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Abstract—We consider the problem of inferring link loss rates
using passive measurements. Prior inference approaches are
mainly built on the time correlation nature of packet losses.
However, passive inference generally has limited control over the
measurement process, and it is a challenging issue to adapt loss
rate inference to the impact of time correlation. We address this
issue and propose a new loss model that expresses an inferred
link loss rate as a function of time correlation. Under this loss
model with time correlation, we show its identifiability, and
propose a novel profile-likelihood-based inference approach that
can accurately infer link loss rates for various complex topologies
(e.g., trees with many leaf branches). We validate the accuracy
of our inference approach with model and network simulations.

Index Terms—network tomography; passive loss rate infer-
ence; time correlation; measurement and monitoring techniques;
performance evaluation and assessment

I. INTRODUCTION

Network loss tomography is an important technique that

computes statistical estimates of internal loss rates of network

elements through external data traffic measurements. This en-

ables operators to readily diagnose performance bottlenecks of

an operational network during the periods of high traffic loads,

and hence devise better strategies for resource provisioning

and network planning. Traditional approaches of loss rate

inference use active probing, which sends probes, either in

multicast (e.g., [4], [9], [23]) or unicast (e.g., [11], [12]),

to obtain end-to-end measurements for inference. Since most

Internet routers do not enable multicast, unicast-based active

probing [11], [12] is more appealing in practice. It mainly

leverages the time correlation nature of packet losses that

is typically seen in the Internet (e.g., see analysis in [19]).

That is, neighboring packets likely experience the similar loss

behavior on the common node/link that they traverse. For

example, a router queue may be overflowed during conges-

tion, and this leads to consecutive losses of arriving packets

over a time window. Based on the statistical feature of time

correlation, loss inference algorithms can then be developed.

However, active probing has its own limitations, such as

introducing probing overhead and requiring collaboration of

senders and receivers to collect measurement data. Hence,

passive network tomography is proposed, such that loss infer-

ence is achieved by monitoring existing traffic (e.g., using TCP

traffic [6], [21], [22]) without generating probing traffic. Like

unicast-based active probing, passive network tomography is

built on the time correlation nature of packet losses.

While passive network tomography is attractive, it has

limited control over the measurement process, and this re-

sults in the degradation of the overall inference accuracy. In

particular, time correlation of packet losses is imperfect in

practice [12]. While active probing techniques can reduce the

correlation defect using stripes of probes [12], such a solution

cannot be used in passive approaches. It is expected that

if back-to-back packets have a larger time difference, then

their time correlation will decay more. However, it remains a

challenging issue of how to model the decaying property of

time correlation in loss rate inference, especially in passive

approaches where the measurement process has less control.

In this paper, we propose a passive loss rate inference

approach that accounts for different functional forms of time

correlation of packet losses. We first model an inferred link

loss rate as a function of time correlation. Under this loss

model with time correlation, we develop an inference approach

based on the profile likelihood (PL) method [18], with which

we can focus on the parameters of interest (i.e., link loss

rates to be inferred) by replacing other nuisance unknowns

with appropriate estimates. Our loss rate inference approach

is applicable in existing passive network measurement systems

and enables them to provide improved inference accuracy.

To further motivate the importance of accurate passive

loss rate inference, we consider a commercial network traffic

analysis system that we know has implemented simple loss

inference techniques. The analysis system passively captures

IP traffic of a wireless data network and monitors the per-

formance of the underlying network links and elements. To

illustrate, Figure 1 shows a simplified view of a wireless data

network and how the analysis system is deployed. The wireless

data network embodies a hierarchical structure, in which the

analysis system observes IP traffic at a Home Agent/Foreign

Agent (HA/FA) tap point that is connected with multiple base

station controllers (BSCs), and each BSC is connected with

multiple base stations (BSes). Typically, a BSC is connected to

a large number of BSes, and the traffic workload toward each

base station is generally unevenly distributed. In view of this,

we include statistically efficient extensions into our baseline
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Fig. 1. A simplified wireless data network architecture. A traffic analysis
system is deployed to infer the performance of network links and elements.
Our passive inference approach is applicable for this type of traffic analysis.

PL-based inference approach to account for a “many-branch”

topology, in which some nodes are connected to a high degree

of branch links that may have uneven traffic loads.

In summary, we make the following contributions:

• We develop a loss model that expresses loss rates as a

function of time correlation. This enables us to study

the impact of different time correlation functions on the

inference results.

• We consider different functional forms of time correla-

tion, and show that our loss model is identifiable as long

as the correlation is not a constant other than 1.

• Under the loss model with time correlation, we develop

a PL-based inference approach that provides accurate

estimates of link loss rates.

• We extend our PL-based inference approach for more

general topologies, including topologies with a high de-

gree of branch links and multi-level topologies.

• We verify the accuracy of our inference algorithm through

extensive model simulations in R [2] and network simu-

lation in ns2 [1].

The paper proceeds as follows. In Section II, we present a

passive TCP monitoring framework on which we develop our

inference approach. Section III models time correlation in loss

inference and discusses the identifiability issues. Section IV

proposes our PL-based inference approach, and Section V

discusses the extensions for general topologies. Sections VI

and VII validate our inference approach via model and net-

work simulations, respectively. We discuss related work in

Section VIII, and conclude in Section IX.

II. PASSIVE MEASUREMENTS THROUGH TCP INFERENCE

We first introduce a basic TCP-based passive measurement

framework on which we can deploy our inference approach.

We also state the assumptions of our framework.

Figure 2 depicts the TCP-based passive measurement frame-

work [3], [6], [21], [22]. The framework observes sender-to-

receiver TCP data packets (or packets for short) and receiver-

to-sender acknowledgments (ACKs) at a measurement point.

