Accelerating Encrypted Deduplication via SGX

Yanjing Ren', Jingwei Li"} Zuoru Yang*, Patrick P. C. Lee*, and Xiaosong Zhang"

TUniversity of Electronic Science and Technology of China

Abstract

Encrypted deduplication preserves the deduplication effective-
ness on encrypted data and is attractive for outsourced storage.
However, existing encrypted deduplication approaches build
on expensive cryptographic primitives that incur substantial
performance slowdown. We present SGXDedup, which lever-
ages Intel SGX to speed up encrypted deduplication based on
server-aided message-locked encryption (MLE), while pre-
serving security via SGX. SGXDedup implements a suite of
secure interfaces to execute MLE key generation and proof-of-
ownership operations in SGX enclaves. It also proposes vari-
ous designs to support secure and efficient enclave operations.
Evaluation on synthetic and real-world workloads shows that
SGXDedup achieves significant speedups and maintains high
bandwidth and storage savings.

1 Introduction

Outsourcing storage management to the cloud is a common
practice for clients (enterprises or individuals) to save the over-
head of self-managing massive data, and security and storage
efficiency are two major goals for practical outsourced storage.
To satisfy both goals, we explore encrypted deduplication,
a paradigm that combines encryption and deduplication by
always encrypting duplicate plaintext chunks (from the same
or different clients) into duplicate ciphertext chunks with
a key derived from the chunk content itself; for example,
the key can be the cryptographic hash of the corresponding
chunk [25]. Thus, any duplicate ciphertext chunk can be
eliminated via deduplication for storage efficiency, while all
outsourced chunks are encrypted against unauthorized access.
Encrypted deduplication is particularly suitable for backup
applications, which carry high content redundancy [59] and
are attractive use cases for outsourced storage [35, 38, 58].
Existing encrypted deduplication approaches often incur
high performance overhead to achieve security guarantees.
We use DupLESS [14], a state-of-the-art encrypted dedu-
plication system, as a representative example to explain the
performance concerns (see §2.1 for elaboration). First, to
prevent adversaries from inferring the content-derived keys,
DupLESS employs server-aided key management, in which
it deploys a dedicated key server to manage key generation
requests from clients. However, server-aided key manage-
ment requires expensive cryptographic operations to prevent
the key server from knowing the plaintext chunks and the
keys during key generation. Second, to prevent adversaries

*Corresponding author: Jingwei Li (jwli@uestc.edu.cn)

¥The Chinese University of Hong Kong

from obtaining unauthorized access to ciphertext chunks by
inferring the deduplication pattern (a.k.a. side-channel at-
tacks [32,33]), DupLESS can take one of the following ap-
proaches: it either (i) performs target-based deduplication
(i.e., uploading all ciphertext chunks and letting the cloud
remove any duplicate ciphertext chunks) so that the dedu-
plication pattern is protected from any (malicious) client, or
(i1) performs source-based deduplication (i.e., removing all
duplicate ciphertext chunks on the client side without being
uploaded to the cloud) and additionally proves to the cloud
that it is indeed the owner of the ciphertext chunks (i.e., has ac-
cess to the full contents of the corresponding plaintext chunks)
and is authorized to perform deduplication on the ciphertext
chunks. The former incurs extra communication bandwidth
for uploading duplicate ciphertext chunks, while the latter
incurs expensive cryptographic operations for proving that
the client is the owner of the ciphertext chunks. Although
various protocol designs have been proposed to address the
performance issues of encrypted deduplication, they often
weaken security [23,41,60], add bandwidth overhead [33,42],
or degrade storage efficiency [41,51,62] (see §6 for details).

The advances of hardware-assisted trusted execution [1-3,
57] provide new opportunities to improve the performance
of encrypted deduplication. In particular, we focus on In-
tel Software Guarded Extensions (SGX), which provides a
trusted execution environment (TEE), called an enclave, for
processing code and data with confidentiality and integrity
guarantees [13]. Given that SGX achieves reasonably high
performance with proper configurations [34], we are moti-
vated to offload the expensive cryptographic operations of en-
crypted deduplication by directly running sensitive operations
in enclaves, so as to improve the performance of encrypted
deduplication, while maintaining its security, bandwidth effi-
ciency, and storage efficiency.

We propose SGXDedup, a high-performance SGX-based
encrypted deduplication system. SGXDedup builds on server-
aided key management as in DupLESS [14], but executes
efficient cryptographic operations inside enclaves. Realizing
the design of SGXDedup has non-trivial challenges. First, it
is critical to securely bootstrap enclaves for hosting trusted
code and data, yet attesting the authenticity of enclaves incurs
significant delays. Second, each client needs to communicate
via a secure channel with the enclave inside the key server, yet
the management overhead of the secure channels increases
with the number of clients. Finally, clients may renew or re-
voke cloud service subscriptions, so allowing dynamic client
authentication is critical. To this end, we implement three

jwli@uestc.edu.cn

major building blocks for SGXDedup:

» Secure and efficient enclave management: It protects
against the compromise of the key server and allows a
client to quickly bootstrap an enclave after a restart.

* Renewable blinded key management: It generates a blinded
key for protecting the communication between the enclave
inside the key server and each of the clients based on key
regression [30], such that the blinded key is renewable for
dynamic client authentication.

* SGX-based speculative encryption: It offloads the online
encryption/decryption overhead of secure channel manage-
ment via speculative encryption [27].

We evaluate our SGXDedup prototype using synthetic and
real-world [5,45] workloads. It achieves significant speedups
by offloading cryptographic operations to enclaves (e.g., a
131.9x key generation speedup over the original key gen-
eration scheme in DupLESS [14]). It also achieves 8.1x
and 9.6x speedups over DupLESS [14] for the uploads of
non-duplicate and duplicate data, respectively, and has up to
99.2% of bandwidth/storage savings in real-world workloads.

We release the source code of our SGXDedup prototype at:
http://adslab.cse.cuhk.edu.hk/software/sgxdedup.

2 Background and Problem

We present background details and formal definitions for
encrypted deduplication (§2.1) and Intel SGX (§2.2). We also
present the threat model addressed in this paper (§2.3).

2.1 Encrypted Deduplication

Basics. We consider chunk-based deduplication [45,59,63],
which is widely deployed in modern storage systems to elim-
inate content redundancy. It works by partitioning an input
file into non-overlapping chunks. For each chunk, it com-
putes the cryptographic hash of the chunk content (called the
fingerprint). It tracks the fingerprints of all currently stored
chunks in a fingerprint index. It only stores a physical copy
of the chunk if the fingerprint is new to the fingerprint in-
dex, or treats the chunk as a duplicate if the fingerprint has
been tracked, assuming that fingerprint collisions are highly
unlikely in practice [17].

Encrypted deduplication extends chunk-based deduplica-
tion with encryption to provide both data confidentiality and
storage efficiency for outsourced cloud storage. A client
encrypts each plaintext chunk of the input file with some
symmetric secret key into a ciphertext chunk and stores all
ciphertext chunks in the cloud (or any remote storage site),
which manages deduplicated storage for ciphertext chunks.
To support file reconstruction, the client creates a file recipe
that lists the fingerprints, sizes, and keys of the ciphertext
chunks. It encrypts the file recipe with its own master secret
key and stores the encrypted file recipe in the cloud.

Message-locked encryption (MLE) [15] formalizes a cryp-
tographic primitive for encrypted deduplication. It specifies

how the symmetric secret key (called the MLE key) is derived
from the content of a plaintext chunk (e.g., its popular instanti-
ation convergent encryption (CE) [25] uses the cryptographic
hash of a plaintext chunk as the MLE key). Thus, it encrypts
duplicate plaintext chunks into duplicate ciphertext chunks,
so that deduplication remains viable on ciphertext chunks.

Server-aided MLE. CE is vulnerable to offline brute-force
attacks, as its MLE key (i.e., the hash of a plaintext chunk)
can be publicly derived. Specifically, an adversary infers the
input plaintext chunk from a target ciphertext chunk (without
knowing the MLE key) by enumerating the MLE keys of all
possible plaintext chunks to check if any plaintext chunk is
encrypted to the target ciphertext chunk.

Server-aided MLE [14] is a state-of-the-art cryptographic
primitive that strengthens the security of encrypted deduplica-
tion against offline brute-force attacks. It deploys a dedicated
key server for MLE key generation. To encrypt a plaintext
chunk, a client first sends the fingerprint of the plaintext chunk
to the key server, which returns the MLE key via both the
fingerprint and a global secret maintained by the key server.
If the global secret is secure, an adversary cannot feasibly
launch offline brute-force attacks; otherwise, if the global
secret is compromised, the security reduces to that of the
original MLE. Server-aided MLE further builds on two secu-
rity mechanisms. First, it uses the oblivious pseudorandom
function (OPRF) [47] to allow a client send “blinded” finger-
prints of the plaintext chunks, such that the key server can still
return the same MLE keys for identical fingerprints without
learning the original fingerprints. Second, it rate-limits the
key generation requests from the clients to protect against
online brute-force attacks, in which malicious clients issue
many key generation requests to the key server, in order to
find a target MLE key.

