KV separation, and takes one step further
to carefully coordinate the differentiated management of the
ordering for keys and values. Specifically, it keeps keys fully
sorted in each level of the LSM-tree as in conventional KV
separation for fast reads and scans, while keeping values par-
tially sorted, such that the (partially-sorted) ordering of values
is coordinated with respect to the (fully-sorted) ordering of
keys. We design a new LSM-tree-like structure called the
vTree for value management, such that the sorting of values in
the vTree is triggered by the compaction of the LSM-tree. In
this way, we limit the overhead of sorting values, yet we still
maintain high scan performance via the partially-sorted order-
ing for values. Second, DiffKV differentiates the management
of values via fine-grained KV separation, such that the KV
pairs of different size groups are specifically managed for
maintaining balanced performance under mixed workloads.

To the best of our knowledge, this is the first work that
examines the differentiated ordering for KV pairs. Tradi-
tional LSM-tree KV stores without KV separation always
couple keys and values together and only realize a single
kind of ordering [24, 27, 52]. While existing KV separation
designs [10, 20, 38, 42, 49, 51, 63] decouple keys and values,
the values are unsorted, and they cannot be tuned to realize
different degrees of ordering for balanced performance. Our
main contributions are summarized as follows.

• We present DiffKV, which coordinates the differentiated
management of ordering for keys and values, so as to simul-
taneously improve the performance of writes, reads, and
scans. Specifically, DiffKV manages values in the vTree
structure for the partially-sorted ordering of values.

• We propose multiple merge optimization techniques to re-
duce the sorting overhead in the vTree, and also develop a
state-aware lazy GC scheme to realize high space efficiency
and high performance.

• We propose fine-grained KV separation and differentiate
the management of small, medium, and large KV pairs for
optimizing mixed workloads. In addition to the LSM-tree
and the vTree, we also propose a hotness-aware multi-log
design for efficiently managing large KV pairs.

• We implement a DiffKV prototype atop Titan [51], an open-
source KV store that implements KV separation with op-
timized techniques. Evaluation results show that DiffKV
achieves the best performance in writes, reads, scans, and
space utilization compared to state-of-the-art KV stores,
including RocksDB [24], PebblesDB [52], and Titan [51].

We release the source code of our DiffKV prototype at
https://github.com/ustcadsl/diffkv.

2 Background and Motivation
We first introduce the basics of an LSM-tree KV store. We
then discuss the strengths and weaknesses of different LSM-
tree optimizations to motivate our DiffKV design.

2.1 LSM-tree KV Store
Storage structure. Figure 1(a) depicts a simplified storage
structure of a conventional LSM-tree KV store (e.g., LevelDB
[27] and RocksDB [24]). An LSM-tree KV store comprises
n+1 levels on disk, denoted by L0,L1, · · · ,Ln (from lowest
to highest), and the capacity of a higher level Li is a multiple
(e.g., 10× by default in LevelDB [27]) of that of a lower
level Li−1 (where 1 ≤ i ≤ n). It stores KV pairs in entirety
as multiple disk files, called SSTables, in multiple levels. It
also has two in-memory write buffers, namely MemTable and
Immutable MemTable, and flushes the Immutable MemTable
to level L0 on disk with append-only writes. One main feature
of the LSM-tree KV store is that all KV pairs in each of
the levels from L1 to Ln are fully sorted by keys to support
fast scans, while KV pairs in L0 are unsorted across different
SSTables for fast flushes.

Write process. To write a KV pair, an LSM-tree KV store
first inserts the KV pair into the MemTable, which keeps all
buffered KV pairs sorted by keys in a skip-list. When the
Memtable is full, it becomes an Immutable MemTable, which
is then flushed to level L0 as a new SSTable. The SSTable com-
prises the sorted KV pairs and some metadata (e.g., Bloom
filters) for indexing. Meanwhile, the KV store generates a
new MemTable to receive the subsequent new writes. When
Li is full (where i ≥ 0), its SSTables will be integrated into
Li+1 by a compaction operation. To compact an SSTable S
from Li into Li+1, the KV store reads S and all SSTables in
Li+1 that have overlapped key ranges with S, then sorts all KV
pairs by keys and creates new SSTables. It finally writes them
back into Li+1. Thus, compaction induces to severe write
amplification, which can reach up to a factor of 50× [42].

Read process. To read a KV pair, an LSM-tree KV store first
searches for the KV pair in memory. If the KV pair does not
exist, the KV store performs binary search in each level of
the LSM-tree, starting from the lowest level L0 to the higher
levels. For each level, it identifies an SSTable and checks its
Bloom filter to see if the KV pair exists.

To scan KV pairs, the KV store first finds the starting key
in each level. It then sequentially reads the KV pairs that fall
in the queried range. It finally returns the set of KV pairs.

2.2 LSM-tree Optimizations and Limitations
We discuss two major classes of LSM-tree optimizations on
how they reduce the compaction overhead of LSM-tree KV
stores: (i) relaxing fully-sorted ordering [17, 52, 55] and (ii)
KV separation [10, 20, 38, 42, 49, 51, 63]. Other types of opti-
mizations are reviewed in §6.

Relaxing fully-sorted ordering. We consider PebblesDB
[52], which realizes a fragmented LSM-tree, as a represen-
tative example, as shown in Figure 1(b). PebblesDB divides
each level into several disjoint groups by guards, in which
the key ranges of SSTables in the same group may overlap
with each other. To compact a group of SSTables from Li to
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Figure 1: Overview of LSM-tree KV storage structure: (a) fully sorted within each level; (b) partially sorted within each level via multiple
non-overlapping segments with guards; and (c) fully sorted for keys, unsorted for values.

Li+1, PebblesDB only reads the SSTables within the group
in Li, sorts them to create new SSTables, and finally writes
the new SSTables into Li+1. In this case, a compaction op-
eration in PebblesDB does not need to read SSTables from
Li+1, thereby greatly alleviating compaction overhead and
write amplification. However, because of the overlapped key
ranges of SSTables within each group, PebblesDB sacrifices
scan performance. Although it can leverage multi-threading
to issue reads in parallel, it incurs more CPU resources, while
the improvement remains limited.

