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Abstract—Parity-based RAID poses a design trade-off issue
for large-scale SSD storage systems: it improves reliability against
SSD failures through redundancy, yet its parity updates incur
extra I/Os and garbage collection operations, thereby degrading
the endurance and performance of SSDs. We propose EPLOG,
a storage layer that reduces parity traffic to SSDs, so as to
provide endurance, reliability, and performance guarantees for
SSD RAID arrays. EPLOG mitigates parity update overhead via
elastic parity logging, which redirects parity traffic to separate
log devices (to improve endurance and reliability) and eliminates
the need of pre-reading data in parity computations (to improve
performance). We design EPLOG as a user-level implementation
that is fully compatible with commodity hardware and general
erasure coding schemes. We evaluate EPLOG through reliability
analysis and trace-driven testbed experiments. Compared to the
Linux software RAID implementation, our experimental results
show that our EPLOG prototype reduces the total write traffic to
SSDs, reduces the number of garbage collection operations, and
increases the I/O throughput. In addition, EPLOG significantly
improves the I/O performance over the original parity logging
design, and incurs low metadata overhead.

I. INTRODUCTION

A. Background

Solid-state drives (SSDs) have seen wide adoption in
desktops and even large-scale data centers [32], [38], [44].
Today’s SSDs mainly build on NAND flash memory. An
SSD is composed of multiple flash chips organized in blocks,
each containing a fixed number (e.g., 64 to 128) of fixed-
size pages of size on the order of KB each (e.g., 2KB, 4KB,
or 8KB). Flash memory performs out-of-place writes: each
write programs new data in a clean page and marks the page
with old data as stale. Clean pages must be reset from stale
pages through erase operations performed in units of blocks.
To reclaim clean pages, SSDs implement garbage collection
(GC), which chooses blocks to erase and relocates any page
with data from a to-be-erased block to another block.

Despite the popularity, SSDs still face deployment issues,
in terms of reliability, endurance, and performance. First,
on the reliability side, bit errors are common in SSDs due
to read disturb, write disturb, and data retention [6], [12],
[13], [33], and the bit error rate of flash memory generally
increases with the number of program/erase (P/E) cycles [12],
[26]. Unfortunately, flash-level error correction codes (ECCs)
only provide limited protection against bit errors [26], [49],
especially in large-scale SSD storage systems. Second, on
the endurance side, SSDs have limited lifespans. Each flash
memory cell can only sustain a finite number of P/E cycles
before wearing out [2], [13], [19]. The sustainable number
of P/E cycles is typically 100K for a single-level cell (SLC)

and 10K for a multi-level cell (MLC), and further drops to
several hundred with a higher flash density [13]. Finally, on the
performance side, small random writes are known to degrade
the I/O performance of SSDs [7], [21], [34], since they not
only aggravate internal fragmentation and trigger more GC
operations (which also degrade the endurance of SSDs), but
also subvert internal parallelism across flash chips.

Parity-based RAID (Redundant Array of Inexpensive
Disks) [41] provides a natural option to enhance the reliability
of large-scale storage systems. Its idea is to divide data
into groups of fixed-size units called data chunks, and each
group of data chunks is encoded into redundant information
called parity chunks. Each group of data and parity chunks,
collectively called a stripe, provides fault tolerance against the
loss of data chunks, such that any subset of a sufficient number
of data/parity chunks of the same stripe can reconstruct the
original data chunks. Recent studies examine the deployment
of SSD RAID at the device level [3], [26], [28], [31], [39],
[40], so as to protect against SSD failures.

However, deploying parity-based RAID in SSD storage
systems requires special attention [18], [35]. In particular,
small random writes are even more harmful to parity-based
SSD RAID in both endurance and performance. To maintain
stripe consistency, each write to a data chunk triggers updates
to all parity chunks of the same stripe. Small writes in RAID
imply partial-stripe writes [8], which first read existing data
chunks, re-compute new parity chunks, and then write both
new data and parity chunks. In the context of SSD RAID,
parity updates not only incur extra I/Os (i.e., reads of existing
data chunks and writes of parity chunks), but also aggravate
GC overheads due to extra parity writes. Frequent parity
updates inevitably undermine both endurance and performance
of parity-based SSD RAID, especially when we need a higher
degree of fault tolerance (i.e., more parity updates).

Therefore, parity-based RAID poses a design trade-off is-
sue for large-scale SSD storage systems: it improves reliability
against SSD failures; on the other hand, its parity updates
degrade both endurance and performance. This motivates us
to explore a new SSD RAID design that mitigates parity
update overhead, so as to provide reliability, endurance, and
performance guarantees simultaneously.