Proof-of-ownership. For bandwidth savings, encrypted
deduplication can apply source-based deduplication, instead
of target-based deduplication, to remove duplicate cipher-
text chunks on the client side without being uploaded to the
cloud (§1). The client sends the fingerprints of ciphertext
chunks to the cloud, which checks if the fingerprints are
tracked by the fingerprint index (i.e., the corresponding ci-
phertext chunks have been stored). The client then uploads
only the non-duplicate ciphertext chunks to the cloud. How-
ever, source-based deduplication is vulnerable to side-channel
attacks [32,33] when some clients are compromised. One
side-channel attack is that a compromised client can query the
existence of any target ciphertext chunk (e.g., if the cipher-
text chunk corresponds to some possible password [33]) by
sending the fingerprint of the ciphertext chunk to the cloud,
so as to identify the sensitive information from other clients.
Another side-channel attack is that a compromised client
can obtain unauthorized access to the stored chunks of other
clients. Specifically, it can use the fingerprint of any target ci-
phertext chunk to convince the cloud that it is the owner of the
corresponding ciphertext chunk with full access rights [32].

Proof-of-ownership (PoW) [32] is a cryptographic approach
that augments source-based deduplication with protection
against side-channel attacks, while maintaining the bandwidth
savings of source-based deduplication. Its idea is to let the
cloud verify that a client is indeed the owner of a ciphertext
chunk and is authorized with the full access to the ciphertext
chunk. This ensures that a compromised client cannot query
for the existence of other clients’ chunks. Specifically, in
PoW-based source-based deduplication, a client attaches each
fingerprint being sent to the cloud with a PoW proof, through
which the cloud can verify if the client is the real owner of
the corresponding ciphertext chunk. The cloud only responds
upon the successful proof verification, thereby preventing any
compromised client from identifying the ciphertext chunks
owned by other clients.

Limitations. Recall from §1 that existing encrypted dedu-
plication implementations require expensive cryptographic
protection. Server-aided MLE necessitates the OPRF proto-
col [47] to protect the fingerprint information against the key
server, yet the OPRF protocol involves expensive public-key
cryptographic operations. For example, our evaluation (§5.1)
shows that the OPRF-based MLE key generation achieves
only up to 25 MB/s (Exp#1) and limits the overall encrypted
deduplication performance to 20 MB/s (Exp#4). Also, the
existing PoW implementation is based on the Merkle-tree
protocol [32], which achieves only 37 MB/s (Exp#3) due to
frequent hash computations for chunk-level PoW. In a 1 GbE
LAN environment, the computational overhead of PoW even
negates the performance gain of eliminating the uploads of
duplicate data in source-based deduplication. Although we
can mitigate PoW computations by applying PoW on a per-
file basis (i.e., a client proves its ownership of a file), the
cloud cannot verify if a chunk belongs to a file under chunk-
based deduplication. Existing solutions that improve the
performance of server-aided MLE or PoW often sacrifice se-
curity [23,41, 60], bandwidth efficiency [33,42], or storage
efficiency [41,51,62] (§6).

2.2 Intel SGX

We explore hardware-assisted trusted execution to mitigate
the performance overhead of encrypted deduplication, while
preserving security, bandwidth efficiency, and storage effi-
ciency. In this work, we focus on Intel SGX [3], a suite of
security-related instructions built into modern Intel CPUs.
SGX shields the execution of code and data in a hardware-
protected environment called an enclave. In the following,
we highlight three security features of an enclave related to
our work: isolation, attestation, and sealing.

Isolation. An enclave resides in a hardware-guarded memory
region called the enclave page cache (EPC) for hosting any
protected code and data. An EPC comprises 4KB pages, and
any in-enclave application can take up to 96 MB [34]. If an
enclave has a larger size than the EPC, it encrypts unused
pages and evicts them to the unprotected memory. In this

work, we deploy enclaves in each client and the key server to
protect sensitive operations (§3.1). We also limit the size of
in-enclave contents to mitigate the paging overhead (§3.4).

An enclave provides an interface, namely enclave call
(ECall), such that an outside application can issue ECalls
to securely access in-enclave contents. Note that ECalls in-
cur context switching overhead for accessing the enclave
memory [34]. We reduce the number of ECalls by batching
contents for processing (§4).

Attestation. SGX supports remote attestation to authenticate
a target enclave via a remote entity (e.g., the cloud). In the
remote attestation process (see [3] for elaboration), the remote
entity needs to contact the attestation service operated by Intel
to check the integrity of the enclave information provided by
the target enclave. Then the remote entity verifies the target
enclave by comparing its enclave information with the trusted
configuration expected in the target enclave. We use remote
attestation to ensure that the correct code and data are loaded
into each enclave in the first bootstrap.

Sealing. SGX protects enclave contents when they are stored
outside an enclave via sealing. It uses a secret sealing key to
encrypt the data before being evicted. The sealing key can
be derived from either the measurement hash (i.e., a SHA256
hash on the enclave contents) or the author identity of the
enclave, so that only the corresponding enclave can access
the sealing key and decrypt the sealed data. Since remote
attestation incurs significant delays (Exp#7), we use sealing
to eliminate remote attestation after the first bootstrap of an
enclave (§3.2).

Remarks. We do not consider memory encryption-based
TEEs (e.g., AMD SEV [1] and MK-TME [2]), since they
need a large trusted computing base and expose a broad attack
surface [46]. Also, AMD SEV [1] does not protect memory
integrity, and is vulnerable to the attack that a privileged
adversary can manipulate encrypted memory pages [46].

2.3 Threat Model

Adversarial capabilities. We start with the server-aided
MLE architecture [14] with multiple clients, the key server,
and the cloud. Our major security goal is to achieve data
confidentiality for outsourced cloud storage [14] against a
semi-honest adversary that infers the original plaintext chunks
via the following malicious actions:

* The adversary can compromise the key server and learn the
MLE key generation requests issued by each client. It can
also access the global secret to infer the original chunks in
outsourced storage via offline brute-force attacks [14].

* The adversary can compromise one or multiple clients and
send arbitrary MLE key generation requests to query the
MLE keys of some target chunks [14]. It can also launch
side-channel attacks against some target chunks [33] (§2.1),
so as to infer the original plaintext chunks owned by other
non-compromised clients.

Global secret Key

ey semver enclave
4
Multiple clients JSecure channel Cloud
Plaintext chunks PoW enclave @ @

[[&=

Dedup
T engine

Figure 1: Overview of SGXDedup architecture: a key enclave
and a PoW enclave are deployed in the key server and each client,
respectively.

Assumptions. We make the following threat assumptions. (i)
All communications among the clients, the key server, and the
cloud are protected against tampering (e.g., via SSL/TLS). (ii)
SGX is trusted and reliable; denial-of-service or side-channel
attacks against SGX [18,48] are beyond our scope. (iii) We
can achieve both integrity via remote auditing [11,36] and
fault tolerance via a multi-cloud approach [42]. (iv) We do
not consider traffic analysis [64], frequency analysis [41] and
chunk size leakage [54], while the related defenses [41,54,64]
are compatible to our design.

3 SGXDedup Design

SGXDedup is a high-performance SGX-based encrypted
deduplication system designed for outsourced storage, partic-
ularly for backup workloads with high content redundancy. It
aims for the following design goals: (i) confidentiality, which
protects the outsourced chunks and keys against unauthorized
access even when the key server or any client are compro-
mised, as in server-aided MLE in DupLESS [14] and source-
based deduplication with PoW [32]; (ii) bandwidth/storage
efficiency, which removes all duplicate chunks across multi-
ple clients before uploads, as in source-based deduplication.
(iii) computational efficiency, which mitigates the computa-
tional overhead of the cryptographic operations and achieves
significantly higher performance than existing software-based
encrypted deduplication designs.

3.1 Overview

Architecture. Figure 1 presents the architecture of SGXD-
edup, which introduces two enclaves: the key enclave and the
PoW enclave. SGXDedup deploys a key enclave in the key
server to manage and protect the global secret of server-aided
MLE against a compromised key server. To perform MLE key
generation, both the key enclave and a client first establish a
secure channel based on a shared blinded key (see §3.3 for
details how a blinded key is formed). The client then submits
the fingerprint of a plaintext chunk via the secure channel.
The key enclave computes the MLE key as the cryptographic
hash of both the global secret and the fingerprint. It returns
the MLE key via the secure channel.

The key enclave benefits both performance and security.

It avoids the expensive OPRF protocol [14] of server-aided
MLE during MLE key generation. Also, it protects the finger-
prints and MLE keys via a secure channel based on a shared
blinded key, such that the key server cannot learn any infor-
mation from the MLE key generation process. Furthermore,
it protects the global secret in the enclave memory, and pre-
serves security even if the key server is compromised (note
that the security of the original server-aided MLE degrades
when the key server is compromised; see §2.1).

SGXDedup deploys a PoW enclave in each client to prove
the authenticity of the ciphertext chunks in source-based dedu-
plication. The PoW enclave first sets up a shared PoW key
with the cloud (we currently implement the key agreement
using Diffie-Hellman key exchange (DHKE); see §4). After
MLE key generation, the client encrypts each plaintext chunk
into a ciphertext chunk. The PoW enclave takes the ciphertext
chunk as input, computes the corresponding fingerprint, and
creates a signature of the fingerprint using the shared PoW key
with the cloud. The client then uploads both the fingerprint
and the signature to the cloud. The cloud verifies the authen-
ticity of the fingerprint based on the corresponding signature
and the PoW key. Only when the fingerprint is authenticated,
the cloud proceeds to check if the fingerprint corresponds
to any already stored duplicate ciphertext chunk. Note that
we verify the client’s ownership of ciphertext chunks rather
than that of plaintexts (e.g., [32]), so as to protect the origi-
nal information from the cloud. Ensuring the ownership of
ciphertext chunks is enough for security, since MLE applies
one-to-one mappings and the ownership of a ciphertext chunk
is consistent with that of the corresponding plaintext chunk.