It seeks to identify whether each packet is delivered or lost

from the sender to the receiver. Determining whether a TCP

packet is lost is based on the TCP retransmission mechanism:

if a sender successfully delivers a packet to a receiver, then

the receiver will reply a corresponding ACK; if the sender

does not receive the ACK after a timeout, then it deduces

TCP packets
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Fig. 2. The TCP-based passive measurement framework for network loss
tomography. Our goal is to infer the loss rate of the common link from the
root node to the middle node. We let p and pi (i = 1, · · · ,K) be the link
success rates of the common link and leaf branch i, respectively, and they
will be used in Section III.

that the packet is lost and retransmits the same packet. Thus,

intuitively, packet retransmissions can be viewed as indicators

of packet losses. Since retransmissions can also be triggered by

spurious timeouts or ACK losses in addition to packet losses,

there are also more robust approaches of inferring TCP packet

losses (e.g., see [3]).

It is important to note that our focus in this paper is not on

determining TCP packet losses, but instead we aim to leverage

the current passive inference frameworks as a platform and

enhance the accuracy of network loss tomography (i.e., infer-

ring loss rates of network elements including nodes and links).

Thus, we assume that we can correctly determine whether a

TCP packet is lost somewhere along a path by observing TCP

traffic, and use this end-to-end information as the inputs to

our inference approach.

To simplify our discussion, Figure 2 depicts only a two-

level tree topology, in which TCP packets traverse along a

common link and reach one of the K leaf branches with

index i, where i = 1, 2, · · · ,K. We collect packet samples

at the root node, and infer the loss rate of the common link

(on the root-to-leaf direction). While we focus on link losses,

the same methodology is also applicable to losses in nodes

(e.g., router queues). In Section V, we explain how to extend

our inference approach for general topologies. In addition,

we expect that this type of loss rate inference is deployed

in a network that is administered by a single authority, so the

topological information is available.

The framework monitors a stream of TCP packets and

ACKs over a measurement epoch. For each packet sample,

the framework obtains the following: (i) the arrival timestamp

when the measurement point observes the packet, (ii) the index

of the leaf branch that the packet will traverse, (iii) the Boolean

variable of whether a packet is lost. Such information is used

to generate packet pairs (see Section III). Both sets of single

packet samples and packet pairs will be the inputs to our

inference approach, as will be discussed in later sections.

III. PACKET PAIR LOSS MODELING

In this section, we discuss what constitutes a packet pair,

and present our loss model for these packet pairs. Our goal is

to utilize these packet pair measurements, together with single

packet measurements, to estimate link success (or loss) rates.

We demonstrate theoretically that our model parameters (suc-



cess/loss rates) are statistically identifiable. We also formally

justify how the perfect correlation assumption can introduce

bias to our estimates.

A. Packet Pair

We use the two-level tree topology in Figure 2 for our

discussion. We define a packet pair as the neighboring packets

that have inter-arrival time less than δ, where δ is a tunable

parameter, and are destined for different leaf branches. While

such a definition is more restricted than that in [11], in which

all packet pairs, whether having the same branch or not,

are considered, we will show later in Section IV that such

restrictions enable us to use a much smaller set of model

parameters to greatly simplify our loss rate estimation.

B. Loss Model

Let (U ,V) be a packet pair, where U ,V represent the first

and second packets in the packet pair, respectively. We now

model the loss correlation between U and V .

As the packet pair (U ,V) is destined for different leaf

branches, we can always define the sub-path before the diver-

gence of their paths as the common link, and define paths after

the divergence as new leaf links. This forms a tree topology

with two leaves. Therefore, to simplify our discussion, we

consider a two-level, two-leaf tree topology in Figure 2 (i.e.,

K = 2) to explain our model.

Let packet U be represented by a tuple (u, Yu, tu), where

u = 1, 2 is the leaf index, and Yu is the event variable that

equals 1 if the packet is received by the leaf branch (i.e.,

successful) or 0 otherwise, and tu is the arrival timestamp of

packet U observed at the measurement point. Similarly, we

use tuple (v, Yv, tv) to represent the packet V . Hence, we can

decompose Yu, Yv as

Yu = ZuXu, Yv = ZvXv, (1)

where Zu (resp. Zv) is the event variable that equals 1 if packet

U (resp. V) is successful on the common link and 0 otherwise,

and Xu (resp. Xv) is the event variable that equals 1 if packet

U (resp. V) is successful at the leaf link and 0 otherwise.

We assume that loss events on different links are indepen-

dent of each other, i.e., Xu and Xv are independent events

and both of them are independent of the events Zu and Zv

at the common link. We point out that the assumption of

link independence does not strictly hold in general, but the

correlation of links is weak and has limited impact on our

analysis [20], [21]. On the other hand, since Zu and Zv are

two events at the common link, they are correlated. Let

∆u
.
= tv − tu

be the difference of the arrival timestamps of the packet pair.

We assume that the success (and loss) events at the common

link form a stationary process with some correlation function

ρa(·), where a represent some unknown parameter, i.e.,

Correlation(Zu, Zv) = ρa(tv − tu) = ρa(∆u), (2)

where 0 ≤ ρa(·) ≤ 1. It is reasonable to expect that ρa(·) is a

monotonically decreasing function, ρa(0) = 1 and ρa(∆u) =
0 as ∆u goes to infinity.

Let p be the packet success rate at the common link, and

p1 and p2 be the link success rates of leaf nodes 1 and 2,

respectively (see Figure 2 with K = 2). Let sd(.) denote

the standard deviation function, and let Cov(.) denote the

covariance function. Then (2) implies that the covariance

between Zu and Zv is:

Cov(Zu, Zv) = sd(Zu)sd(Zv)ρa(∆u) = p(1− p)ρa(∆u).

Furthermore, using (1), we can easily show that

Cov(Yu, Yv) = p(1− p)p1p2ρa(∆u). (3)

Suppose that we define four possible probabilities of suc-

cess/failure events of the packet as follows:

rkl(U ,V)
.
= P (Yu = k, Yv = l), k, l ∈ {0, 1}. (4)

It is easy to show that

r11(U ,V) = pp1p2(p+ (1− p)ρa(∆u)),

r10(U ,V) = pp1 − r11,

r01(U ,V) = pp2 − r11,

r00(U ,V) = 1 + r11 − pp1 − pp2. (5)

C. Modeling Time Correlation

Since the exact form of the time correlation function is

generally unknown in advance, it is prudent only to consider

an approximation of the function when ∆ is close to zero.