KV separation. Figure 1(c) illustrates the typical structure
of KV separation in Wisckey [42] and Titan [51]. KV sepa-
ration stores keys and values separately, in which keys and
their references to values are treated as new KV pairs and
stored in the LSM-tree, while the original values are sepa-
rately stored in an append-only log, which is implemented as
multiple blob files in Titan. For medium-to-large value sizes,
as the keys and value references often have much smaller sizes
than the original values. In this case, the total data volume
in the LSM-tree is significantly reduced, so the compaction
overhead and hence the write amplification are alleviated. In
addition, a smaller LSM-tree reduces read amplification and
hence improves read performance.

KV separation is a well-known optimization technique for
LSM-tree KV stores, as KV pairs with large values sizes are
commonly found in real-world KV workloads. For example,
TiDB [30], a transactional database built atop a KV storage
layer, maps every row of a database table into a KV pair
whose value size can grow to hundreds of kilobytes. Atlas [38]
maintains KV pairs of cloud storage with value sizes larger
than 128 KB. Also, field studies [5, 44, 59] indicate that large-
size values contribute to a considerable fraction of traffic in
practical KV workloads, and the recent study by Facebook [9]
shows that KV pairs for social graph data can have an average
value size as large as 1 KB. Finally, the values with medium-
to-large sizes (e.g., from 1 KB to 16 KB) are often chosen in
the evaluation benchmarks of KV stores (e.g., [10, 42, 52]).

However, since KV separation writes values into an append-
only log, the values of a consecutive range of keys are now
scattered in different positions in the log. Thus, the scan oper-
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Figure 2: Write performance of RocksDB, PebblesDB, and Titan.

ations need to issue random reads to values, thereby leading to
low scan performance in KV separation especially for the KV
workloads whose values have small-to-medium sizes [5, 9]
(e.g., in OLTP applications [5], more than 90% of values
are smaller than 1 KB). Furthermore, KV separation needs
to perform GC to reclaim the space of invalid values in the
append-only log, and frequent GC operations incur extra I/O
overhead [10].

2.3 Trade-off Analysis
We evaluate the design trade-offs of existing LSM-tree de-
signs and optimizations. We consider three open-source KV
stores: (i) RocksDB [24], which represents the state-of-the-art
LSM-tree KV store with optimized performance; (ii) Peb-
blesDB [52], which relaxes the fully-sorted ordering of each
LSM-tree level for reduced compaction overhead; and (iii) Ti-
tan [51], which realizes KV separation with optimized imple-
mentation (e.g., managing values in multiple small Blob files
instead of a large append-only log and using multi-threading
to reduce GC overhead). We evaluate write amplification (i.e.,
the ratio of total write size to user write size) and performance,
based on the testbed and configurations in §5.1.

Write performance. Figure 2 shows the write performance
of loading a 100 GB database with different value sizes (vary-
ing from 128 bytes to 16 KB). From Figure 2(a), both Peb-
blesDB and Titan significantly reduce the write amplification
of RocksDB, and their write amplification ratios decrease
as the value size increases. For example, for a value size
of 16 KB, the write amplification ratios of RocksDB, Peb-
blesDB, and Titan are 9.4×, 4.3×, and 1.3×, respectively.
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Figure 3: Read and scan performance of RocksDB (‘R’), PebblesDB
(‘P’), and Titan (‘T’).

From Figure 2(b), both PebblesDB and Titan show higher
write throughput than RocksDB due to the reduced write am-
plification. For example, for a value size of 16 KB, the write
throughput gains of PebblesDB and Titan over RocksDB are
2.7× and 8.7×, respectively. In short, the LSM-tree optimiza-
tions of relaxing fully-sorted ordering and KV separation are
effective to reduce write amplification and hence increase
write throughput, especially for large-size values.

Read and scan performance. Figure 3 shows the read and
scan performance of RocksDB, PebblesDB, and Titan. For
read performance, we issue read requests (i.e., random point
queries) to a randomly loaded 100 GB KV store; for scan per-
formance, we issue scan requests to 100 KV pairs. From Fig-
ure 3(a), relaxing fully-sorted ordering degrades the read per-
formance, so the read throughput of PebblesDB is lower than
that of RocksDB. Titan uses KV separation, which largely
reduces the LSM-tree size, so its read throughput is evidently
higher than that of RocksDB; for example, its throughput
2.0× of that of RocksDB for a value size of 16 KB.

For scans, both PebblesDB and Titan perform worse than
RocksDB, especially for small-to-medium size values. Fig-
ure 3(b) provides a latency breakdown for scans. For example,
for a value size of 1 KB, the scan latencies of PebblesDB and
Titan are 1.5× and 2.4× of that of RocksDB, respectively.
Most of the scan time is spent on iteratively reading values
(e.g., more than 90% for Titan). As the value size becomes
larger (e.g., 16 KB), the differences of scan latencies among
the KV stores are smaller, as accessing large-size values has
smaller random read overhead. For the KV workloads that are
dominated by small-size values [5, 9], the scan performance
of PebblesDB and Titan will be limited in practice.

In short, existing LSM-tree designs and optimizations are
subject to the performance trade-offs between reads/writes
and scans. While relaxing the degree of ordering for values
(e.g., using the fragmented LSM-tree or an unsorted append-
only log in KV separation) reduces write amplification and
improves write throughput, it sacrifices the scan performance,
especially for values with small-to-medium sizes.

3 DiffKV Design
We present DiffKV, a novel LSM-tree KV store that aims for
balanced performance in writes, reads, and scans.
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3.1 System Overview
Figure 4 depicts the system architecture of DiffKV. DiffKV
builds on KV separation for on-disk KV pairs, such that keys
and values are decoupled during the flush of KV pairs from
memory to disk and then they are separately stored. It also
realizes partially-sorted ordering for values, so as to maintain
high scan performance. To achieve this, DiffKV leverages a
new LSM-tree-like multi-level tree, called the vTree, to man-
age values. As in the LSM-tree, the vTree comprises multiple
levels, each of which can only be written in an append-only
way. The difference between the vTree and the LSM-tree is
that the vTree only stores values which are not necessarily
fully sorted by their keys within each level; instead, they are
allowed to be partially sorted for high scan performance.