The PoW enclave again benefits both performance and
security. It avoids the computational overhead for the crypto-
graphic PoW constructions. It also protects the deduplication
patterns against malicious clients, as the patterns are only
returned given the authenticated fingerprints.

Note that prior studies [24, 31, 37] perform key generation
and encryption inside an enclave, while we opt to perform
encryption in unprotected memory. The main reason is that
both the original plaintext chunks and the encryption process
are co-located within a client. Moving the encryption process
to the enclave does not improve the security, as compromising
the client can also access its plaintext chunks, yet it adds
significant computational overhead to the enclave.

Questions. Realizing SGX-based encrypted deduplication
efficiently is non-trivial, since we need to mitigate the po-
tential performance overhead of SGX that would otherwise
negate the overall performance benefits. Here, we pose three
questions, which we address based on a suite of ECalls for
the key enclave and the PoW enclave (Table 1).

* How should the enclaves be securely and efficiently boot-
strapped? (§3.2)

* How should the key enclave and each client establish a
secure channel? (§3.3)

ECall Name Description ‘

Key enclave
Generate a global secret (§3.2)
Renew a blinded key (§3.3)
Check the uniqueness of a nonce (§3.4)
Return the MLE keys (§3.4)
Pre-compute masks (§3.4)
PoW enclave
Unseal a PoW key (§3.2)
Seal a PoW key into disk (§3.2)
Sign the ciphertext chunk fingerprints (§4)

Secret generation
Rekeying

Nonce checking
Key generation
Mask generation

Key unsealing
Key sealing
Proof generation

Table 1: Major ECalls in SGXDedup.

» How should the key enclave reduce its computational over-
head of managing the secure channels of clients? (§3.4)

3.2 Enclave Management

SGXDedup establishes trust in all enclaves via the cloud when
it is first initialized. Before SGXDedup is deployed, we first
compile the enclave code into shared objects [3], append each
shared object with a signature (for integrity verification), and
distribute the shared objects to the key server and each of the
clients. The cloud also hosts the shared objects for subsequent
verification. The key server creates the key enclave, while
each client creates its own PoW enclave by loading the corre-
sponding shared object. The cloud authenticates each enclave
via remote attestation (§2.2) to ensure that the correct code is
loaded. Here, we address two specific management issues: (i)
how the global secret (§3.1) is securely bootstrapped into the
key enclave; and (ii) how each client efficiently bootstraps its
PoW enclave after a restart.

Key enclave management. Instead of bootstrapping the
global secret in entirety, SGXDedup generates the global
secret in the key enclave based on two sub-secrets respec-
tively owned by the cloud and the key server, so as to prevent
either of them from learning the whole global secret.

To generate the global secret, we hard-code the cloud’s
sub-secret into the key enclave code, and deliver the code (as
a shared object) to the key server during SGXDedup’s initial-
ization. We also implement a secret generation ECall for the
key enclave, so as to allow the key server to provide its own
sub-secret. The ECall can only be issued by the key server
after the cloud’s sub-secret is included into the key enclave.
It takes the key server’s sub-secret as its single input, and
hashes the concatenation of the key server’s sub-secret and
the cloud’s sub-secret to form the global secret. Note that the
key server cannot access the enclave code and hence cannot
learn the cloud’s sub-secret hard-coded inside the enclave
(assuming that reverse engineering is impossible). Thus, even
if the key server is compromised, the global secret remains
secure, so the security of server-aided MLE is preserved. If
both the key server and the cloud are simultaneously com-
promised, the security of SGXDedup reduces to that of the
original MLE (§2.1).

PoW enclave management. When a client bootstraps its
PoW enclave, it needs to attest the authenticity of the PoW
enclave. However, remote attestation generally incurs a very
large latency (e.g., about 9's; see §5.1) to connect to the Intel
service. Unlike the key enclave, whose remote attestation
is only done once during initialization, the client needs to
bootstrap and terminate the PoW enclave each time it joins
and leaves SGXDedup, respectively. If remote attestation
were used each time when the client joins, its substantial
overhead will hurt usability.

SGXDedup leverages sealing to avoid remote attestation af-
ter the first bootstrap of the PoW enclave. Recall that the PoW
enclave shares a PoW key with the cloud, such that the cloud
can verify the authenticity of fingerprints (§3.1). Our idea is
to seal the PoW key based on the measurement hash of the
PoW enclave. Thus, when the client bootstraps again its PoOW
enclave, it unseals the PoW key into the bootstrapped PoW
enclave. As long as the PoW key is recovered successfully,
the authenticity of the bootstrapped PoW enclave is verified.

Specifically, the client first checks whether any sealed PoW
key is locally available in its physical machine. If a sealed
PoW key is not available (the first bootstrap), the client attests
the PoW enclave via remote attestation and exchanges a PoW
key with the cloud; otherwise if a sealed PoW key is available
(after the first bootstrap), the client creates a new PoW enclave
by loading the shared object, and calls the key unsealing ECall
of the new PoW enclave to unseal the PoW key. The key
unsealing ECall takes the address of the sealed PoW key as
input. It derives a sealing key based on the measurement hash
of the new PoW enclave, decrypts the sealed PoW key, and
keeps it in the new PoW enclave.

When the client leaves SGXDedup, its PoW enclave needs
to be terminated. The client issues the key sealing ECall to
seal the PoW key. The key sealing ECall encrypts the PoW
key based on the measurement hash of the PoW enclave, and
stores the result in the address provided by the client.

3.3 Renewable Blinded Key Management

Each client securely communicates with the key enclave via
a shared blinded key to prevent the eavesdropping by the
key server (§3.1). To form the blinded key, a straightforward
approach is to directly implement a key agreement protocol
between the key enclave and each client. However, the key
enclave needs to authenticate the client on-the-fly (e.g., a
client may renew or revoke its cloud service subscription).
Such dynamic authentication puts performance burdens on
the key enclave.

SGXDedup manages blinded keys with the help of the
cloud. During initialization, the cloud hard-codes a blinded
secret K into the key enclave code. Each client downloads
a key state (derived from k; see below) from the cloud, and
generates its blinded key (based on the key state) for the se-
cure communication with the key enclave. Our rationales are
two-fold. First, when the client issues any download request

from the cloud, the cloud can check if the client is authorized.
Second, we can derive a sequence of renewable blinded keys
from x (instead of directly using k), so as to prevent the re-
voked/compromised clients from persistently accessing the
key enclave. As a side benefit, the renewable key manage-
ment also prevents online brute-force attacks (§2.1) without
actively slowing down the key generation rate [14].

SGXDedup uses key regression [30] to derive renewable
blinded keys, while ensuring that the blinded keys in each
client and the key enclave are consistent. Specifically, key re-
gression works on a sequence of key states S[1],S[2],...,S[m],
each of which can be used to derive a key (e.g., via hashing).
It allows the key enclave and the cloud to perform rekeying to
derive a new state from an old state (e.g., deriving S[2] from
S[1]) using a key regression secret, such that the client cannot
learn any information about new states without knowing the
key regression secret. It also allows each client to derive any
old state from the new state (e.g., deriving S[1] from S[2]).

To realize key regression in SGXDedup, we use k as the
key regression secret shared between the cloud and the key
enclave for deriving the new states and keys. In each upload,
the client first downloads the up-to-date key state S[i] from
the cloud, and requests the current version number j of the
blinded key accepted by the key enclave. Given that the key
enclave may not renew the blinded key in time (e.g., it is busy
with serving key generation exactly in the scheduled rekeying
time), j is typically smaller than i (i.e., S[j] is prior to S[i]).
Then the client derives S[j] from S[i] and the corresponding
blinded key K[;], and communicates with the key enclave
based on the same K[;]. Note that the cloud can derive K|[j],
but it cannot eavesdrop the communication between each
client and the key enclave, since the communication is addi-
tionally protected via the SSL/TLS-based channel between
the client and the key server (see our assumptions in §2.3).

SGXDedup renews blinded keys in both the cloud and the
key enclave. The cloud implements a timer to trigger rekey-
ing over periodic time intervals. The key server issues the
rekeying ECall to trigger rekeying when a scheduled rekeying
time is reached.

Currently, we implement the hash-based key regression
scheme [30] for high key derivation performance. Specifically,
we define a parameter n (now set as 220 [30]) to indicate
the maximum number of affordable rekeying times. The
cloud and the key enclave compute the i-th key state as S[i] =
H"~"*1(x), and each client derives the corresponding blinded
key as K[i] = H(S[i]||0%), where H"~/*!() iteratively calls the
cryptographic hash function H() by n —i+ 1 times, and || is
the concatenation operator. To derive old states, the client
downloads S[i] and recovers S[i — 1] = H(S[i]).