We consider the following two specific approximations of the

time correlation function when 0 ≤ ∆ < δ for small δ:

ρa(∆) = exp(−a∆), (linear form),

ρa(∆) = exp(−a∆2), (quadratic form), (6)

where a > 0 is an unknown parameter that we want to

estimate as will be discussed in Section IV. Since the above

approximations hold for small ∆ only, we expect that they

are good enough to capture the time-decaying property of the

exact form of ρa(.) (which is unknown in general). Note that

when a = 0, the above approximations include the special

case of the perfect correlation model for all ∆ ≥ 0:

ρa(∆) = 1 (perfect correlation), (7)

which implies that both packets in the packet pair always have

the same success/loss events. However, if we assume that the

packet pair has a perfect correlation but indeed does not, then

we show that there is a bias in the estimates (see Section III-E).

It is important to mention that the approach by [11] equiva-

lently adopts the following time correlation function for ∆ > 0
(while ρa(0) = 1):

ρa(∆) = a < 1 (constant form). (8)

However, we will next show that such a loss model is not

statistically identifiable.



D. Model Identifiability

When a packet pair is perfectly correlated, [9] shows that

the unknown success rates on links are identifiable. However,

if there is no perfect correlation, the identifiability remains

an open question. Although the imperfect correlation model

has been discussed in [11], the identifiability of model pa-

rameters is not rigorously discussed. Here we show that if

we take a functional form of the loss correlation model (i.e.,

the correlation depends on the time difference such as the

linear and quadratic models in (6)), then the success rates

p, p1, p2 are statistically identifiable. However, if we assume

that the correlation is constant as in (8), then the success rates

may not be identifiable without further assumptions. We will

demonstrate this using the simple two-leaf tree.

Theorem 1: Under the loss correlation model in (2), the link

loss rates p, p1, p2 in the two-leaf tree as well as the correlation

model parameter a are identifiable, given that ρa(0) = 1.

Proof (Sketch): From (3), we see that covariance between

Yu and Yv (i.e., the success events of the two packets in the

packet pair) can be used to determine p(1− p)p1p2 by setting

ρa(0) = 1. Note that E(Y1) = pp1 and E(Y2) = pp2. Thus,

p, p1, p2 are now all identifiable from the success events Yu

and Yv . Furthermore, since ρa(∆u) changes as a function of

∆u, the parameter a is identifiable from (3) (e.g., by fixing

some ∆u and evaluating (3)).

On the other hand, when ρa(·) = a and 0 ≤ a < 1 (see

(8)), Cov(Yu, Yv) = p(1− p)p1p2a. With two more equations

E(Y1) = pp1 and E(Y2) = pp2, it is not enough to identify the

four unknowns p, p1, p2 and a. Note that [11] uses the constant

correlation function and all packet pairs (not just packet pairs

destined for distinct leaves). However, it can be shown that

even in such scenarios, the link loss rates are not identifiable

without further assumptions.

E. Bias When Assuming Perfect Correlation

Here, we study the bias of the estimate of p (i.e., the

common link success rate) when it is derived based on an

incorrect assumption of perfect correlation. This motivates us

to devise a more accurate modeling scheme to capture the

effect of time correlation. We use a simple two-level, two-leaf

tree topology for this study as a closed-form estimate of p can

be obtained. In Section VI, we shall use model simulation to

show that our theoretical results also hold empirically for a

two-level tree with a general number of leaves.

Assuming there are no additional single packet measure-

ments other than those obtained from packet pairs. Let

Mkl, k = 0, 1 be the total number of packet pairs to the two

leaves with success state (k, l) (1 implies a success and 0

implies failures). Suppose that M01M10 ≤ M00M11, which

is generally true since if the first packet is received (or lost),

then it is more likely for the second packet to be received (or

lost) due to correlation. Thus, for the simple two-leaf tree, the

MLE of p is given by:

p̂ =
(M10 +M11)(M01 +M11)

M11N
. (9)

Suppose that all packet pairs {(U ,V)} have a constant

inter-arrival time ∆u = ∆. The following theorem gives the

asymptotic bias of p̂ in (9) as the number of packet pairs goes

to infinity. We leave the detailed proof to Appendix.

Theorem 2: Let the packet pair measurements on the two-

leaf tree have a fixed inter-arrival time ∆ > 0. Let ρ =
Cor(Zu, Zv) ≤ 1, where (Zu, Zv) is the unobserved suc-

cessful events on the common link in the two-leaf tree. As

N → ∞, the estimate of p in (9) has an asymptotic bias of

Bias(p̂)
.
= p̂− p −→

p(1− p)(1− ρ)

p+ (1− p)ρ
. (10)

Hence it is easy to conclude that the relative bias for loss rate

(1− p) is

RelativeBias(1− p̂)
.
=

Bias(1− p̂)

1− p
−→ −

p(1− ρ)

p+ (1− p)ρ
.

(11)

Thus, when p is close to 1, RelativeBias(1− p̂) ≈ ρ− 1.

The above theorem states that for a two-leaf tree, the

estimate under the perfect correlation model results in an

underestimate of the true loss rate, with an approximate

relative bias of ρ − 1 for small loss rates. We immediately

have the following corollary.

Corollary 1: Let f(t) be the density function of the time

difference ∆u between packet pairs. As p is close to 1, the

asymptotic relative bias of the perfect correlation estimate is:

RelativeBias(1− p̂) −→ −

∫

t

(1− ρa(t))f(t)dt. (12)

IV. PROFILE LIKELIHOOD BASED INFERENCE

In this section, we propose our loss rate inference approach

that utilizes both single packet and packet pair measure-

ments. Our approach is based on the profile likelihood (PL)

method [18]. We first present our methodology for a two-level

tree (see Figure 2), and we later our solution for more complex

networks (see Section V).