To realize partially-sorted ordering for values, the vTree
also necessitates a compaction-like operation as in the LSM-
tree, which we call a merge operation to differentiate itself
from a compaction operation in the LSM-tree. To reduce the
merge overhead, DiffKV makes the compaction of the LSM-
tree and the merge of the vTree be executed in a coordinated
manner so as to reduce the overall overhead.

To make DiffKV compatible with existing LSM-tree store
designs, it still follows the same in-memory data manage-
ment as in conventional LSM-tree KV stores with an on-disk
write-ahead log (WAL). Specifically, as depicted in Figure 4,
DiffKV first writes KV pairs to the WAL, inserts them into
the MemTable in memory, and finally flushes the Immutable
MemTable to disk with KV separation.

3.2 Data Organization
The vTree adopts hierarchical data organization. It consists of
multiple levels. Each level consists of sorted groups, and each
sorted group further consists of multiple vTables (Figure 4).
In the following, we elaborate their design details.

vTable. DiffKV organizes values as vTables, each of which
has a fixed size (e.g., 8 MB by default). Note that each flush
of an immutable MemTable may generate multiple vTables
depending on the value size and MemTable size.

A vTable includes a data area that stores the values of
KV pairs in a sorted order based on their keys, as well as



a metadata area that records the necessary metadata, such
as the data size of the vTable, and the smallest and largest
keys of the values in this vTable. Note that the Bloom filter is
not required in the vTable (as opposed to the SSTable in the
LSM-tree), since the values are still indexed by their keys in
the LSM-tree. Thus, the metadata in each vTable has a very
small size and brings limited storage overhead.
Sorted group. Each sorted group is a collection of vTables,
and all vTables in a sorted group are fully sorted according
to their corresponding keys. In other words, the key ranges
of any two vTables in a sorted group have no overlaps. For
ease of presentation, we also apply the concept of a sorted
group for the LSM-tree, such that any set of SSTables in the
LSM-tree that are fully sorted are also called a sorted group
(e.g., all SSTables in the same level in the LSM-tree form a
sorted group). In DiffKV, all vTables generated in one flush
form a sorted group, so as to preserve the ordering of values
in each immutable MemTable. We use the number of sorted
groups as an indicator to measure the degree of ordering in the
vTree. As the number of sorted groups increases, the degree
of ordering decreases. In one extreme, if all SSTables/vTables
form one sorted group, then we have the maximum degree of
ordering, as all KV pairs are fully sorted.
vTree. The vTree consists of multiple levels, each of which
is formed by multiple sorted groups. While the values in
each sorted group are fully sorted, the values in a level of the
vTree are not necessarily fully sorted, as they may belong to
multiple sorted groups that have overlaps in the key range. As
the vTree allows each level to have multiple sorted groups, a
merge operation does not need to sort all values in successive
two levels in the vTree; this alleviates the I/O overhead as
opposed to the compaction in the LSM-tree.

3.3 Compaction-Triggered Merge
The vTree regularly performs merge operations to have
partially-sorted ordering for values. Each merge reads a num-
ber of vTables and checks which values in the vTables remain
valid. This can be done by querying the LSM-tree to retrieve
the latest value location. Also, each merge needs to update
the LSM-tree for the latest value locations of the valid values.
To limit the merge overhead in the vTree, the merge oper-
ations in the vTree are not executed independently, but are
triggered by the compaction operations in the LSM-tree in a
coordinated manner. We call such a merge operation to be a
compaction-triggered merge operation.

To explain the idea, we consider a simplified case in which
we let each level in the vTree be coupled with only one level
in the LSM-tree, and use Li and vLi to denote level i of the
LSM-tree and vTree, respectively. If Li and vLi are correlated,
then it means that for each KV pair, if the key is stored at
level Li in the LSM-tree, then the value of the KV pair can
only be stored at level vLi in the vTree. However, level vLi
in the vTree is not required to preserve the same fully-sorted
ordering with its correlated level Li in the LSM-tree.
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Figure 5: Compaction-triggered merge.

Figure 5 shows the idea of a compaction-triggered merge,
which operates as follows. When a compaction operation is
triggered to compact keys from Li to Li+1 in the LSM-tree, it
also triggers a merge operation that moves the corresponding
values from vLi to vLi+1 in the vTree. In the merge operations,
there are two major issues: (i) which values should be involved
in the merge and (ii) how to write back these values to level
vLi+1 in the vTree. First, we merge only the values at level vLi,
and their corresponding keys must participate in the com-
paction in the LSM-tree. We call the value whose key partici-
pates in the compaction to be the compaction-related value for
ease of presentation. Second, we reorganize all compaction-
related values at level vLi to generate new vTables and write
these vTables to level vLi+1 in an append-only manner. For
the example in Figure 5, the values V33,V13,V45,V28,V39 are
compaction-related values, and V33,V13,V45 will be involved
in the merge, and finally appended to level vLi+1 after sorting.

Note that all values in the generated vTables in each merge
are fully sorted; that is, they form only one single sorted
group. However, we point out that the merge operation does
not require to reorganize all vTables in both levels of vLi and
vLi+1 in the vTree. That is, when merging, a new sorted group
is created in level vLi+1 with all vTables from level vLi it.
This avoids the rewrites of all values at level vLi+1, thereby
mitigating write amplification. In addition, the old vTables
at vLi will not be deleted during a merge, as they may still
contain valid values, and they will be reclaimed later by GC.