3.4 SGX-Based Speculative Encryption

Given the shared blinded key (§3.3), the key enclave manages
a secure channel with each client to protect the transferred
fingerprints/keys during MLE key generation (§3.1). How-

Encrypted
nonce and ctr| [Nonce N°”°e|Ctr|A§dr|Nf‘m Nonce index |
checking/| .. ey
_____________________ \ N server
Client Encrypted Decrypt Fp |} ‘Mask buffer,
fingerprints N Key = Ke p | Mask
£ od generation P y Q generation
ncrypte Encrypt Key |}
MLE keys m Key enclave

Figure 2: Overview of SGX-based speculative encryption.

ever, managing the secure channels, particularly with many
clients, incurs high encryption/decryption costs in the key
enclave. SGXDedup augments the secure communication
channel management using speculative encryption [27] in the
context of SGX, so as to offload the encryption/decryption
overhead of the key enclave.

Speculative encryption. Speculative encryption [27] adopts
encryption/decryption in counter mode [6] and pre-computes
partial encryption/decryption results in an offline procedure,
so as to reduce the online computational overhead in stan-
dalone cryptographic file systems. To encrypt a plaintext
M, we first partition M into a sequence of plaintext blocks
b1,by,...,by (e.g., each block has a fixed size of 16 bytes).
For each client, we pick a unique nonce 0 that can be used
only once by the encryption with the same key. We then com-
pute the mask for the i-th plaintext block as ¢; = E(K, 0]]i),
where E() is a symmetric encryption function, K is the key, i
is the counter (for counter-mode encryption), and ‘||’ is the
concatenation operator. Finally, we compute each ciphertext
block ¢; = e; @ b;, where @ is the bitwise XOR operator, and
form the whole ciphertext C = ci||cz]] .. . ||cm- To decrypt the
ciphertext, we generate the mask e; for each block like above,
recover the corresponding plaintext block b; = e; ® ¢; and
hence the original plaintext M. Since the mask generation
step is independent of each target plaintext/ciphertext, we
can pre-compute the masks offline, followed by applying the
lightweight XOR operation for online encryption/decryption.

Integration. To realize speculative encryption in SGXDedup,
we need to address the nonce management issue. A unique
nonce serves as an unpredictable “one-time-pad” that makes
each counter-mode encryption output look random [6]. If
counter-mode encryption is used by multiple clients, we need
to associate each client with a unique nonce in its encryp-
tion/decryption operations. However, since different clients
are isolated, it is challenging to ensure that the nonces associ-
ated with the clients are unique.

To ensure the uniqueness of a nonce, SGXDedup manages
a centralized key-value store, called the nonce index, in the
key enclave. Each entry of the nonce index maps a stored
nonce (12 bytes) to three fields: its counter (4 bytes), the
starting address (8 bytes) of the corresponding mask, and the
number (4 bytes) of its available masks. Also, SGXDedup
implements a nonce checking ECall (Figure 2) that can be
called by the key server to compare the nonce submitted by

each client with the previously stored nonces in the nonce
index and inform the client to re-pick a new one if a duplicate
nonce is found. Note that the in-enclave nonce index can be
effectively managed, since it can serve up to 112,000 clients
(assuming one nonce per client) with only 3 MB EPC space
(default configuration of SGXDedup).

SGXDedup applies speculative encryption to establish a
secure channel between a client and the key enclave for the
protection of MLE key generation. To initialize the secure
channel, the client synchronizes its self-picked nonce 6 and
the corresponding counter i with the key enclave, where i
is initialized as zero if 8 has not been used for any encryp-
tion/decryption by the client. Specifically, it encrypts 6 and i
with the up-to-date blinded key (§3.3), computes a message
authentication code (MAC) based on the resulting ciphertexts,
and submits both the ciphertexts and the MAC to the key
server. Here, we adopt encrypt-then-MAC [16] to detect any
outdated blinded key by checking the MAC for any informa-
tion transferred between the client and the key enclave.

The key server issues the nonce checking ECall, which
takes the client’s uploads as input, decrypts 0 and i, and
checks the decrypted 6 and i with the nonce index:

* Case I: If 0 is duplicate and i = 0, this indicates the re-use of
an existing nonce, and the ECall returns a signal to inform
the client to re-pick a new nonce.

* Case II: If 0 is duplicate and i # 0, this implies that the
nonce has been stored. The ECall updates the stored counter
and marks the corresponding pre-computed masks (to be
used for follow-up processing, as elaborated below).

* Case III: If 6 is unique, this implies that the nonce is new,
and the ECall adds 6 into the nonce index.

For Cases II and III, the ECall accepts the communica-
tion and asks the client to transfer fingerprints for MLE key
generation (§3.1). The client encrypts the fingerprints based
on O and i, and uploads the results; after encrypting each
fingerprint block, the client increments i by one to prevent
replay attacks. As shown in Figure 2, the key server issues
the key generation ECall to process the encrypted fingerprints.
The ECall checks if some masks are marked for the current
client. If found (i.e., Case II), it uses the marked masks to
decrypt the fingerprints and encrypt the generated MLE keys.
Otherwise (i.e., Case III), it computes the masks online for
decryption and encryption.

Mask pre-computation. To speed up encryption/decryption,
the key enclave performs mask pre-computation when a new
blinded key is applied (i.e., all existing masks are invalid)
or a client has connected again after the last mask genera-
tion (i.e., some of its masks have been consumed). The key
enclave calls the mask generation ECall (Figure 2), which
pre-computes the masks for a number (e.g., three in our case)
of most-recently-used nonces and writes the results into a
mask buffer. By default, we configure the mask buffer with
up to 90 MB. Suppose that each mask takes 16 bytes and the

average chunk size is 8 KB. The MLE key generation of a
fingerprint consumes four masks: two are for decrypting the
32-byte fingerprint and the other two are for encrypting the
resulting 32-byte MLE key. Thus, the pre-computed masks
in the mask buffer can be used to process the fingerprints of
up to 11.25 GB of data.

4 Implementation

We build an SGXDedup prototype in C++ using OpenSSL
1.1.1g [49], Intel SGX SDK 2.7 [3] and Intel SGX SSL [7].
Our prototype implements fingerprinting operations for plain-
text and ciphertext chunks via SHA256, and chunk-based
encryption via AES256. It contains about 14.2 K LoC.

Setup. To bootstrap the key enclave, the cloud hard-codes
both the cloud’s sub-secret (§3.2) and the blinded secret (§3.3)
into the key enclave code. Alternatively, SGXDedup can
also provision both secrets (using the secret provisioning
functionality of SGX [3]) after authenticating the key enclave,
at the expense of incurring extra bootstrapping overhead. The
key enclave uses SHA256 to generate the global secret and
implement the hash function in key regression. Each PoW
enclave implements DHKE in NIST P-256 elliptic curve to
share a PoW key with the cloud.

Key generation. Each client implements Rabin fingerprint-
ing [52] for content-defined chunking. We fix the minimum,
average, and maximum chunk sizes in Rabin fingerprinting
at 4 KB, 8 KB, and 16 KB, respectively. To implement SGX-
based speculative encryption (§3.4), we fix the nonce and the
counter at 12 bytes and 4 bytes, respectively, and implement
MACs using HMAC-SHA256. The key enclave generates the
MLE key of each plaintext chunk via SHA256.

Deduplication. SGXDedup realizes source-based dedupli-
cation coupled with PoW. The PoW enclave implements a
proof generation ECall to compute the fingerprints of cipher-
text chunks and generate a signature based on the resulting
fingerprints using AES-CMAC. The cloud implements the
fingerprint index (§2.1) as a key-value store based on Lev-
elDB [4]. To mitigate network and disk I/O costs, we store
(non-duplicate) ciphertext chunks in 8 MB containers as units
of transfers and storage [43].

Optimization. To reduce context switching and SGX mem-
ory encryption/decryption overhead, each client batches mul-
tiple fingerprints (4,096 by default) to transfer in the secure
communication channel with the key enclave (§3.4). The
key enclave processes each received batch of fingerprints. It
accesses the batch via a pointer without copying the contents
into the enclave [34]. Similarly, the POW enclave processes
the ciphertext chunks on a per-batch basis (4,096 by default)
without content copy. We also use multi-threading to boost
performance. Each client parallelizes the processing of chunk-
ing, fingerprinting of plaintext chunks, encryption, PoW, and
uploads via multi-threading, while the key enclave and the
cloud serve multiple connections in different threads.

5 Evaluation

We configure a LAN cluster of machines for multiple clients,
the key server, and the cloud. Each machine has a quad-core
3.0 GHz Intel Core i5-7400 CPU, a 1 TB 7200 RPM SATA
hard disk, and 8 GB RAM. All machines run Ubuntu 18.04
and are connected with 10 GbE. We evaluate SGXDedup
using both synthetic (§5.1) and real-world (§5.2) workloads.
We summarize the main results as follows.

* SGXDedup achieves high MLE key generation perfor-
mance in both single-client (Exp#1) and multi-client
(Exp#2) cases. For example, it achieves a 131.9x speedup
over OPRF-RSA adopted by DupLESS’s MLE key genera-
tion [14] in the single-client case.

* SGXDedup has 2.2x and 8.2x computational PoW speed-
ups over universal hash-based PoW [60] (that only achieves
weaker security) and Merkle-tree-based PoW [32] (Exp#3).