A. Single Packet and Packet Pair Measurements

As mentioned before, our criteria for a valid packet pair

are neighboring packets that are (i) destined for different leaf

branches, and (ii) separated by a relatively small time. In

addition, we also consider all observed packets as valid single

packet measurements. Clearly, a packet pair is considered both

a packet pair and two single packet measurements. Both single

packet and packet pair measurements will be used as inputs

to our loss rate inference approach.

B. The Profile Likelihood Method

We consider a two-level tree with K leaves shown in

Figure 2. Let P1 and P2 represent the sets of single packet

measurements and packet pair measurements, respectively.

Note that measurements in P1 and P2 may be correlated.

However, we shall ignore these correlations and adopt a

pseudo-likelihood approach [11], [14] by assuming that these



measurements are independent. The implication of this as-

sumption is that we may have an estimate that has a larger

variance (i.e., not as statistically efficient as if we model

the complete dependency). However, we observe that this

approach still gives an accurate estimate in general (according

to our evaluations in Sections VI and VII).

We adopt the similar notation as in Section III. Recall that

rkl(U ,V)
.
= P (Yu = k, Yv = l) represents the success/failure

probabilities of the packet pair (U ,V) (1 implies a success and

0 implies a failure). Based on our correlation function at the

common link (see (2)), we can show that the log-likelihood

of pair measurements in P2 is

L =
∑

(U,V)∈P2

1∑

k,l=0

I(Yu = k, Yv = l) log rkl(U ,V), (13)

where log rkl(U ,V) can be expressed in a similar manner as

in (4) by replacing p1 with pu, and p2 with pv . The unknown

parameters in the above are {p, p1, p2, · · · , pK , a}, where a
is the parameter that specifies the decay in time correlation.

In the following, we describe the steps of estimating p, the

packet success rate at the common link.

Step 1: apply end-to-end success rates into the model. For

i = 1, . . . ,K, let Pi be the end-to-end success rate to the K
leaf links. We have

Pi = ppi, (14)

For statistical inference, we first re-parameterize the likelihood

in (13) using the new parameter set {p, P1, P2, · · · , PK , a}.

Therefore, we can rewrite rk,l(U ,V) for k, l = 0, 1 as

r11(U ,V) = PuPvp
−1(p+ (1− p)ρa(∆u)),

r10(U ,V) = Pu − r11(U ,V),

r01(U ,V) = Pv − r11(U ,V),

r00(U ,V) = 1 + r11(U ,V)− Pu − Pv. (15)

Step 2: remove nuisance parameters via the profile likeli-

hood approach. We now propose an approach based on profile

likelihood (PL) [18] for parameter estimation. The core idea of

the PL approach is to replace some of the unknown parameters

by their appropriate estimates (or based on other unknown

parameters), in order to reduce the number of dimensions of

the optimizing problem substantially. It has been shown that

the PL approach works very well in the presence of many

nuisance parameters. Here, we treat the common link success

rate p as the main parameter of interest, and Pi (i = 1, . . . ,K)

as the nuisance parameters.

Let Ni be the number of single packet measurements to

leaf link i, and Mi be the number of total successes among

these packets. We now replace Pi in (13) by the maximum

likelihood estimate (MLE) based on end-to-end single packet

measurements, i.e.,

P̂i = Mi/Ni. (16)

Thus, we now optimize the following likelihood with respect

to p and a:

Lprof (p, a) =
∑

(U,V)∈P2

1∑

k,l=0

I(Yu = k, Yv = l) log r̃kl(U ,V),

(17)

where r̃kl(·, ·), k, l = 0, 1 are obtained from (15) with Pi

replaced by its estimate P̂i. Given the constraints that 0 ≤
rkl(·, ·) ≤ 1, we can derive that the search space for p in

optimizing Lprof (p, a) in (17) is

K
max
i=1

P̂i ≤ p ≤ 1. (18)

To derive the confidence intervals for the unknown parameter

p, we can adopt one of the following two methods. The first is

to apply the PL method by treating a as the nuisance parameter

[18]. The second is based on a bootstrap method [13]. We do

not address the details here in the interest of space.

We remark here that in passive monitoring the volume of

single packet measurements is much larger than the packet pair

measurements. Hence, for a small two-level tree, we expect to

have a very accurate estimate of P1. However, this no longer

holds when the number of leaves K increases. In Section V,

we shall discuss how we adapt our approach to large K.

Step 3: estimate p when ρa(·) is unknown. In reality, we do

not know the exact form of ρa(·). The approach we take in

this paper is to choose a small value of δ and use statistical

model selection to choose ρa(·) from a set of simple functional

forms. For example, when we consider the linear or quadratic

forms of ρa(·) as in (6), we first find the optimum value of

(p, a) for each model, and use the estimate from the model

that returns the largest likelihood value.

Since the validity of the correlation function may depend

on the choice of δ, it is important to choose δ appropriately in

estimation. A larger δ allows us to use more packet pairs for

inference, but may introduce a bias given the simple models of

ρa(·). In our network simulation (Section VII), we note that if

δ is in the range of 10 to 100 milliseconds, then our inference

can return quite accurate and consistent results, even though

we use the approximation of the time correlation function in

Equation 6 (Section III).

When we estimate under the linear and quadratic forms of

ρa(·), there is no close-form solution for the optimization of

the PL function Lprof in (17). Fortunately, since it is a two-

dimensional constrained optimization problem, the optimum

value of (p, a) is not difficult to obtain. We conduct con-

strained optimization using the BFGS quasi-Newton method

[8], in which the estimates obtained from the perfect correla-

tion model (i.e., ρ(∆u) = 1) are used as starting values.

C. Comparison with the Earlier Approach

We remark here the difference of our inference approach

from that in [11], both of which use packet pair and single

packet measurements for statistical inference. First, as stated

earlier, [11] uses all packet pairs, while we restrict the packet

pairs to those that are destined for different leaf branches.



As a result, for the simple two-level tree with K leaves, the

model in [11] introduces K additional parameters to represent

the conditional success probabilities of the leaf links. Also,

as addressed in [22], these conditional success probabilities

satisfy the natural constraints that they are larger than the

unconditional success probabilities pi. This and the increased

size of parameter space will significantly complicate the loss

rate estimation.