The benefits of a compaction-triggered merge are two folds.
First, merging only compaction-related values makes it very
efficient to identify which values are still valid, as the corre-
sponding keys also need to be read out from the LSM-tree
during a compaction. In contrast, if the vTree is independent
of the LSM-tree and triggers merge operations independently,
then it needs to query the LSM-tree and compare the value lo-
cations to determine the validity of values, thereby inevitably
incurring large query overhead. Second, as the locations of
valid values are changed when generating new vTables dur-
ing a merge operation, the LSM-tree needs to be updated
accordingly to maintain the latest value locations. Since only
the compaction-related values are merged, updating the value
locations in the LSM-tree can be executed by directly up-
dating the KV pairs participating in the compaction. Thus,
the overhead of updating value locations can be hidden in
the compaction operation as the compaction itself needs to
rewrite the KV pairs in the LSM-tree.
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3.4 Merge Optimizations
Compaction-triggered merge operations incur limited merge
overhead caused by checking the validity of values and writ-
ing back new value locations into the LSM-tree. However,
letting each compaction operation trigger a merge operation
may cause frequent merge operations. For example, if each
level in the vTree is correlated with only one level in the LSM-
tree, then each compaction operation must trigger a merge
operation in the vTree. To further reduce the merge overhead
in the vTree, we propose two merge optimizations.

Lazy merge. We propose lazy merge to limit the merge fre-
quency, and hence the merge overhead, in DiffKV. Our idea
is to aggregate multiple lower levels in the vTree as a single
level, and correlate the aggregate level with multiple levels in
the LSM-tree. Specifically, as depicted in Figure 6, we aggre-
gate all levels vL0, · · · ,vLn−2 in the vTree as a single level and
correlate the aggregate level with levels from L0 to Ln−2 in the
LSM-tree. Thus, any compaction between level L0, · · · ,Ln−2
will not trigger a merge operation; in other words, the merge
operations between level vL0, · · · ,vLn−2 will be delayed un-
less the values need to be merged into level vLn−1.

Lazy merge significantly reduces the number of merge
operations and the amount of data size being merged, but
sacrifices the degree of ordering for the values in lower levels
in the vTree. Nevertheless, we argue that the sacrifice poses
limited degradation to the scan performance. Recall that the
LSM tree increases its capacity toward higher levels (e.g.,
the size of Li is 10× of that of Li−1 in LevelDB [27]) (§2.1).
Thus, the last two levels Ln−1 and Ln contain the majority of
KV pairs. The uneven data distribution across levels implies
that most values are actually retrieved from the last two levels
of the vTree for scans, so the degree of ordering of values
in the last two levels is the dominant factor that determines
the scan performance. In other words, the low levels of the
vTree only have limited impact on scan performance, and the
frequent merge operations in the low levels do not help scan
performance but instead incur large merge overhead.

Scan-optimized merge. We adjust the degree of ordering
for values in the vTree via scan-optimized merge, so as to
maintain high scan performance. Recall that in a compaction-
triggered merge operation, say merging the values from vLi to
vLi+1, only the values in the lower level vLi are reorganized
and appended to the higher level vLi+1, while the values in
level vLi+1 are not involved in the merge operation and will
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Figure 7: Scan-optimized merge.

not be sorted (§3.3). This append-only merge policy mitigates
write amplification, but may result in too many sorted groups,
which may have overlapped key ranges as values are not
sorted across sorted groups. Thus, our idea is to find out
the vTables which have overlapped key ranges with many
other vTables, and also make them participate in the merge
process regardless of which level they reside. With this, we
can preserve a higher degree of ordering for values in the
vTree, and thus benefit the scan performance.

Figure 7 depicts the idea of scan-optimized merge. After
the normal compaction-triggered merge, we further check the
vTables that contain compaction-related values at level vLi+1.
Our goal is to identify the set of vTables that satisfy two con-
ditions: (i) at least one vTable in the set has overlapped key
range with others, and (ii) the number of vTables (i.e., the
set size) is larger than a pre-defined threshold, denoted by
max sorted run. The rationale is that if such a set of vTables
exists, then the scan performance may degrade as these vTa-
bles are not in a sorted order. We add a scan optimization tag
for these vTables, so that they will always participate in the
next compaction-triggered merge and increase the degree of
ordering for values in tagged vTables.

To identify the set of vTables for tagging, we first retrieve
the start and end keys of each vTable containing compaction-
related values at level vLi+1, and sort these keys. For each
checked vTable, we count the number of vTables that have
overlapped key ranges with it, and this can be done by scan-
ning once the sorted key string. For example, as in Figure 7,
consider a checked vTable [26-38]. By scanning the sorted
string, we can count the number of start keys before key 38
(i.e., five in this case) and the number of end keys before
key 26 (i.e., one in this case). By subtracting the two numbers,
we can obtain the number of vTables that have overlapped
key ranges with vTable [26-38], which is four including itself
(i.e., vTables [15-28], [29-34], [37-48], and [26-38]). Finally,
if the number of vTables with overlapped key ranges is larger
than the threshold max sorted run, then we add a scan opti-
mization tag for all these vTables to include them in the next
compaction-triggered merge.We persist the optimization tags
in a manifest file, which is already used by existing systems to
track the version changes of KV pairs after each compaction;
the persistence overhead is negligible.

Scan-optimized merge is an enhancement to compaction-
triggered merge: a compaction-triggered merge operation only



appends values in a lower level to its next higher level, while
a scan-optimized merge operation further includes certain val-
ues in the higher level into the merge to increase the degree
of ordering of values in the vTree. Note that scan-optimized
merge incurs limited merge overhead (see Figure 15 in §5.4)
for two reasons. First, we allow each level in the vTree to have
multiple sorted groups (i.e., the whole level is not necessarily
fully sorted). Second, not all values in a tagged vTable partic-
ipate in the merge, but instead only the compaction-related
values are merged.

3.5 Garbage Collection
The vTree rewrites compaction-related values to new vTables
(§3.3), so it necessitates garbage collection (GC) to reclaim
the space of invalid values (in the LSM-tree, its invalid data
is reclaimed via compaction). To reduce the GC overhead, we
propose a state-aware lazy approach based on the amount of
invalid values in each vTable.

State awareness. DiffKV tracks the amount of invalid values
in each vTable in a hash table. Each time when a vTable
participates in a merge operation, DiffKV counts the amount
of values being retrieved from the vTable and updates the
amount of invalid values in the old vTable in the hash table.
It also inserts an entry for any new vTable in the hash table.
The updates to the hash table are executed during a merge
operation, so the overhead is limited. Also, each entry in the
hash table only occupies few bytes for each vTable, so the
memory overhead of the hash table is limited.