* SGXDedup has high overall performance in single-client
(Exp#4 and Exp#5) and multi-client (Exp#6) cases. We
also provide a time breakdown of SGXDedup in uploads
(Exp#7). For example, in a 10 GbE LAN testbed, SGXD-
edup incurs only a slowdown of 17.5% in uploads compared
to a plain deduplication system without any security protec-
tion; in real-cloud deployment (Exp#5), SGXDedup incurs
a slowdown of 13.2% and its performance is bounded by
the Internet bandwidth.

* SGXDedup is efficient for processing real-world workloads
(Exp#8 and Exp#9). For example, its upload performance
overhead over plain deduplication (without security pro-
tection) is within 22.0%; it also achieves high bandwidth
savings over existing approaches [33,42], by an absolute
difference of up to 91.4%.

5.1 Evaluation on Synthetic Workloads

We generate a synthetic dataset with a set of files, each of
which comprises globally non-duplicate chunks. By default,
we set the file size as 2 GB (except for Exp#2, in which we
stress-test the MLE key generation performance). A client
uploads or downloads a file via the cloud. To avoid the per-
formance impact of disk I/O, we store the file data in memory
rather than on disk (except for Exp#5, in which we process
on-disk files in real-cloud deployment). We plot the average
results over 10 runs. We also include the 95% confidence
intervals from Student’s t-Distribution into bar charts (for
brevity, we exclude them from line charts).

Exp#1 (Single-client MLE key generation). We evaluate
MLE key generation in two rounds. First, a client creates
the plaintext chunks of a 2 GB file via Rabin fingerprinting
(§4) and issues MLE key generation requests. It then repeats
the MLE key generation process for the chunks of a different
2 GB file. The difference is that the second round uses the
pre-computed masks for MLE key generation (§3.4).

We compare the single-client MLE key generation speed
of SGXDedup with state-of-the-arts. We consider two OPRF-

based key generation approaches, namely OPRF-BLS [10]
and OPRF-RSA [14], which implement the OPRF primitive
(§2.1) based on blind BLS and blind RSA signatures, re-
spectively. We also consider two relaxed key generation
approaches, namely MinHash encryption [51] and TED [41],
which trade storage efficiency and security for performance.
Specifically, MinHash encryption generates MLE keys using
OPRF-RSA on a per-segment basis, where the average seg-
ment size is configured as 1 MB. TED generates the MLE key
for each chunk based on the sketch-based frequency counting
of the short hashes of the chunk (c.f. §3.3 in [41]).

Figure 3 shows the results. SGXDedup outperforms all
baseline approaches, by avoiding the expensive cryptographic
primitives in OPRF-BLS, OPRF-RSA, and MinHash encryp-
tion and the frequency counting computations in TED. Its first
round achieves 1,583 x and 131.9x speedups over OPRF-
BLS and OPRF-RSA, respectively. The speedups are 9.4 x
and 3.7x over MinHash encryption and TED, respectively,
even though the latter two sacrifice storage efficiency and se-
curity. Speculative encryption in the second round improves
the MLE key generation speed of the first round by 67.8%.

Exp#2 (Multi-client MLE key generation). We evaluate
multi-client MLE key generation. For stress-testing, we con-
figure a single machine that runs multiple threads, each of
which simulates a client, to simultaneously issue MLE key
generation requests to the key server (which runs on a differ-
ent machine). Recall that the pre-computed masks in the key
enclave can be used to efficiently process at most 11.25 GB
of data (§3.4). To enable speculative encryption for each sim-
ulated client in the second round, we configure each thread
to generate 40,960 fingerprints (i.e., 320 MB of raw data
for 8 KB chunks) and configure the key enclave to equally
pre-compute masks for each simulated client after the first
round of key generation. We measure the aggregate MLE
key generation speed on processing all MLE key generation
requests from all simulated clients.

Figure 4 shows the results. The aggregate key generation
speeds of both rounds initially increase with the number of
simulated clients. At peak, the first and second rounds achieve
8.5 x 10° keys/s and 29 x 10’ keys/s for five and ten simulated
clients, respectively. After ten clients, the aggregate speeds
drop due to aggravated context switching overhead. On av-
erage, speculative encryption in the second round achieves
4.4 x aggregate key generation speedup over the first round.

Exp#3 (Computational PoW). We evaluate the PoW perfor-
mance. We consider a single client that performs PoW on a
2 GB file. The client creates plaintext chunks from the file,
encrypts each plaintext chunk, and issues PoW requests to
the cloud. We measure the computational PoW speed based
on the total computational time of all chunks in both the
client (where the PoW enclave performs fingerprinting on the
ciphertext chunks and signs the resulting fingerprints) and
the cloud (which verifies the authenticity of the fingerprints);
note that we exclude the network transfer time between the

w6 5.311
m
O4 3.166
B2
0.867
%o 0.002 0024 0338 =4
OPRF OPRF MinHash TeEp SGXDedup SGXDedup
BLS RSA Encryption 1st 2nd

Figure 3: (Exp#1) Single-client MLE key generation.

client and the cloud in our speed calculation (we consider the
network transfer time in Exp#11 in Appendix).

We compare SGXDedup with two state-of-the-art PoW
approaches: (i) PoW-MT [32] (a.k.a. the basic version in [32]),
a Merkle-tree-based PoW approach that encodes the chunks
with erasure coding and builds a Merkle tree over the encoded
content for PoW; and (ii) PoW-UH [60], which builds on
universal hashing but trades security for performance. For
fair comparisons, we implement both PoW-MT and PoW-
UH in C++ by ourselves. Note that there are improved PoW
approaches [32], but they incur even higher performance
overhead for low memory usage.

Figure 5 shows the results. SGXDedup dramatically out-
performs PoW-MT, since it avoids erasure coding and Merkle
tree construction in the client, as well as Merkle-tree-based
verification in the cloud. It achieves an 8.2x speedup over
PoW-MT. It also achieves a 2.2x speedup over PoOW-UH.

Exp#4 (Single-client uploads and downloads). We con-
sider a single client, and compare the upload and download
performance of SGXDedup with two baseline systems: (i)
PlainDedup, which disables the key generation, encryption
and PoW operations of SGXDedup, and hence realizes source-
based deduplication without any security protection; and (ii)
DupLESS [14], which generates per-chunk MLE keys via
OPRF-RSA, performs encryption and uploads all ciphertext
chunks to the cloud for deduplication. Since the original im-
plementation of DupLESS does not provide a deduplicated
storage backend (it assumes that Dropbox is used), we imple-
ment DupLESS in C++ based on the design described in [14]
by ourselves. Note that PlainDedup retrieves files based on
file recipes that are not encrypted, and differs from the two-
round downloads in encrypted deduplication systems (i.e.,
both SGXDedup and DupLESS); in the latter, the client first
downloads and decrypts the file recipe, followed by down-
loading the chunks to reconstruct the file (§2.1).

We evaluate the upload and download speeds in three steps:
(1) a client first uploads a 2 GB file; (ii) the client restarts and
then uploads another 2 GB file that is identical to the previous
one; and (iii) the client downloads the file. Note that the
second upload performs source-based deduplication (for both
PlainDedup and SGXDedup), and leverages the pre-computed
masks to accelerate key generation (only for SGXDedup).

Figure 6(a) shows the upload speeds for different network
bandwidths controlled by trickle [28]. For the first upload,
when the network bandwidth is 1 Gbps, the upload speeds of
both SGXDedup (106.6 MB/s) and PlainDedup (106.2 MB/s)

o .| ©KeyGen-1st® KeyGen-2nd — 305
g 30 P~ 9-0 o @ 300
220 P ~ s
4 ® =200
o 10| 5 139
o [0
= 0 éﬁ‘e\e—e—e_e_o g100 .
1510 1520 25 30 35 @ [E—
Number of Simulated Clients POW-MT POW-UH SGXDedup
Figure 4: (Exp#2) Multi-client Figure 5: (Exp#3) Computa-
MLE key generation. tional PoW.

are bound by the network speed, while the performance bottle-
neck of DupLESS (20.1 MB/s) is the OPRF-RSA-based key
generation (Exp#1). When the network bandwidth increases
to 10 Gbps (the default), the upload speeds of SGXDedup
and PlainDedup achieve 193.6 MB/s and 242.0 MB/s, respec-
tively, while that of DupLESS keeps stable at 20.0 MB/s. For
the second upload, DupLESS achieves the same speed as
the first upload due to its key generation performance bottle-
neck. The upload speeds of both SGXDedup and PlainDedup
are less influenced by the network bandwidth since they do
not need to transfer data. On average, SGXDedup achieves
8.1x and 9.6 x speedups over DupLESS in the first and the
second uploads, respectively. Even compared with the inse-
cure PlainDedup, SGXDedup only incurs about 17.5% and
21.4% drops of the corresponding upload speeds. The over-
head comes from the security mechanisms of SGXDedup,
including key generation, encryption, and PoW.

Figure 6(b) shows the download speeds. As the network
bandwidth increases to 10 Gbps, both SGXDedup and Dup-
LESS achieve 323.1 MB/s, a 44.2% drop from PlainDedup.
The reason is that they serially retrieves and decrypts the file
recipe, followed by downloading the ciphertext chunks.