Another difference is that we explicitly model the decay

of success correlation of packet pairs as a function of the

time difference, while in [11], it is treated as a fixed unknown

constant. As shown in Theorem 1, the model in [11] is not

statistically identifiable without any additional constraints. In

addition, by modeling the correlation decay, we can obtain bet-

ter parameter accuracies by choosing an appropriate minimum

time difference δ allowable for the analysis.

V. EXTENSIONS OF BASIC METHODOLOGY

In this section, we extend our basic PL-based inference

approach developed for two-level, two-leaf trees for more

general topologies.

A. Two-level Tree with Many Leaves

Let K be the number of leaves of a two-level tree, and

N be the total number of pair measurements. When K is

large while N is fixed, it is likely that the traffic loads on the

leaf links are uneven, and some leaf links have an insufficient

amount of traffic to accurately estimate the end-to-end success

rate Pi for i = 1, . . . ,K (see (16)). As these Pi values are

treated as nuisance parameters in our PL-based inference, the

resulting estimate of p (i.e., the common link success rate) may

have poor accuracy, as will be shown via model simulation in

Section VI. In the following, we propose a statistically efficient

approach to address this issue.

Our goal is to remove the deviations among the nuisance

parameters. We consider a simple heuristic as follows. Instead

of treating the end-to-end success (loss) rates of individual

leaf branches as separate parameters, we shall treat them as

having the same value of P , i.e., Pi = P for i = 1, . . . ,K.

Let M be the total number of successful single packets and

N be the total number of single packets. Then the MLE for

P from single packet measurements is P̂ = M/N . Thus, (15)

reduces to

r11(U ,V) = P 2p−1(p+ (1− p)ρa(∆u)),

and we can carry out the same optimization procedure to

obtain the estimate p as before. In fact, we can readily show

that if we use the same P̂ as estimates of Pi to optimize

(17) with respect to (p, a), then it is actually equivalent to

optimizing the function on a two-leaf tree in which packet U
and packet V always go to the first leaf and the second leaf,

respectively, and both leaf links have the same success rate.

We shall demonstrate in Section VI that when N is reasonably

large, such a procedure for estimating p performs almost as

well as knowing the true values of the end-to-end success rate

Pi when K is large.

.
.
.

Tap traffic and 

infer loss rates

...

...

f1
f0

Fig. 3. Inferring the loss rate of the link of interest (bold link) in a general
topology.

B. General Topologies

For simplicity and scalability, we adopt the following

approach to generalize our method for general topologies.

Specifically, we decompose the problem into many two-level

tree estimation problems to which we can apply our developed

procedure.

Figure 3 depicts a general topology where we want to

infer the loss rate of the link of interest. Denote the link of

interest by l and its loss rate by f . Let Path0(l), Path1(l),
Path0(l) ⊂ Path1(l), denote the parent path and the self path

from the root to the two end nodes of link l. Let f0, f1 be

the loss rates for paths Path0(l) and Path1(l), respectively,

and let f̂0, f̂1 denote their respective estimates. Note that

(1 − f1) = (1 − f)(1 − f0), therefore f can be estimated

by

f̂ = max(0, (f̂1 − f̂0)/(1− f̂0)). (19)

By treating a path as a composite link and its children as

leaf links, estimates f̂0, f̂1 can be derived from the PL-based

inference approach developed for two-level trees.

VI. MODEL SIMULATION

We start with using model simulation to evaluate the effec-

tiveness of our PL-based inference approach under different

forms of time correlation functions that we explicitly specify,

so as to motivate the use of PL-based inference when there are

imperfect time correlations of packet losses. Our evaluation is

built on the statistical tool R [2].

Here, we focus our simulation on two-level trees. We

generate a set of packet pair samples whose loss behavior

follow the time correlation functions that we specify. We

assume that all packets pairs that we generate are statistically

independent of each other. Making this assumption enables us

to ignore other side impacts and focus only on the imperfect

time correlations that are shown in each individual packet pair.

In Section VII we use network simulation to evaluate more

realistic scenarios where packet pairs are generally dependent,

and the tree topologies that have more than two levels.

In each simulation run, we generate 5000 samples of packet

pairs. For each leaf branch i, we assign a weight 0 < wi < 1
such that the frequency of packet pairs to the two distinct

leaves (i, j) is proportional to wiwj . The leaf loss probabilities

are generated uniformly at random between 1% and 15%, and
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we vary the common link loss probabilities from 2% to 10%

in increment of 0.5%. To model time correlation, we consider

both the linear and quadratic forms that are defined as follows

(see Figure 4 for illustration):

ρ(∆) = exp(−∆), and ρ(∆) = exp(−1.45∆2). (20)

We then generate the time difference of each packet pair

uniformly between 0 and 0.7. The range of parameters is

chosen in such a way so that both functions in (20) decay

from 1 to 0.5 when ∆ increases from 0 to 0.7. For each set of

simulation, we carry out 100 simulation runs and obtain the

average results.

Experiment A.1 (PL-based Loss Estimates for Small

Trees). We first evaluate the PL-based estimates on small

trees. In this experiment, we aim to show that there is a

significant bias in loss estimates when we wrongly assume

a perfect loss correlation model. In addition, we compare the

empirical bias obtained from simulation and the theoretical

bias in Theorem 2 that is developed for two-leaf trees, so as

to demonstrate that the derived theoretical bias formula also

works well empirically for a general two-level tree with more

than two leaves.

Here, we consider a two-leaf tree and a five-leaf tree. For

the two-leaf tree, we set the weights w1 = w2 = 1, and for

the five-leaf tree, we use wi = i, i = 1, . . . , 5 such that the

packet pair distribution among leaf pairs are quite skewed.