Lazy GC. DiffKV takes a lazy approach to limit the GC over-
head. It selects a vTable as a GC candidate if the vTable has
a fraction of invalid values greater than a predefined thresh-
old (denoted by gc threshold). Note that DiffKV does not
immediately reclaim the candidate vTables; instead, it simply
marks a GC tag for each candidate, and delays the GC until
the next compaction-triggered merge. Specifically, if a vTable
with a GC tag is involved in a compaction-triggered merge,
the values contained in this vTable will always be rewritten
to the next higher level (similar to scan-optimized merge).

Lazy GC avoids the extra overhead of querying the LSM-
tree for the validity of values in the candidate vTable and
updating the LSM-tree for the new locations of the valid val-
ues. It is now delayed to be executed together with the merge
operation, so that the overhead of querying and updating the
LSM-tree can be hidden within the merge operation.

3.6 Discussion
Optimizing compaction at L0. As KV separation is executed
during flushes, SSTables at level L0 in the LSM-tree may
be very small, especially when KV pairs are large, so we
propose a simple optimization called selective compaction
to aggregate small SSTables at L0. Specifically, we trigger
intra-level compaction which simply combines multiple small
SSTables at L0 to generate a new large one without merging
with SSTables at L1. With selective compaction, the size of
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SSTables at L0 will eventually become comparable to that of
SSTables at L1, and hence no extra compaction overhead will
be introduced due to KV separation.

Crash consistency. DiffKV is implemented on Titan (which
builds on RocksDB) (§5), and provides the same level of
consistency as RocksDB after system crashes. To guarantee
data consistency, DiffKV uses a write-ahead log (WAL), and
writes KV pairs to the WAL before writing to the MemTable.
Also, DiffKV provides crash consistency for the hash table
that records the amount of invalid data in each vTable (§3.5).
As the hash table is updated after compaction, DiffKV ap-
pends the update information into the manifest file (§3.4) after
compaction, so it can be restored when DiffKV recovers from
a crash.

4 Fine-grained KV Separation
The benefit of KV separation is significant for large KV pairs,
but diminishes for small KV pairs (§2.3). However, mixed
workloads with varying value sizes are also common; for
example, the value size may vary in a large range under the
generalized Pareto distribution [25]. In this section, we further
enhance DiffKV via fine-grained KV separation by distin-
guishing KV pairs by value sizes, so as to achieve balanced
performance under mixed workloads.

4.1 Differentiated Value Management
DiffKV classifies KV pairs into three groups based on the
value size, by using two parameters, namely value small and
value large, as depicted in Figure 8. For KV pairs whose
value size is larger than value large (i.e., large KV pairs),
DiffKV adopts KV separation, and manages values with a
hotness-aware multi-log design called vLogs. For KV pairs
whose value size is between value small and value large (i.e.,
medium KV pairs), DiffKV stores values in the vTree and
keep both keys and value locations in the LSM-tree. For KV
pairs whose value size is smaller than value small (i.e., small
KV pairs), DiffKV bypasses KV separation and stores the
whole KV pairs directly in the LSM-tree. As a result, DiffKV
achieves balanced performance for different value sizes.

Note that for large KV pairs, DiffKV adopts the workflow
as in Wisckey [42], in which KV separation is performed be-
fore writing to MemTable (see Figure 8). Specifically, DiffKV
directly flushes the values of large KV pairs into vLogs, treats
their keys and value locations as new KV pairs, and writes
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them to MemTable as regular user data. The benefits of per-
forming KV separation early for large KV pairs are two-fold.
First, by directly flushing large-size values into vLogs and
keeping only small-size value locations in the MemTable, we
can save substantial memory space, while still guaranteeing
high write performance due to large sequential I/Os. Second,
as large-size values are first written to disk, there is no need to
write them to the WAL, and this reduces the amount of I/Os.
Note that for small and medium KV pairs, as well as the keys
and value locations for large KV pairs, they still need to be
written to the WAL so as to guarantee consistency (§3.6).

4.2 Hotness-aware vLogs
Structure of vLogs. A vLog is designed as a simple circular
append-only log, which consists of a set of unsorted vTables.
Unsorted vTables share a similar storage format with vTables
described in §3.2, and the only difference is that values are
written to unsorted vTables with append, so they are not sorted
even within each unsorted vTable. The reason why we do this
is because KV separation for large KV pairs is performed
before writing to the MemTable, and values for large KV
pairs are flushed to disk immediately after KV separation so
as to avoid writing to WAL, so there is no way to sort the
values in each vTable (see Figure 8). In fact, there is no need
to sort these values as they have a large size, and hence they
can already benefit from large I/Os without batched writes.
GC for vLogs. To reduce GC overhead, we leverage a hotness-
aware design by employing a simple yet efficient parameter-
less hot-cold separation scheme. As shown in Figure 9, we
adopt two vLogs, namely a hot vLog and a cold vLog, to store
hot and cold values, respectively. Each vLog has its own write
frontier, and we call them write head and GC head, respec-
tively. To realize hot-cold separation, the data from user writes
are appended to the write head in the hot vLog, and the data
from GC writes (i.e., the valid values that need to be written
back after GC) are appended to the GC head in the cold vLog.
The rationale is that the values reclaimed by GC are usually
accessed less frequently than the recently written user data, so
they can be regarded as cold data. One benefit of this design
is that it is simple to implement, as no parameter is required
to realize hot-cold identification. Clearly, we can also apply
alternative hotness-aware classification schemes.

DiffKV employs a greedy algorithm to reduce GC cost,
and the idea is to reclaim the unsorted vTables which have

the largest amount of invalid values. Specifically, DiffKV
monitors the ratio of invalid values of each unsorted vTable
during compaction, and maintains a GC queue in memory to
track all candidate vTables, which are the unsorted vTables
with the ratio of invalid values being greater than the threshold
gc threshold. Note that the GC queue only keeps the metadata
of each unsorted vTable, and it is maintained in a descending
order according to the ratio of invalid values. When GC is
triggered, DiffKV simply selects unsorted vTables tracked in
the queue head (e.g., t1, and t2 in Figure 9), then appends the
valid values in the selected vTables to the GC head in the cold
vLog. For performance consideration, DiffKV implements
GC as a background process with multiple GC threads.