Exp#5 (Real-cloud uploads and downloads). We now ex-
tend Exp#4 and evaluate the upload and download speeds in
a real-cloud deployment. Specifically, we deploy the client
and the key server in our LAN testbed (§5), and connect the
client via the Internet to the Alibaba Cloud, in which we rent
a virtual machine ecs.c6e.xlarge to run the cloud. The cloud
machine is equipped with a quad-core 3.2 GHz CPU (Intel
Xeon Cascade Lake Platinum 8269CY in its host platform),
8 GB memory. We mount the cloud with Alibaba General
Purpose NAS as the storage backend. The NAS can achieve
up to 20000 IOPS for 4 K random reads and writes.

We use on-disk data files for uploads (as opposed to Exp#4,
which loads files into client’s memory before uploads), and
allow the cloud to store the received data files in NAS. We
also use scp to upload the whole data file (i.e., 2 GB) from the
client to the cloud, so as to provide a data transfer benchmark
in the Internet environment.

Table 2 shows the results. In the first upload, the perfor-
mance of all systems (11.4 MB/s for SGXDedup, 11.6 MB/s
for PlainDedup and 10.8 MB/s for DupLESS) is bounded by
Internet bandwidth (11.9 MB/s). In the second upload, SGXD-
edup achieves 104.3 MB/s, 9.7 x speedup over DupLESS and
13.2% drop compared to PlainDedup. Note that the perfor-
mance differences are smaller than those in Exp#4, since

3 [DupLESS [l SGXDedup-1st [] PlainDedup-1st [ll SGXDedup-2nd [[] PlainDedup-2nd

1Gbps 5Gbps
(a) Upload

10Gbps

to that of SGXDedup).

] Approach \ First Upload | Second Upload \ Download ‘

’ Transfer ‘ 11.9+0.03 ‘
SGXDedup 1144+0.3 1043+ 1.2 10.1 £ 0.1
PlainDedup 11.6 + 0.1 120.1 £ 1.4 11.3+£0.3

DupLESS 10.8 £0.2 10.1 £ 0.1

Table 2: (Exp#5) Real-cloud upload and download (unit: MB/s).

SGXDedup and PlainDedup are now bounded by client-side
disk I/Os. In download, the performance of all three systems
is bounded by Internet bandwidth again, while SGXDedup
and DupLESS degrade the download speed of PlainDedup by
10.6% due to their serial retrieval and decryption (Exp#4).

Exp#6 (Multi-client uploads and downloads). We now
consider multiple clients that issue uploads/downloads con-
currently. We focus on SGXDedup, and configure the key
enclave to equally pre-compute masks for each client after
the first upload. We fix the network bandwidth at 10 Gbps,
and evaluate the aggregate upload and download speeds for
all clients to complete the uploads/downloads.

Figure 7 shows the results with up to ten clients. The
aggregate upload speed in the second round increases with
the number of clients, and reaches 1277.1 MB/s. On the other
hand, the aggregate upload speed in the first round increases
to 637.0 MB/s for seven clients, followed by dropping to
620.3 MB/s for ten clients due to the write contention across
clients. Similarly, the aggregate download speed finally drops
to 408.8 MB/s for the read contention of multiple clients.

Exp#7 (Time breakdown). We present a time breakdown of
SGXDedup to study the performance of different steps. Sup-
pose that the key enclave has been started and we focus on the
initialization and the upload procedures of a single client. The
initialization procedure bootstraps the PoW enclave of the
client. The upload procedure includes the following steps: (i)
chunking, which partitions an input file into plaintext chunks;
(ii) fingerprinting-p, which computes the fingerprints of plain-
text chunks; (iii) key generation, which generates MLE keys
from the key enclave; (iv) encryption, which encrypts the
plaintext chunks; (v) fingerprinting-c, in which the PoW en-
clave computes the fingerprints of ciphertext chunks; (vi)
signing, in which the PoW enclave computes the signature of
the fingerprints; (vii) verification, in which the cloud verifies
the authenticity of received fingerprints; (viii) deduplication,
in which the cloud detects duplicate ciphertext chunks and
informs the client; and (ix) transfer, which uploads the non-

% 150U{ © uploaa-1st
m 1200 @ Upload-2nd V-Yad
g 900 © Download & &]

-~
3 600 LH-0-0- e o
2 300
D0
12345678 910
Number of Clients

M SGXDedup || PlainDedup 579
491

1Gbps 5Gbps 10Gbps
(b) Download

Figure 6: (Exp#4) Single-client uploads and downloads. We exclude the second upload speed of DupLESS

(which has the same performance in two uploads) and the download speed of DupLESS (which is identical

Figure 7: (Exp#6) Multi-
client uploads and downloads.

] Procedure/Step \ First Upload \ Second Upload ‘
y Initialization | 938+2.72s | 0.80+0.004s |
Chunking 3.77 £ 0.15ms
Fingerprinting-p 3.24 + 0.28 ms
Key generation 0.31 £ 0.01 ms \ 0.18 £ 0.01 ms
Encryption 247 £0.10ms
Fingerprinting-c 3.28 + 0.01 ms
PoW Signing 0.01 £ 0.00004 ms
Verification 0.005 + 0.00003 ms
Deduplication 0.38 £0.03ms | 0.48 +0.03ms
Transfer 1.29+0.09ms | 0.05 £ 0.0l ms

Table 3: (Exp#7) Time breakdown per 1 MB of file data processed:
fingerprinting-p and fingerprinting-c are operated on plaintext and
ciphertext chunks, respectively.

duplicate ciphertext chunks and the file recipe.

Table 3 presents the results (per 1 MB of file data pro-
cessed). The initialization procedure is time-consuming in the
first upload since it needs to contact the Intel attestation ser-
vice for checking the integrity of the PoW enclave. When the
client restarts again, it no longer needs to execute remote attes-
tation and reduces the setup time of the first round by 91.5%.
Note that the time overhead of the initialization procedure
can be amortized across multiple uploads and downloads.

The key generation step is efficient, and takes up to 2.1% of
the overall upload time. With speculative encryption, SGXD-
edup further reduces the key generation time of the first up-
load by 41.9%. Also, the overall PoW step takes up to 24.4%
of the overall upload time, and the dominant computation in
PoW is the fingerprinting of ciphertext chunks, which is nec-
essary for finding duplicates in encrypted deduplication. With
the lightweight signing and verification steps (that take up
to 0.1% of the overall upload time), we protect source-based
deduplication against side-channel attacks, while reducing
the transfer time of the first upload by 96.1%.

Additional experiments. In our technical report [53], we
study the impact of batch size on key generation and PoW
performance, as well as the rekeying latency.

5.2 Evaluation on Real-world Workloads

We evaluate SGXDedup using real-world workloads (which
contain duplicates). We consider two real-world datasets in
our evaluation.

» The first dataset, called FSL, contains the backup snap-

© SGXDedup-Upload € SGXDedup-Download © PlainDedup-Upload € PlainDedup-Download
%250 % 200 2 -0 G- 6
3 0-0-0-0-G-© © © H ~o~ C]
g?gg égee.o_o_o_o_o_o %3150 @:e-ee-e-o-o—&o_o
g 5 100
$ 100 5]
2 '50{ 0—0—0-0—0-0-0-0-0-0 & 50| gg 000
I)

12345678910 12345678910
Snapshot Snapshot

(a) FSL dataset (b) MS dataset

Figure 8: (Exp#8) Trace-driven upload and download performance.

shots of user home directories from a shared file system
at the File systems and Storage Lab (FSL) [5,56]. Each
snapshot lists the 48-bit fingerprints of the chunks of an
average chunk size of 8 KB. We select all snapshots (under
fslhomes) from January 22 to June 17, 2013, covering
a total of 56.2 TB of pre-deduplicated data. The dataset
reduces to 431.9 GB after deduplication (i.e., a 133.2x
deduplication ratio).

¢ The second dataset, called MS, contains the Windows file
system snapshots from Microsoft [45]. Each snapshot lists
the 40-bit fingerprints of the chunks of an average chunk
size of 8 KB. We sample 140 snapshots from the original
857 snapshots, such that each snapshot has a size of about
100 GB. Our dataset contains 14.4 TB of pre-deduplicated
data. It reduces to 2.4 TB after deduplication (i.e., a 6
deduplication ratio).

Exp#8 (Trace-driven performance). We conduct trace-
driven evaluation on the upload and download performance of
SGXDedup. We choose ten snapshots from FSL and MS each
as follows. For FSL, we pick the snapshots from the same user
to have high cross-snapshot redundancies; for MS, we pick
the snapshots that have the most intra-snapshot redundancies.
The chosen FSL and MS snapshots take 1.3 TB and 1.0 TB of
pre-deduplicated data, respectively. Since our snapshots only
contain fingerprints without actual data, we reconstruct each
plaintext chunk by repeatedly writing its fingerprints into a
spare chunk until reaching the specified chunk size, so the
same (distinct) fingerprint returns the same (distinct) chunk.
We use a single client to upload the snapshots one by one,
followed by downloading them in the same order of uploads.
We compare SGXDedup with PlainDedup (Exp#4).