We use the relative bias and standard deviation to assess the

performance accuracy of our loss estimates on the common

link. Let f be the actual common link loss rate, f̂r be the

inferred estimate obtained in the rth run, and µ̂(f̂) be the

empirical mean of 100 runs. Then we compute the relative

bias and standard deviation as follows:

RelBias(f̂) = f−1
(
µ̂(f̂)− f

)
, (21)

RelSD(f̂) = f−1

(
1

100

100∑

r=1

(
f̂r − µ̂(f̂)

)2
)−

1

2

.(22)

Figure 5 depicts the average relative bias of the link loss es-

timate versus the actual link loss rate f under two loss models

in (20). We see from the figure that our PL-based inference

(solid curves) does not have a visible bias. However, if we

ignore the correlation decay and assuming a perfect correlation

model, then we see from the figure that there is significant bias

in loss estimation (dashed curves). Furthermore, the theoretical
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Fig. 5. Experiment A.1: Average relative bias of loss estimates for the
common link using PL-based inference for two-leaf and five-leaf trees:
Estimates under the correct loss correlation model (solid), estimates under
the perfect correlation model (dashed) and their approximate theoretical bias
(dotted).
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under two loss models (20) respectively.

bias (dotted curves) obtained from (12) also works well for

both two-leaf and five-leaf trees, although it is only derived

for the two-leaf tree case.

Figure 6 shows the average relative standard deviation

versus the true loss rate f based on our PL-based inference

approach. We can see that the relative standard deviation

of estimates decays as f increases. This is expected, since

when f increases, the end-to-end loss is more likely due to

the common link loss. The other nuisance parameters in our

PL-based inference has less influence, and the deviation also

decreases.

Experiment A.2 (PL-based Loss Estimates for Large

Trees). In this experiment, we study how our PL-based es-

timation performs as the number of leaves K increases. Here
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we fix the common link loss rate at 5%, and vary the number of

leaves from 2 to 40, while the number of pair measurements

remains to be 5000. The leaf weights wi, i = 1, . . . ,K are

sampled independently from an exponential distribution. Thus,

the distribution of packet pairs among leaf pairs is quite

skewed. Thus, some leaf branches have far more packet pair

samples than the others, especially when K is large.

We consider three kinds of loss estimates for our PL-based

estimation, given the increasing number of leaves K. The first

estimate, denoted by est.equal, is the our proposed estimate in

Section V-A assuming the same end-to-end success rate. The

second estimate, denoted by est.self, is the estimate obtained

using the empirical end-to-end success rates (which may be

skewed) As a reference, we also obtained estimates using the

true end-to-end success rates, denoted by est.true.

Figures 7(a) and 7(b) respectively depict the average relative

bias and average relative standard deviations of the three link

loss estimates versus the number of leaves. From both figures,

we observe that when the number of leaves K is small,

est.equal (solid curves) is slightly worse than est.self (dashed

curves), since there is a bias introduced when we assume

the same end-to-end loss rates while all leaf branches receive

sufficient packet samples. However, we emphasize that both

are almost as good as est.true (dotted curves). However, as K
increases (around K = 10), the performance of est.equal is

almost in par with est.true, while the performance of est.self

degrades significantly. This is due to the fact that when K
increases, some leaf links do not receive enough samples (as

we generate samples based on a skewed distribution), one

can no longer estimate the end-to-end loss rates well, and

this significantly degrades the estimation performance. On the

other hand, using est.equal, we can estimate the common link

loss rate quite well, and we see from the empirical results

that est.equal is robust to the differences of the numbers of

samples among the leaf links.

Experiment A.3 (Bias When the Loss Correlation Model is

Unknown). In practice, we do not know the exact form of the

correlation model. As mentioned in Section IV, the approach

we take here is to run several loss correlation models and

pick the one with the highest value of the PL function. We

investigate here how this practice would affect the performance
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of our loss rate estimates.

In this experiment, we generate packet pairs for the same

five-leaf tree in Experiment A.1 using only a linear time corre-

lation model in (20). However, we obtain loss estimates under

both linear and quadratic models, and select the estimates from

the model that returns the higher likelihood value, which we

refer to this as est.bestmodel. We compare this estimate with

that obtained under the true (i.e., linear) correlation model

referred as est.true.

Figure 8 depicts the average relative bias of est.true (solid)

and est.bestmodel (dashed) versus the true loss rate f . We

see that the bias of est.bestmodel does not deviate much

from est.true. There is an acceptable small negative bias of

est.bestmodel (around 5%) compared to est.true. This is much

less than just fitting under the wrong model, and much better

than 20% bias for the perfect correlation model (see Figure 5).

VII. NETWORK SIMULATION

We now evaluate our PL-based inference approach using

network simulation in ns2 [1]. Our goal is to show that our

approach generates tolerable errors of link loss estimates under

realistic traffic conditions as well as large network topologies.

In particular, we seek to evaluate the cases where the time

correlation function is difficult to model in practice.

We consider TCP-based loss inference in our simulation. To

verify the correctness of different loss inference algorithms,

we consider the scenarios where traffic loads are fairly high

and hence packet losses are prominent. Specifically, we create

short-lived TCP flows that follow a Poisson arrival process

with mean 10ms, and each TCP session has an exponentially

distributed duration with mean 1s. We use short-lived TCP

flows as they are prevalent in the Internet [17]. Also, we

create a number of background UDP on-off flows to add

some variance to the network traffic. Unless stated otherwise,

all TCP and UDP flows will send packets from the root

to one of the leaf branches that is uniformly chosen. Thus,

we expect that the traffic load in each leaf branch is fairly

balanced, provided that the number of leaf branches is small

(we consider the case of skewed loads in Experiment B.3).

Since our inference is based on TCP, we only use TCP packets

to compute the actual loss rate for our ground truth. Our metric

of interest is the absolute relative error of the inferred loss rate

relative to the actual loss rate.

We obtain single packet measurements and packet pair

measurements from each simulation run. We then fit the



measurement data into different loss estimation approaches

that we develop in R (see Section VI). Here, we consider

three loss rate estimation approaches:

• est.equal: the PL-based estimation that uses the same end-

to-end success rate to remove the skewness of packet

distribution in leaf branches (see Section V-A);

• est.self: the PL-based estimation that directly uses the

end-to-end success (or loss) rates of leaf branches (which

may be skewed); and

• est.perfect: the baseline estimation that assumes perfect

loss correlation and directly uses the end-to-end success

(or loss) rates of leaf branches.