5 Evaluation
In this section, we evaluate and compare DiffKV with the
three state-of-the-art KV stores introduced in §2.3: RocksDB
[24], PebblesDB [52], and Titan [51]. For fair comparisons
with Titan, we also implement DiffKV based on it and our
modifications contain around 2.1K lines of code.

5.1 Setup
Testbed. We conduct experiments on a single machine
equipped with an 12-cores Intel Xeon E5-2650v4 CPU, 16 GB
memory, and Samsung 860 EVO 480 GB SSD. The machine
runs Ubuntu 18.04 LTS with Linux kernel 4.15.
Workload. We modify YCSB-C [48, 54], a C++ version of
YCSB [14], to generate workloads based on the workload
statistics in [9]. We fix the key size as 24 bytes, and configure
the value size with the generalized Pareto distribution [29],
whose probability density function is:

f (x) = (1/σ)(1+ k(x−θ)/σ)(−1−1/k) (1)

where x represents the value size, k, θ , and σ are adjustable
parameters. By default, we limit the maximum value size
as 128 KB, and set k = 0.92,σ = 226,θ = 0 by using the
most common workload setting in [25]. Under this setting,
the average value size is 1 KB.
System configuration. We refer to the official tuning manual
for experimental verification [26]. For all KV stores, we use
the recommended configuration by setting MemTable size as
64 MB, SSTable size as 16 MB, configure Bloom filters by
setting 10 bits/key. Since our testbed machine has 12 cores,
to speedup compactions and also limit overall CPU usage, we
use 8 background threads for compaction by following the
optimization tuning guide. We also allocate 8 GB memory
for block cache and leave the rest for page cache in operating
system. For Titan, as GC affects both space usage and fore-
ground write performance, we consider three cases: (i) no
GC (No-GC), which achieves the best write performance, but
incurs the largest space overhead; (ii) background GC (BG-
GC), in which GC is executed in the background without
blocking foreground writes; and (iii) foreground GC (FG-
GC), in which a limit on space usage is set and GC may block
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Figure 10: Microbenchmarks on RocksDB, PebblesDB, Titan, and DiffKV.

foreground writes if the free space drops below the predefined
limit. For DiffKV, the two thresholds for differentiating small,
medium, and large KV pairs are set as 128 bytes and 8 KB,
respectively. We limit the vTable size as 8 MB, and set a GC
tag to a vTable if it contains more than 30% invalid data. We
study the impact of these parameters in §5.6. Each experiment
was run at least five times.

5.2 Microbenchmarks
We first study the throughput and latency performance of var-
ious KV operations with the following workloads: (i) insert
10 GB KV pairs, (ii) update 300 GB KV pairs, (iii) read 10 GB
KV pairs, and (iv) scan 10 GB KV pairs. We first randomly
load 100 GB KV pairs, then issue the requests of each work-
load, and finally clear all KV pairs from the KV store to avoid
interference. For scans, we use the widely used configuration
for performance evaluation [8, 14, 43, 65], i.e., we issue 16
scan threads, each of which reads 100 KV pairs. We also
study the impact of other scan settings in §5.5. By default,
we use a Zipf distribution with the skewness parameter 0.9
for each workload. We also run our evaluation under uniform
workloads and observe similar conclusions, so we omit the
results in the interest of space.

Throughput. Figure 10(a) shows the throughput results, nor-
malized with respect to the throughput of RocksDB for ease of
comparison. Compared to RocksDB and PebblesDB, DiffKV
achieves 3.8× and 2.7× insert throughput, 3.7× and 2.3×
update throughput, 2.6× and 3.4× read throughput, respec-
tively. Thus, DiffKV significantly improves both write and
read throughput, with comparable scan performance.

Compared to Titan, DiffKV always improves the scan per-
formance significantly, regardless of the GC policy used in
Titan. For example, DiffKV achieves 3.2× scan throughput
over Titan. For write performance, even compared to the case
of NO-GC (i.e., the case of best write performance for Titan),
DiffKV still has similar write performance. Furthermore, com-
pared to the case of using foreground GC in Titan, DiffKV
achieves 1.7× update throughput. Note that since the through-
put results are evaluated in OPS, the throughput of scans is
much lower than that of other operations.

Average latency. Figure 10(b) shows the latency results. Com-
pared to RocksDB and PebblesDB, DiffKV reduces the la-
tency of inserts, updates, and reads by up to 63.8%-78.1%,
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Workload Statistics
A (Update Heavy) 50% updates, 50% reads
B (Read Mostly) 5% updates, 95% reads
C (Read Only) 100% reads
D (Read Latest) 5% inserts, 95% reads
E (Scan Mostly) 5% inserts, 95% scans
F (Read-Modify-Write) 50% read-modify-write, 50% reads

Table 1: YCSB core workloads.

with a similar scan latency. Compared to Titan, DiffKV has
similar latencies for inserts, writes, and reads, while reducing
the scan latency by up to 43.2%.

Space usage. Figure 10(c) shows the space usage under GC,
in which we randomly load 100 GB KV pairs and update
300 GB KV pairs with a Zipf distribution. As no GC is trig-
gered in the load phase, all KV stores show the same space
usage. However, after the update phase, Titan incurs large
space usage if it disables GC or uses background GC only.
DiffKV reduces space usage by up to 18%-53.7% compared
to Titan (NO-GC) and Titan (BG-GC).

Tail Latency. We evaluate the 99-th percentile tail latency as
shown in Figure 11. We normalize the results with respect to
PebblesDB. Compared to RocksDB and PebblesDB, DiffKV
has a much lower tail latency for inserts, updates, and reads.
For example, it reduces the tail latency of inserts, updates, and
reads of RocksDB by 96.5%, 94.3%, and 82.7%, respectively,
while keeping similar tail latency for scans. Compared to
Titan, DiffKV has a similar tail latency for inserts, updates
and reads, but reduces the scan tail latency by 50.4%.