Figure 8(a) shows the upload and download speeds across
FSL snapshots. Both SGXDedup and PlainDedup achieve
high upload speeds, especially when uploading the subse-
quent snapshots (e.g., at least 164.5 MB/s for SGXDedup
and 212.2 MB/s for PlainDedup) after the first snapshot (e.g.,
148.8 MB/s for SGXDedup and 157.5 MB/s for PlainDedup).
The reason is that the FSL dataset has high redundancies
across snapshots, and both systems can upload less data
for subsequent snapshots. On average, SGXDedup incurs
an upload performance drop of 22.0% compared to PlainD-
edup. Note that the overhead is slightly larger than that
(17.5-21.4%) in our performance evaluation (Exp#4) using
synthetic workloads. The reason is that chunking is now

disabled in trace-driven evaluation, and the bottleneck for
SGXDedup switches to PoW (see Table 3), while the bottle-
neck for PlainDedup is fingerprinting. The download speed
decreases from 41.3 MB/s to 36.4 MB/s for SGXDedup, and
from 45.0 MB/s to 37.9 MB/s for PlainDedup, mainly due to
chunk fragmentation [43]. We can mitigate chunk fragmenta-
tion via re-writing and caching [19,43].

Figure 8(b) shows the upload and download speeds across
MS snapshots. Both systems have lower upload speeds than in
the FSL dataset, since the MS dataset has more non-duplicate
chunks (e.g., 28.7 M for MS versus 18.3 M for FSL) and ag-
gravates the access overhead of the fingerprint index. On
average, SGXDedup incurs an upload slowdown of 21% com-
pared to PlainDedup. Note that the download speeds fluctuate
(e.g., 24.3-57.5MB/s for SGXDedup and 25.6-60.3 MB/s
for PlainDedup), since some MS snapshots have more non-
duplicate chunks and are likely to be stored in consecutive
regions that can be accessed quickly via sequential reads (i.e.,
less chunk fragmentation [43]).

Exp#9 (Bandwidth savings). We evaluate the bandwidth ef-
ficiency of SGXDedup. We consider two existing approaches
that defend against side-channel attacks using both source-
based deduplication (i.e., the client performs deduplication
and uploads only non-duplicate ciphertext chunks to the
cloud) and target-based deduplication (i.e., the client uploads
all ciphertext chunks to the cloud, which performs dedu-
plication on the received ciphertext chunks): (i) two-stage
deduplication [42], which applies source-based deduplica-
tion on individual users, followed by target-based deduplica-
tion across users; and (ii) randomized-threshold deduplica-
tion [33], which performs either source-based deduplication
or target-based deduplication based on a randomly chosen
threshold. We choose the upper and lower bounds of the
threshold in randomized-threshold deduplication as 20 and 2,
respectively, as in [33]. For FSL, we aggregate the same-day
snapshots of different users, and add each aggregate snapshot
into the storage in the order of its creation time. For MS,
we add each snapshot based on its snapshot ID (we assume
that each MS snapshot is from a distinct user). We measure
the bandwidth savings as the fraction of data reduction in
transmission compared to the pre-deduplicated data. Here,
we do not consider the bandwidth overhead due to metadata.

Figure 9 shows the cumulative bandwidth saving after up-
loading each snapshot. After uploading all snapshots, SGXD-
edup achieves 99.2% and 83.2% of bandwidth savings in FSL
and MS, respectively. Since SGXDedup performs source-
based deduplication, its bandwidth savings are also translated
to the storage savings. Two-stage deduplication has almost
identical bandwidth savings to SGXDedup in FSL, since the
FSL dataset includes a large volume of intra-user redundan-
cies. On the other hand, in MS, two-stage deduplication only
has 47.9% of bandwidth savings (less than SGXDedup by an
absolute difference of 35.3%). Randomized-threshold dedu-
plication has varying bandwidth savings, with 48.5% in MS

= SGXDedup = : Two-stage Dedup Randomized-threshold Dedug

—~100 —~100
& 75 & 75
2 50 2 50l e =
3 25 3 25/
? 9 ? 0
1 30 60 90 11£ 1 35 70 105 140
Snapshot Snapshot
(a) FSL dataset (b) MS dataset

Figure 9: (Exp#9) Cumulative bandwidth savings after each snap-
shot is stored.

but only 7.8% in FSL (less than SGXDedup by an absolute
difference of 34.7% and 91.4%, respectively).

6 Related Work

MLE key management. Traditional MLE-based [15] en-
crypted deduplication systems (e.g., [8,20,55]) are vulnerable
to offline brute-force attacks [14]. DupLESS [14] proposes
server-aided MLE to perform MLE key generation in a ded-
icated key server. Follow-up studies on server-aided MLE
focus on deduplication pattern attestation [10], cross-user
deduplication [62], and MLE key renewal [51].

Some studies mitigate the overhead of chunk-based MLE
key generation at the expense of degrading deduplication
effectiveness [51, 62] or weakening security [40]. SGXD-
edup outperforms these approaches in performance, while
preserving both deduplication effectiveness and security
(§5.1). Some other MLE key generation approaches include
threshold-based key management [26] and decentralized
key management [44], but they build on the cryptographic
primitives (e.g., threshold signature [26] and password-
authenticated key exchange [44]) that are theoretically proven
but not readily implemented.

Defenses against side-channel attacks. Source-based dedu-
plication is bandwidth-efficient but vulnerable to side-channel
attacks [33]. Prior studies [33,42] combine source-based
deduplication and target-based deduplication to defend
against side-channel attacks, while SGXDedup achieves sig-
nificantly more bandwidth savings by purely performing
source-based deduplication (§5.2) and using PoW to pro-
tect against side-channel attacks. Also, SGXDedup is much
more efficient than Merkle-tree-based PoW (§5.1). Some
other studies make PoW efficient by relaxing security (e.g.,
[23,60]), while SGXDedup uses client-side SGX to preserve
the security of PoW.

SGX-based storage. SGX [3] has been widely used for se-
curing storage systems. PESOS [39] enforces the access poli-
cies of object storage with SGX. OBLIVIATE [9] enhances
the security of SGX-based file systems against privileged
side-channel attacks. EnclaveDB [50] and ObliDB [29] pro-
tect outsourced databases against information leakage via
SGX. NEXUS [24] enables fine-grained access control with
SGX over untrusted cloud storage. On the performance side,
Harnik et al. [34] propose guidelines on mitigating the perfor-

mance overhead of SGX implementations. ShieldStore [37]
implements application-specific data management to limit the
enclave memory usage. SPEICHER [12] is an SGX-based
LSM-based key-value store with efficient I/O operations.
All the above studies do not consider deduplication. Dang
et al. [22] propose proxy-based protocols for bandwidth-
efficient encrypted deduplication, but the protocols do not
address the key generation performance overhead and have
no implementation. SPEED [21] leverages deduplication to
make SGX computations efficient, but SGXDedup improves
the performance of encrypted deduplication with SGX. Other
studies use a cloud-side enclave for PoW verification [61] and
secure file-based deduplication [31], while SGXDedup uses
a client-side enclave for efficient POW proof generation and
supports more fine-grained chunk-based deduplication.

7 Conclusion

This paper addresses the performance overhead of encrypted
deduplication via SGX. We present SGXDedup, which im-
plements a set of ECalls to run sensitive operations in SGX
enclaves, so as to accelerate encrypted deduplication while
preserving security. SGXDedup incorporates three key de-
signs: (i) the secure and efficient enclave management, (ii) the
renewable blinded key management, and (iii) the design of
SGX-based speculative encryption for lightweight computa-
tions. Evaluation on our SGXDedup prototype demonstrates
its high performance in synthetic and real-world workloads.

Acknowledgments

We thank our shepherd, Russell Sears, and the anonymous
reviewers for their valuable comments. We thank Changchun
Li for his help in the prototype evaluation, and Cheng
Li for his feedbacks on the paper draft. This work was
supported in part by grants by the National Natural Sci-
ence Foundation of China (61972073), the Key Research
Funds of Sichuan Province (2020YFG0298, 2021 YFG0167),
Sichuan Science and Technology Program (2020JDTDO0007),
the Fundamental Research Funds for Chinese Central Uni-
versities (ZYGX2020ZB027), Innovation and Technology
Fund (ITS/315/18FX), and CUHK Direct Grant 2020/21
(4055148).

References

[1] AMD secure encrypted virtualization (SEV). https:
//developer.amd.com/sev/.

[2] Intel architecture memory encryption technologies spec-
ification. https://software.intel.com/sites/
default/files/managed/a5/16/Multi-Key-
Total-Memory-Encryption-Spec.pdf?source=
techstories.org.

[3] Intel software guard extensions SDK.
software.intel.com/en-us/sgx/sdk.

[4] LevelDB. https://github.com/google/leveldb.

https://

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf?source=techstories.org
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf?source=techstories.org
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf?source=techstories.org
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf?source=techstories.org
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://github.com/google/leveldb

[5] Traces and snapshots public archive. http://tracer.
filesystems.org.

[6] Using advanced encryption standard (AES) counter
mode with ipsec encapsulating security payload (ESP).
https://tools.ietf.org/html/rfc3686.

[7] Intel software guard extensions SSL.
https://github.com/intel/intel-sgx-ssl, 2017.

[8] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite: Feder-
ated, available, and reliable storage for an incompletely
trusted environment. In Proc. of ACM OSDI, 2002.

[9] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. Oblivi-
ate: A data oblivious file system for Intel SGX. In Proc.
of NDSS, 2018.

[10] F. Armknecht, J.-M. Bohli, G. O. Karame, and
F. Youssef. Transparent data deduplication in the cloud.
In Proc. of ACM CCS, 2015.

[11] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kiss-
ner, Z. Peterson, and D. Song. Provable data possession
at untrusted stores. In Proc. of ACM CCS, 2007.