B. Contributions

We propose EPLOG, an elastic parity logging design for
SSD RAID arrays. EPLOG builds on parity logging [47] to
redirect parity write traffic from SSDs to separate log devices.
By reducing parity writes to SSDs, EPLOG slows down the
flash wearing rate, and hence improves both reliability and



endurance. It further extends the original parity logging design
by allowing parity chunks to be computed based on the newly
written data chunks only, where the data chunks may span
within a partial stripe or across more than one stripe. Such an
“elastic” parity construction eliminates the need of pre-reading
old data for parity computation, so as to improve performance.
To summarize, this paper makes the following contributions:

• We design and implement EPLOG as a user-level
block device1 that manages an SSD RAID array.
Specifically, EPLOG uses hard-disk drives (HDDs)
to temporarily log parity information, and regularly
commits the latest parity updates to SSDs to mitigate
the performance overhead due to HDDs. We show
that EPLOG enhances existing flash-aware SSD RAID
(see Section VI) in different ways: (i) EPLOG is
fully compatible with commodity configurations and
does not rely on high-cost components such as non-
volatile RAM (NVRAM); and (ii) EPLOG can readily
support general erasure coding schemes for high fault
tolerance.

• We conduct mathematical analysis on the system reli-
ability in terms of mean-time-to-data-loss (MTTDL).
We show that EPLOG improves the system reliability
over the conventional RAID design when SSDs and
HDDs have comparable failure rates [48].

• We conduct extensive trace-driven testbed experi-
ments, and demonstrate the endurance and perfor-
mance gains of EPLOG in mitigating parity update
overheads. We compare EPLOG with the Linux soft-
ware RAID implementation based on mdadm [37],
which is commonly used for managing software RAID
across multiple devices. For example, in some settings,
EPLOG reduces the total write traffic to SSDs by
45.6-54.9%, reduces the number of GC requests by
77.1-97.6%, and increases the I/O throughput by 30.1-
119.2% even though it uses HDDs for parity logging.
Finally, EPLOG shows higher throughput than the
original parity logging design, and incurs low over-
head in metadata management.

The rest of the paper proceeds as follows. In Section II,
we state our design goals and motivate our new elastic parity
logging design. In Section III, we describe the design and
implementation details of EPLOG. In Section IV, we analyze
the system reliability of EPLOG. In Section V, we present
evaluation results on our EPLOG prototype through trace-
driven testbed experiments. In Section VI, we review related
work, and finally in Section VII, we conclude the paper.

II. OVERVIEW

In this section, we state the design goals of EPLOG. We
also motivate how EPLOG mitigates parity update overhead
through elastic parity logging.

A. Goals

EPLOG aims for four design goals.

1Here, a block refers to the read/write unit at the system level, and should
not be confused with an SSD block at the flash level.

• General reliability: EPLOG provides fault tolerance
against SSD failures. In particular, it can tolerate
a general number of SSD failures through erasure
coding. This differs from many existing SSD RAID
designs that are specific for RAID-5 (see Section VI).

• High endurance: Since parity updates introduce extra
writes to SSDs, EPLOG aims to reduce the parity traf-
fic caused by small (or partial-stripe) writes to SSDs,
thereby improving the endurance of SSD RAID.

• High performance: EPLOG eliminates the extra
I/Os due to parity updates, thereby maintaining high
read/write performance.

• Low-cost deployment: EPLOG is deployable using
commodity hardware, and does not assume high-
end components such as NVRAM as in SSD RAID
designs (e.g., [10], [15], [26]).

EPLOG targets workloads that are dominated by small
random writes, leading to frequent partial-stripe writes to
RAID. Examples of such workloads include those in database
applications [17], [27] and enterprise servers [20]. Note that
real-world workloads often exhibit high locality both spatially
and temporally [34], [43], [46], such that recently updated
chunks and their nearby chunks tend to be updated more
frequently. It is thus possible to exploit caching to batch-
process chunks in memory to boost both endurance and
performance (by reducing write traffic to SSDs). On the other
hand, modern storage systems also tend to force synchronous
writes through fsync/sync operations [14], which make
small random writes inevitable. Thus, our baseline design
should address synchronous small random writes, but allows
an optional caching feature for potential performance gains.

B. Elastic Parity Logging

Parity logging [47] has been a well-studied solution in
traditional RAID to mitigate the parity update overhead. We
first review the design of parity logging, and then motivate
how we extend its design in the context of SSD RAID.