We let both est.equal and est.self use the linear form of

the time correlation function (see Equation 6 in Section III).

Also, we have all approaches treat two neighboring packets as

a packet pair if they arrive within 100 milliseconds and target

different leaf branches.

A. The Two-level Tree Topology

We first consider the two-level tree topology shown in

Figure 2 (see Section II). The topology has a common link

at the root node, and a varying number of leaf branches.

We set the common link bandwidth to be 5Mb/s, while the

leaf branches have the same bandwidth 1Mb/s. All links have

propagation delay 5ms. Based on the given loss models, we

aim to infer the loss rate of the common link at the root node.

In the following results, each measurement is averaged over

30 simulation runs with different random seeds, and each

simulation run lasts for 60 seconds.

Experiment B.1 (The ON-OFF loss model). In this exper-

iment, we consider the ON-OFF loss model, in which we

view each link as a network path, and associate it with a

continuous-time Markovian on-off model (i.e., Gilbert model)

to approximate path-level correlated packet losses. Such an

on-off model is also used in previous work (e.g., [5]).

We consider two cases of packet losses: either losses only

occur in the common link (i.e., no leaf loss), or losses occur

in both the common link at the root node and the leaf links

(i.e., with leaf losses). In the latter case, we further add some

variations by uniformly letting each leaf link have one of the

two possibilities: either 0% of loss or approximately 2% of

losses (note that in the latter case, losses are generated from

the ON-OFF model and the average off period is set to 2% of

time). Here, we consider the actual loss rates at the common

link at approximately 2% and 5%, respectively, and we obtain

these rates by adjusting the parameters of the ON-OFF model

at the common link.

Figure 9 shows the inference results. Let us first consider

Figure 9(a) (i.e., the no-leaf-loss case). Both the PL-based

inference approaches est.equal and est.self have smaller infer-

ence error rates than est.perfect. The degraded performance of

est.perfect is due to the fact that it uses perfect correlation, so

it assumes that the packets in each packet pair must be either

both lost or both delivered (as there is no leaf loss). However,

it is possible to have only one lost packet in a packet pair
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Fig. 9. Experiment B.1: Performance of different inference approaches in
the ON-OFF loss model.

if there is an on-off transition in the loss model between the

two packets. On the other hand, this possibility is inherently

considered in PL-based inference approaches est.equal and

est.self, so they have smaller error rates.

In Figure 9(b) (i.e., the with-leaf-losses case), we still see

that both est.equal and est.self have smaller error rates than

est.perfect. We note that est.equal now has a higher error

rate than est.self when the number of leaf branches is small.

However, est.equal outperforms est.self when the number of

leaf branches is large. This observation is consistent with that

in our model simulation (see the discussion in Experiment A.2

in Section VI). In both Figures 9(a) and 9(b), we observe that

est.equal remains robust toward the number of leaf branches

and its error rate is within 10%.

In Figures 9(c) and 9(d), the common link has a higher loss

rate (i.e., 5%). We observe that all approaches incur smaller

error rates than Figures 9(a) and 9(b), where the common link

loss rate is 2%. This is expected, as right now the end-to-end

losses more likely occur at the common link. In this case,

we still observe that both est.equal and est.self outperform

est.perfect, while est.equal maintains low error rates (within

4.2%) with regard to the number of leaf branches.

Experiment B.2 (The QUEUE loss model). We consider

another way of generating packet losses, which we call the

QUEUE loss model. In this model, we associate each node

with a finite-buffer drop-tail queue, given that the drop-

tail policy is configured in most Internet routers today. We

inject large UDP bursts to cause queue overflows and hence

packet losses. The UDP bursts follow an exponential on-off

distribution, in which we adjust the on-off periods to obtain
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Fig. 10. Experiment B.2: Performance of different inference approaches in
the QUEUE loss model.

the actual loss rates that we consider, i.e., ∼2% and ∼5%. We

again consider the no-leaf-loss and with-leaf-losses cases as in

Experiment B.1.

Figure 10 shows the inference results for the QUEUE loss

model. In general, the error rates of all inference approaches

in the QUEUE model are in the range 10-20%, and are higher

than those in the ON-OFF model. Nevertheless, similar to Ex-

periment B.1, in the with-leaf-losses cases (i.e., Figures 10(b)

and 10(d))), est.equal introduces higher error rates when the

number of leaf branches is small, but outperforms the other

two approaches when the number of leaf branches increases.

In short, we observe similar improvements in est.equal and

est.self over est.perfect as in Experiment B.1.

Experiment B.3 (Skewed traffic loads). In this experiment,

we consider the scenarios when the traffic loads in the leaf

branches are uneven. We first divide the leaf branches into

two groups (denoted by Group 1 and Group 2). For each TCP

flow we generate, it first selects either Group 1 or Group 2 with

probabilities β and 1− β, respectively, where 0.5 ≤ β < 1. It

then sends traffic to one of the uniformly chosen leaf branches

within the selected group. Thus, if β > 0.5, then the leaf

branches in Group 1 will see more traffic than in Group 2.

Here, we fix the number of leaf branches to be 10, and focus

on the ON-OFF loss model. Figure 11 shows the performance

of different inference approaches versus β. We observe that

as β increases, the performance of both est.self and est.perfect

degrade significantly, even though est.self is slightly better. On

the other hand, est.equal remains robust toward the skewed

traffic loads by assuming the same end-to-end loss rates in all

leaf branches. Similar observations are made for other numbers
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Fig. 11. Experiment B.3: Performance of different inference approaches
under skewed traffic distribution, assuming that there are 10 leaf branches
and the ON-OFF model is used.

of leaf branches and for the QUEUE loss model.

B. The Large Tree Topology

We now evaluate the inference algorithms based on the

extensions for general topologies (Section V). Here, we con-

sider a large four-level tree topology as shown in Figure 12,

which mimics the four-level hierarchy as in a wireless data

architecture (see Figure 1 in Section I). Here, we assume that

the link bandwidth at the root node is 5Mb/s, and other links

have the same bandwidth 1Mb/s. All links have propagation

delay 5ms.