[12] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer,
M. Honda, and K. Vaswani. SPEICHER: Securing LSM-
based key-value stores using shielded execution. In Proc.
of USENIX FAST, 2019.

[13] A. Baumann, M. Peinado, and G. Hunt. Shielding ap-
plications from an untrusted cloud with Haven. In Proc.
of USENIX OSDI, 2014.

[14] M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS:
server-aided encryption for deduplicated storage. In
Proc. of USENIX Security, 2013.

[15] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-
locked encryption and secure deduplication. In Proc. of
EuroCrypt, 2013.

[16] M. Bellare and C. Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the
generic composition paradigm. In Proc. of AsiaCrypt,
2000.

[17] J. Black. Compare-by-hash: A reasoned analysis. In
Proc. of USENIX ATC, 2006.

[18] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution. In Proc. of USENIX Security, 2018.

[19] Z. Cao, H. Wen, F. Wu, and D. H. Du. ALACC: Accel-
erating restore performance of data deduplication sys-
tems using adaptive look-ahead window assisted chunk
caching. In Proc. of USENIX FAST, 2018.

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:
Making backup cheap and easy. In Proc. of ACM OSDI,
2002.

H. Cui, H. Duan, Z. Qin, C. Wang, and Y. Zhou. SPEED:
Accelerating enclave applications via secure deduplica-
tion. In Proc. of ICDCS, 2019.

H. Dang and E.-C. Chang. Privacy-preserving data
deduplication on trusted processors. In Proc. of IEEE
CLOUD, 2017.

R. Di Pietro and A. Sorniotti. Boosting efficiency and
security in proof of ownership for deduplication. In
Proc. of ACM ASIACCS, 2012.

J. B. Djoko, J. Lange, and A. J. Lee. NEXUS: Practical
and secure access control onuntrusted storage platforms
using client-side SGX. In Proc. of IEEE/IFIP DSN,
2019.

J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and
M. Theimer. Reclaiming space from duplicate files in
a serverless distributed file system. In Proc. of IEEE
ICDCS, 2002.

Y. Duan. Distributed key generation for encrypted dedu-
plication: Achieving the strongest privacy. In Proc. of
ACM CCSW, 2014.

V. Eduardo, L. C. E. de Bona, and W. M. N. Zola. Spec-
ulative encryption on GPU applied to cryptographic file
systems. In Proc. of USENIX FAST, 2019.

M. A. Eriksen. Trickle: A userland bandwidth shaper
for UNIX-like systems. In Proc. of USENIX ATC, 2005.

S. Eskandarian and M. Zaharia. ObliDB: Oblivious
query processing for secure databases. In Proc. of ACM
VLDB, 2019.

K. Fu, S. Kamara, and T. Kohno. Key regression: En-
abling efficient key distribution for secure distributed
storage. In Proc. of NDSS, 2006.

B. Fuhry, L. Hirschoff, S. Koesnadi, and F. Kerschbaum.
SeGShare: Secure group file sharing in the cloud using
enclaves. In Proc. of IEEE/IFIP DSN, 2020.

S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg.
Proofs of ownership in remote storage systems. In Proc.
of ACM CCS, 2011.

D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side chan-
nels in cloud services: Deduplication in cloud storage.
IEEE Security & Privacy, 8(6):40—47, 2010.

D. Harnik, E. Tsfadia, D. Chen, and R. Kat. Securing
the storage data path with SGX enclaves. https://
arxiv.org/abs/1806.10883, 2018.

R. Hasan, W. Yurcik, and S. Myagmar. The evolution of
storage service providers: techniques and challenges to
outsourcing storage. In Proc. of ACM StorageSS, 2005.

http://tracer.filesystems.org
http://tracer.filesystems.org
https://tools.ietf.org/html/rfc3686
https://arxiv.org/abs/1806.10883
https://arxiv.org/abs/1806.10883

[36] A.Juels and B. S. Kaliski, Jr. PORs: Proofs of retriev-
ability for large files. In Proc. of ACM CCS, 2007.

[37] T.Kim, J. Park, J. Woo, S. Jeon, and J. Huh. ShieldStore:
Shielded in-memory key-value storage with SGX. In
Proc. of ACM Eurosys, 2019.

[38] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A durable
and practical storage system. In Proc. of USENIX ATC,
2007.

[39] R.Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth,
P. Bhatotia, and C. Fetzer. PESOS: Policy enhanced
secure object store. In Proc. of ACM EuroSys, 2018.

[40] J. Li, P. Lee, C. Tan, C. Qin, and X. Zhang. Informa-
tion leakage in encrypted deduplication via frequency
analysis: Attacks and defenses. ACM Transactions on
Storage, 16(1):4:1-4:30, 2020.

[41] J. Li, Z. Yang, Y. Ren, P. Lee, and X. Zhang. Balancing
storage efficiency and data confidentiality with tunable
encrypted deduplication. In Proc. of ACM Eurosys,
2020.

[42] M. Li, C. Qin, and P. Lee. CDStore: Toward reliable,
secure, and cost-efficient cloud storage via convergent
dispersal. In Proc. of USENIX ATC, 2015.

[43] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving
restore speed for backup systems that use inline chunk-
based deduplication. In Proc. of USENIX FAST, 2013.

[44] J. Liu, N. Asokan, and B. Pinkas. Secure deduplica-
tion of encrypted data without additional independent
servers. In Proc. of ACM CCS, 2015.

[45] D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. In Proc. of USENIX FAST, 2011.

[46] S. Mofrad, F. Zhang, S. Lu, and W. Shi. A compari-
son study of Intel SGX and AMD memory encryption
technology. In Proc. of ACM HASP, 2018.

[47] M. Naor and O. Reingold. Number-theoretic construc-
tions of efficient pseudo-random functions. Journal of
the ACM, 51(2):231-262, 2004.

[48] O. Oleksenko, B. Trach, R. Krahn, A. Martin, C. Fetzer,
and M. Silberstein. Varys: Protecting SGX enclaves
from practical side-channel attacks. In Proc. of USENIX
ATC, 2018.

[49] OpenSSL. Cryptography and SSL/TLS toolkit. https:
//www.openssl.org/.

[50] C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A
secure database using SGX. In Proc. of IEEE S&P,
2018.

[51] C.Qin,J. Li, and P. Lee. The design and implementation
of a rekeying-aware encrypted deduplication storage
system. ACM Transactions on Storage, 13(1):9:1-9:30,
2017.

[52] M. O. Rabin. Fingerprint by random polynomials. Tech-
nical report.

[53] Y.Ren,J. Li, Z. Yang, P. P. C. Lee, and X. Zhang. Ac-
celerating encrypted deduplication via SGX. Technical
report, CUHK, 2021. http://www.cse.cuhk.edu.
hk/~pclee/www/pubs/tech_sgxdedup.pdf.

[54] H. Ritzdorf, G. O. Karame, C. Soriente, and S. C‘apkun.
On information leakage in deduplicated storage systems.
In Proc. of ACM CCSW, 2016.

[55] P. Shah and W. So. Lamassu: Storage-efficient host-side
encryption. In Proc. of USENIX ATC, 2015.

[56] Z. Sun, N. Xiao, G. Kuenning, S. Mandal, E. Zadok,
P. Shilane, and V. Tarasov. A long term user-centric
analysis of deduplication patterns. In Proc. of IEEE
MSST, 2015.

[57] A. S. Technology. Building a secure system us-
ing TrustZone® technology. https://static.
docs.arm.com/genc009492/c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf,
2009.

[58] M. Vrable, S. Savage, and G. M. Voelker. Cumulus:
Filesystem backup to the cloud. In Proc. of USENIX
FAST, 2009.

[59] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smal-
done, M. Chamness, and W. Hsu. Characteristics of
backup workloads in production systems. In Proc. of
USENIX FAST, 2012.

[60] J. Xu, E.-C. Chang, and J. Zhou. Weak leakage-resilient
client-side deduplication of encrypted data in cloud stor-
age. In Proc. of ACM ASIACCS, 2013.

[61] W. You and B. Chen. Proofs of ownership on encrypted
cloud datavia Intel SGX. In Proc. of ACNS, 2020.

[62] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang,
and C. Li. SecDep: A user-aware efficient fine-grained
secure deduplication scheme with multi-level key man-
agement. In Proc. of IEEE MSST, 2015.

[63] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file system.
In Proc. of USENIX FAST, 2008.

[64] P. Zuo, Y. Hua, C. Wang, W. Xia, S. Cao, Y. Zhou, and
Y. Sun. Mitigating traffic-based side channel attacks
in bandwidth-efficient cloud storage. In Proc. of IEEE
IPDPS, 2018.

https://www.openssl.org/
https://www.openssl.org/
http://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_sgxdedup.pdf
http://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_sgxdedup.pdf
https://static.docs.arm.com/genc009492/c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://static.docs.arm.com/genc009492/c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://static.docs.arm.com/genc009492/c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

	Introduction
	Background and Problem
	Encrypted Deduplication
	Intel SGX
	Threat Model

	SGXDedup Design
	Overview
	Enclave Management
	Renewable Blinded Key Management
	SGX-Based Speculative Encryption

	Implementation
	Evaluation
	Evaluation on Synthetic Workloads
	Evaluation on Real-world Workloads

	Related Work
	Conclusion