We first demonstrate how parity logging can improve
endurance of an SSD RAID array by limiting parity traffic to
SSDs. Our idea is to add separate log devices to keep track of
parity information that we refer to as log chunks. To illustrate,
Figure 1 shows an SSD RAID-5 array with three SSDs for
data and one SSD for parity (i.e., the array can tolerate single
SSD failure). In addition, we have one log device for storing
log chunks. Suppose that a stream of write requests is issued
to the array. The first two write requests, respectively with data
chunks {A0, B0, C0} and {A1, B1, C1}, constitute two stripes.
Also, the following write request updates data chunks B0,
C0, and A1 to B0’, C0’, and A1’, respectively. Figure 1(a)
illustrates how the original parity logging works. It updates
data chunks in-place at the system level above the SSDs (note
that an SSD adopts out-of-place updates at the flash level as
described in Section I-A). It computes a log chunk by XOR-
ing the old and new data chunks on a per-stripe basis. It then
appends all log chunks to the log device.

The original parity logging limits parity traffic to SSDs,
thereby slowing down their wearing rates. Nevertheless, we



Incoming requests:
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Log Device
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(b) Elastic parity logging

Fig. 1: Illustration of parity logging schemes in SSD RAID-5.

identify two constraints of this design. First, it needs to pre-
read old data to compute each log chunk, and hence incurs
extra read requests. Second, the log chunks are computed on a
per-stripe basis. This generates additional log chunks if a write
request spans across stripes.

We build on the original parity logging and relax its con-
straints, and propose a new parity update scheme called elastic
parity logging. Figure 1(b) illustrates its idea. Specifically,
when the write request updates data chunks B0, C0, and A1

to B0’, C0’, and A1’, respectively, we perform out-of-place
updates at the system level, such that we directly write the new
data chunks to the corresponding SSDs without overwriting the
old data chunks. In other words, both the old and new versions
of each data chunk are kept and accessible at the system level.
In addition, we compute a log chunk by XOR-ing only the
new data chunks to form B0’+C0’+A1’, and append it to
the log device. Compared to the original parity logging, we
now store only one log chunk instead of two. Note that the old
versions of data chunks are needed to preserve fault tolerance.
For example, if data chunk A0 is lost, we can recover it from
B0, C0, and P0, although both B0 and C0 are old versions.

As opposed to the original parity logging, elastic parity
logging does not need to pre-read old data chunks. It also
relaxes the constraint that the log chunks must be computed
on a per-stripe basis; instead, a log chunk can be computed
from the data chunks within part of a stripe or across more
than one stripe (and hence we call the parity logging scheme
“elastic”).

III. DESIGN AND IMPLEMENTATION

EPLOG is designed as a user-level block device. It runs on
top of an SSD RAID array composed of multiple SSDs, and
additionally maintains separate log devices for elastic parity

Commit
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Fig. 2: EPLOG architecture.

logging (see Section II-B). In this work, we choose HDDs
as log devices to achieve low-cost deployment. On the other
hand, designing EPLOG faces different challenges, especially
when we use HDDs as log devices. In this section, we address
the following design and implementation issues.

• How do we construct log chunks for a write request,
such that we maintain reliability as in conventional
RAID without using parity logging?

• How do we minimize the access overheads for log
chunks in log devices, so as to maintain high perfor-
mance?

• How do we further improve endurance and perfor-
mance of EPLOG via caching, which is feasible for
some applications (see Section II-A)?

• How do we manage metadata in a persistent manner
in our EPLOG implementation?

A. Architecture

EPLOG stores data chunks in a set of SSDs (which we
collectively call the main array) and log chunks in a set
of HDD-based log devices. Accessing log chunks in HDD-
based log devices is expensive. Thus, EPLOG issues only
sequential writes of log chunks to log devices. In addition,
it regularly commits the latest parity updates in the main array
in the background, such that the main array stores the latest
versions of data chunks and the corresponding parity chunks.
We call the whole operation parity commit. For example,
referring to Figure 1(b), we update P0 and P1 to reflect the
sets of latest data chunks {A0, B0’, C0’} and {A1’, B1,
C1}, respectively. Thus, accessing data in degraded mode (i.e.,
when an SSD fails) can operate in the main array only (as in
conventional SSD RAID without parity logging), and hence
preserve performance.

EPLOG realizes the above design through a modularized
architecture, as shown in Figure 2. The log module schedules



write requests and works with the coding module for parity
computations. The data chunks are issued to the main array
through the SSD write module, while the log chunks are issued
to the log devices through the log write module. To tolerate
the same number of device failures, we require the number
of log devices in EPLOG be equal to the number of tolerable
device failures in the main array. For example, if the main array
assumes RAID-6 (which can tolerate two device failures), two
log devices are needed. We elaborate how EPLOG constructs
log chunks in Section III-B.

The commit module regularly performs parity commit to
ensure that the data and parity chunks in the main array reflect
the latest updates. We elaborate the parity commit operation
in Section III-C.

To further reduce parity traffic, we introduce two types of
buffers in the log module, namely a stripe buffer and multiple
device buffers, to batch-process write requests in memory. The
use of buffers is optional, and does not affect the correctness of
our design. We elaborate the caching design in Section III-D.