5.3 YCSB Evaluation
We show the performance of DiffKV under the YCSB work-
loads (Table 1). Each workload performs 100M operations
on a randomly loaded 100 GB data store, other settings are
the same as before. We consider both uniform distribution
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Figure 12: Performance under YCSB workloads.

and Zipf distribution with parameter 0.9, except workload D
which reads the latest data as defined by the benchmark [14].

Throughput. Figure 12 shows the throughput results, nor-
malized with respect to the throughput of RocksDB. Com-
pared to RocksDB, DiffKV achieves 1.7-4.5× throughout for
all read- or write-intensive workloads (i.e., all except work-
load E), and achieves similar performance under the scan-
dominant workload E. Note that RocksDB has KV pairs fully
sorted in each level, so it represents the best case in terms
of scan performance. Compared to Titans, DiffKV achieves
2× scan throughput, while keeping similar performance un-
der other workloads regardless of whether background GC or
foreground GC are used. In short, DiffKV achieves balanced
performance in all aspects.

Tail latency. Figure 13 shows the tail latency results. As
YCSB workloads are mixed with different operations with
highly different latencies, we show the tail latency of each
type of operations. We normalize the results with respect to
Titan (NO-GC). We observe a similar conclusion as in the
case of microbenchmarks. That is, compared to RocksDB and
PebblesDB, DiffKV significantly reduces the tail latency of
inserts, updates and reads; compared to Titan, DiffKV reduces
the tail latency of scans, so it always performs almost the best
in all performance aspects.

Space usage. We show the space usage under YCSB work-
load A, which has 50% updates. We observe similar results
as in Figure 10(c), i.e., DiffKV increases the space usage by
11.9% and 0.7% compared to RocksDB and PebblesDB, re-
spectively. Also, the LSM-tree, vTree, and vLogs incur 5%,
63.5%, and 31.5% of space in DiffKV, respectively.

5.4 Analysis on Merge Optimizations
We evaluate the merge optimization techniques of DiffKV
(§3.3-§3.4) and show how they address the write-scan trade-
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GC in Titan CTM in DiffKV0

2500

5000

T
im

e 
C

os
t 

(s
)

Read Values

Write Values

Lookup LSM-tree

Update LSM-tree

(a) Value GC/merge overhead.

Titan DiffKV0

500

T
im

e 
C

os
t 

(s
)

Read Keys

Write Keys

Sort Keys

(b) Key compaction time.

Figure 14: Impact of coordinated value management in DiffKV:
it significantly reduces the value merge overhead, and slightly in-
creases key compaction overhead.

off and realize the balanced performance for DiffKV.
We first compare the merge overhead in DiffKV with the

GC overhead in Titan. Here, we deploy only the compaction-
triggered-merge (CTM) in DiffKV and focus on the effective-
ness of the coordinated design. Figure 14(a) shows the time
cost breakdown for GC in Titan and merge in DiffKV. We
issue a workload of updating 300 GB KV pairs with a Zipf
distribution on a randomly loaded 100 GB KV store, using
the default background GC for Titan. DiffKV costs much less
time than Titan for value management, with a 60.7% reduc-
tion of time cost. The time saving mainly comes from the
coordinated merge design, in which the overhead of looking
up the LSM-tree and updating the new value locations to
LSM-tree can be avoided via the compaction-triggered merge.
However, as compaction must wait for the completion of the
triggered merge, the compaction time slightly increases. Such
an overhead can be mitigated via the merge optimizations
(i.e., lazy merge and scan-optimized merge).

Figure 15 studies the impact of the merge optimizations.
Lazy merge (LM) further reduces the number of merge op-
erations and the amount of merged data size compared to
using only the compaction-triggered merge (CTM), by 65.5%
and 66.2%, respectively. However, it increases the number
of sorted groups in vTree, which is the key factor of influ-
encing scan performance. For example, lazy merge adds up
to 20% sorted groups in the last two levels. By further in-
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Figure 16: Scan performance.

corporating scan-optimized merge (SOM), the number of
sorted groups reduces significantly, by up to 68% compared to
lazy merge. Meanwhile, the merge overhead keeps almost the
same. Due to the reduced number of sorted groups, the scan
performance improves. For example, as shown in Figure 16,
scan-optimized merge increases 18% of scan throughput and
reduces 27% of the 99th tail latency compared to lazy merge.
In summary, by combining lazy merge and scan-optimized
merge with the coordinated design, DiffKV guarantees de-
sired ordering for values with limited merge overhead, and
hence achieves balanced performance in all aspects.

5.5 Scan Performance

Recall that the main benefit of DiffKV over Titan is its scan
improvement. We further examine the scan performance by
varying the scan length (i.e., the number of KV pairs read by
each scan) and the number of scan threads (i.e., the number
of threads initiated by clients for concurrent access).

Figure 17(a) shows the scan performance versus the scan
length (from 20 to 10000), while fixing the total read size
as 10 GB. As GC does not influence scan performance for
Titan, we focus on only the case without GC. DiffKV signifi-
cantly outperforms Titan, and as the scan length increases, the
performance gain further increases. The reason is that Titan
stores values in an unsorted manner and hence has poor scan
performance, while DiffKV maintains a partial ordering for
values. Even compared to RocksDB, which represents the op-
timum for scan, DiffKV still reaches 83% of scan throughput
when the scan length is 20, and the ratio further increases to
96% when the scan length increases to 10000. Thus, DiffKV
achieves similar scan performance with RocksDB.

Figure 17(b) studies the impact of the number of scan
threads (from 8 to 64), while fixing the scan length as 100.
DiffKV still significantly outperforms Titan, and achieves
comparable performance with RocksDB under all settings.
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Figure 17: Scan performance under different settings.