In Figure 12, the topology has four levels labeled as levels 1

to 4. The degrees of levels 1-4 are 1, 4, 4, and 10, respectively.

We focus on the ON-OFF loss model. Each TCP flow sends

traffic from the root to one of the leaf branches in level 4. In

each non-leaf level (i.e., levels 1 to 3), we select the leftmost

link (see the bold links in the figure) as our link of interest.

Our goal is to infer their loss rates using different inference

approaches. We obtain estimates over 30 simulation runs. For

each run, we increase the simulation time to 300s to obtain

more samples.

Experiment B.4 (Large topology). We first focus on the case

where packet losses only occur in the links of interest (i.e.,

the bold links in Figure 12), while other links do not have any

loss. For each link of interest, we generate an actual loss rate

of approximately 2-3%.

Figure 13 shows the boxplots of different inference ap-

proaches. In level 1, the error rates are consistent with the

two-level tree settings in Experiment B.1 (with an average

of around 5%). In levels 2 and 3, we see fewer packet
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Fig. 12. The four-level tree topology in network simulation (Section VII-B).
Our goal is to infer the loss rates of the bold links.

samples, so the error rates are higher than in level 1. In

general, both est.equal and est.self outperform est.perfect.

Such improvements are more obvious in level 2 and level 3. In

particular, we note that in level 3, the error of est.perfect almost

reaches 100%, and we find that it reports 0% loss estimates

in most cases.

We note that est.equal has a slightly higher error rate than

est.self in levels 1 and 2. However, it is interesting to note

that est.self has a very high error rate in level 3. One reason

is that we here only generate packet losses at the links of

interest, so different root-to-leaf paths will have different end-

to-end loss rates. Thus, the TCP flows along more lossy paths

will experience more timeouts in response to packet losses,

and different paths will have uneven traffic loads. This makes

est.self less robust, as shown in the two-level tree settings. On

the other hand, the error rates of est.equal are the smallest

(within 20% in most cases) among all approaches in level 3.

Figure 14 shows the results of another scenario in which we

generate losses at all links in the topology at approximately

2%. We note that both est.equal and est.self have similar error

rates, given that every link has a similar loss rate and all paths

have fairly balanced traffic loads. Both of them significantly

outperform est.perfect in levels 2 and 3.

Summary. We compare different inference approaches using

network simulation. Similar to our model simulations (Sec-

tion VI), our PL-based inference outperforms the inference

that assumes perfect correlation. Also, by using the same end-

to-end loss rates, our PL-based inference can be robust to

uneven traffic loads in different end-to-end paths. We also

show that our PL-based inference remains feasible in large-

scale topologies.

VIII. RELATED WORK

Loss rate inference is first addressed under multicast settings

[4], [9], [23], in which a source dispatches multicast probes,

and then multiple receivers measure the end-to-end loss rates

of such probes. Statistical techniques, such as maximum

likelihood estimation [9], [23] and temporal estimation [4],

are then applied to infer internal losses. The above methods

focus on a single tree, and [7] considers a multi-tree setting.

Given that IP multicast is not widely deployed, unicast-

based loss rate inference is proposed in [11], [12], [16], whose

idea is to send unicast probing packets to different receivers

to infer losses. The main assumption is that unicast probes

are loss correlated temporally on the common link that they

traverse. A more robust unicast-based inference approach is

later considered in [20], which exploits the variance of loss

rates of unicast probes.

The above methods are based on active probing, as they

generate dedicated probing packets purely for loss measure-

ments. However, active probing introduces additional traffic

overhead. Passive measurement techniques are thus proposed

[6], [21], [22] to infer losses through existing network traffic.

While [6], [21] focus on identifying lossy links, [22] is closely

related to us as they also use time correlation of existing TCP

traffic for loss rate inference. However, a key distinction is that

our work explicitly models time correlation in loss estimates,

while this is not considered in [22].

There are recent directions of research on loss inference,

such as practical implementation of inference tools (e.g., [15]).

Various studies also consider delay and topology inferences,

and the survey of these studies are found in [10].

IX. CONCLUSIONS

In network tomography, passive measurements introduce

no probing overhead and hence are more attractive than

active measurements. This paper presents a new approach of

inferring link loss rates that is adaptive to different forms of

time correlation when passive measurements are assumed. We

develop a loss model as a function of time correlation and

address its identifiability. We then apply the concept of profile

likelihood in a novel way for passive network tomography

to enable us to accurately infer link loss rates in complex

topologies. Using extensive model and network simulations,

we show that our approach provides high inference accuracy

under different network settings.

APPENDIX

A. Proof of Theorem 2

From (9), we have

p̂− p =
(M10 +M11)(M01 +M11)− pM11N

M11N
,

where the numerator can be reduced to

M10M01 + (N −M00)M11 − pM11N. (23)

Our proof is based on the law of large numbers. Recall that

the time difference between packet pairs here are assumed

constant. In the following, we use the same notation as in (4)

and (5), and ignore the time dependence since it is constant.

It is easy to show that

E(M10M01) = N(N − 1)r10r01, (24)

since the same packet pair cannot have different success states

(i.e., the events (Yu = 1, Yv = 0) and (Yu = 0, Yv = 1)
are contradictory) and hence only different pairs have a

contribution to the above. Similarly we can show

E(M00M11) = N(N − 1)r00r11, (25)
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Fig. 13. Experiment B.4: Performance of different inference approaches in a large tree topology, where losses occur only in the links of interest.
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Fig. 14. Experiment B.4: Performance of different inference approaches in a large tree topology, where losses occur in all links.

and it is obvious that E(M11N) = N2r11. Substitute the

right side of the above three equations, and by ignoring the

difference between N2 and N(N − 1) asymptotically, we can

express (23) (for large N ) as:

N2(r10r01 − r00r11 + (1− p)r11).

Therefore the asymptotic bias is

p̂− p =
(r10r01 − r00r11 + (1− p)r11)

r11
=

p2p1p2 − pr11
r11

,

where the second relation in the above can be easily derived

by (5). Hence the result of (10).
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