5.6 Tunable Parameters

We analyze the sensitivity of the parameters in DiffKV. First,
the parameter value small is used to differentiate small and
medium KV pairs. In other words, for each value size, if KV
separation brings no benefit to write, then we should treat
this kind of KV pairs as small ones and keep them in the
LSM-tree; otherwise, we should leverage KV separation and
store values in vTree. Thus, to find an appropriate setting for
parameter value small, we compare the write performance
of using the LSM-tree and the vTree under different value
sizes. Figure 18(a) shows the load throughput versus the value
size. When the value size is at least 128 bytes, using the vTree
improves write performance (i.e., KV separation is beneficial).
Thus, we set value small as 128 bytes by default.

Second, we justify how to set an appropriate value for
value large, which influences both the write and scan per-
formance. A smaller value large means more KV pairs are
regarded as large ones and stored in vLogs. We focus on
a mixed workload generated with the default parameters
(§5.1), and show the write and scan performance by varying
value large from 1 KB to 32 KB. As shown in Figure 18(b),
when value large increases from 8 KB to 32 KB, the marginal
improvement of the scan performance is very limited. This
implies that managing KV pairs whose value sizes are larger
than or equal to 8 KB with vLogs only slightly degrades the
scan performance. On the other hand, for write throughput,
compared to the case of setting value large as 1 KB, it already
achieves around 80% of the throughput when the parameter
is set as 8 KB, Thus, we set value large as 8 KB by default.

Third, the parameter max sorted run controls the number
of sorted groups in each of the last two levels in vTree, so it
influences the scan performance and merge overhead, i.e., it
determines the write-scan trade-off. Figure 18(c) shows the
write-scan trade-off by varying max sorted run from 15 to
one. Here, we run a workload which scans 10 GB data on a
randomly loaded 100 GB data store and each scan requests
100 KV pairs. When there are more than 10 sorted groups
in each level, both the write and scan performance change
slowly, so we set max sorted run as 10 by default.

Finally, we study the impact of gc threshold on write perfor-
mance and space usage. Recall that a vTable will be set with
a GC tag if its invalid data exceeds the threshold defined by
gc threshold, so a smaller gc threshold means more frequent
GC, and both the write performance and space usage should
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Figure 18: Empirical study on tunable parameters in DiffKV. Figure (a) justifies the setting of value small by comparing the write performance
of using LSM-tree and vTree under different value sizes. Figure (b) justifies the setting of value large by studying its impact on write and scan
performance. Figure (c) justifies the setting of max sorted run. Figure (d) shows the impact of gc threshold.

decrease. Figure 18(d) shows the results. As gc threshold
increases, the increased write throughout becomes smaller.
This implies that with the lazy GC, the impact of GC on
write performance is limited. On the other hand, the space
usage significantly increases (from 158.8 GB to 216.2 GB)
when we increase gc threshold from 0.3 to 0.9. Thus, we set
gc threshold as 0.3 by default.

6 Related Work
Research on KV stores has received a lot of attentions. In
addition to building KV stores on new hardware like non-
volatile memory [12, 13, 21, 34–36, 39, 44, 61] or character-
izing real-world KV workloads [5, 9], many studies focus
on optimizing the read/write performance of LSM-tree KV
stores [6, 10, 15, 16, 32, 40, 42, 52, 56, 58, 62, 63].

Extensive efforts focus on reducing the compaction over-
head of LSM-tree KV stores. One line of studies follows the
idea of relaxing the fully-sorted ordering of KV pairs. Peb-
blesDB [52] proposes a fragmented LSM-tree that relaxes the
fully-sorted ordering of KV pairs by dividing each level into
multiple non-overlapped segments and allowing KV pairs
within each segment to be unsorted. dCompaction [47] delays
compaction by constructing virtual SSTables that contain only
metadata for multiple SSTables with overlapped ranges, and it
can also be regarded as a relaxation of the fully-sorted order-
ing of KV pairs. Dostoevsky [17] introduces a lazy-leveling
merge policy by adopting the leveling policy only for the last
level and using tiering for other levels. The ideas of relax-
ing the fully-sorted ordering are also found in VT-Tree [57],
LWC-tree [60], SlimDB [55], and SifrDB [45] .

Another line of studies of mitigating the write amplification
problem is KV separation. WiscKey [42] is the first work
that proposes this technique by storing values in a separate
append-only circular log, and Bourbon [15] extends WiscKey
by integrating a learning approach for indexing the values.
Based on KV separation, a lot of efforts are made to reduce
the overhead of log management for values, especially the GC
overhead [10, 20, 49, 51]. HashKV [10] leverages hash-based
data grouping so as to reduce the GC cost of the circular log.
BadgerDB [20] reuses the write-ahead log (WAL) as a value
log, so as to save the data flush overhead. Titan [51] adopts KV

separation and leverage BLOB files for value management.
We point out that all these studies follow the design of append-
only logs for value management. In contrast, DiffKV proposes
the vTree for maintaining the partially-sorted ordering for
values, so as to realize balanced I/O performance.

Multiple studies also leverage hash indexing or optimize
the Bloom filter to improve read and write performance. For
hash indexing, LSM-trie [58] utilizes a hash-based trie struc-
ture to improve the performance for small KV pairs, while
UniKV [63] unifies hash indexing and the LSM-tree to simul-
taneously improve both read and write performance. For the
Bloom filter optimization, Monkey [16] proposes to differen-
tiate Bloom filters between different levels; ElasticBF [40]
further develops a fine-grained elastic Bloom filter scheme to
improve read performance; SuRF [62] introduces a succinct
range filter to optimize both reads and scans.

Unlike existing studies that usually possess performance
trade-offs, DiffKV aims to realize balanced I/O performance
by simultaneously improving the performance of writes, reads,
and scans. DiffKV adopts KV separation, and takes one step
further to adopt a new vTree structure with a coordinated de-
sign to realize the differentiated ordering for keys and values.
It also adopts fine-grained KV separation, so as to realize
balanced performance under mixed workloads.

7 Conclusion
In this paper, we propose to leverage differentiated ordering
for keys and values to simultaneously achieve high perfor-
mance for writes, reads, and scans. We develop DiffKV, which
follows KV separation and utilizes a new structure vTree for
value management with a partial ordering. By leveraging a
coordinated design and multiple merge optimizations, DiffKV
achieves efficient writes, reads, and scans with low storage
cost, and thus realizes balanced performance in all aspects.
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