We carefully implement EPLOG to optimize its per-
formance. In particular, our implementation ensures persis-
tent metadata management. We elaborate the details in Sec-
tion III-E.

Limitations: Before presenting the design of EPLOG, we
discuss its design limitations. First, EPLOG requires additional
storage footprints to keep log chunks, although we employ
HDDs as log devices to limit the extra system cost. Second,
EPLOG keeps multiple versions of data chunks during updates
before parity commit, so we need to provision extra space
in SSDs. Third, if a failure happens before parity commit,
recovery performance may hurt due to the need of accessing
log chunks, especially when we use HDDs as log devices.
Finally, parity commit may create additional performance
overhead. Our design rationale is that if we perform parity
commit regularly on every fixed number of write requests in
batch, we can limit parity commit overhead and the drawbacks
as described above. Caching also helps to reduce the writes
to SSDs and the amount of log chunks, so it can further
mitigate parity commit overheads. We study these issues in
our experiments (see Section V).

B. Write Processing

We first describe how EPLOG processes a single write
request and constructs log chunks; in Section III-D, we extend
the design for processing multiple write requests via caching.
Note that read requests under no device failures are processed
in the same way as in traditional RAID. Thus, we omit the
read details.

EPLOG distinguishes (in the log module) write requests
into two types. If the incoming write request is a new write
and spans a full stripe in the main array, we directly write the
data and parity chunks to the main array as in conventional
RAID; otherwise, if the request is a new partial-stripe write
or an update, then we write data chunks to the main array
and the computed parity logs (i.e., log chunks) to log devices.
The rationale is that both types of writes do not pre-read data
chunks from the main array for parity computation. By issuing

new full-stripe writes directly to the main array, we save the
subsequent parity commit overhead.

Recall from Section III-A that EPLOG first stores data
chunks in the main array and log chunks in log devices; after
parity commit, it stores both data and parity chunks in the
main array. For ease of presentation, we call a stripe that has
data chunks stored in the main array and log chunks stored in
the log devices a log stripe, and call a stripe that has both data
and parity chunks stored in the main array a data stripe.

Stripe generation: We first explain how we generate a data
stripe, followed by how we generate a log stripe. For a data
stripe, EPLOG applies (in the coding module) k-of-n erasure
coding (where k < n) to encode the k data chunks into
additional n− k parity chunks, such that any k out of n data
and parity chunks can reconstruct the data chunks in the data
stripe. We configure n to be the number of SSDs in the main
array, and configure k such that n− k is the tolerable number
of device failures. For example, if we construct an SSD RAID-
5 array, we set n− k = 1; for an SSD RAID-6 array, we set
n− k = 2.

To generate a log stripe, we first require that the data
chunks of a log stripe belong to different SSDs. To achieve
this, we first identify the destined SSD for each data chunk
included in a write request, and then group the data chunks
written to different SSDs to form a log stripe. In particular,
for a new partial-stripe write, since the data chunks can be
written to any SSD, we combine them into a single log stripe
and distribute them across SSDs. For an update request, since
the destination of each data chunk included in the request is
given, if multiple data chunks belong to the same SSD, then we
separate them into different log stripes to ensure that each log
stripe only contain at most one data chunk belonging to each
SSD. We still use the example in Figure 1(b) to illustrate the
idea. Since the data chunks B0, C0, and A1 belong to different
SSDs, we can combine the newly updated data chunks B0’,
C0’, and A1’ into a single log stripe. We generate only one
log chunk B0’+C0’+A1’ and write it to the log device.

Suppose now that a log stripe contains k′ data chunks to
be stored in k′ different SSDs, where k′ is less than or equal
to the number of SSDs in the main array. EPLOG then applies
(in the coding module) k′-of-n′ erasure coding to generate
additional n′ − k′ log chunks, such that n′ − k′ = n − k,
or equivalently, n′ − k′ equals the tolerable number of device
failures. For example, referring to the example in Figure 1, we
can group k′ = 3 data chunks {B0’, C0’, A1’} into a log
stripe. We then set n′ = 4 and generate n′−k′ = 1 log chunk.

EPLOG can tolerate the same number of device failures
(including SSD failures and log device failures) as we deploy
conventional RAID directly in the main array. Note that data
chunks in EPLOG are now protected by either the parity
chunks in the main array or the log chunks in the log devices.
Specifically, if a failed data chunk is not updated since the last
parity commit, then it can be recovered from other data and
parity chunks of the same data stripe in the main array. On the
other hand, if a failed data chunk is updated before the next
parity commit, then it can be recovered by the log chunks in
log devices and other data chunks of the same log stripe. The
same argument applies when either a parity chunk or a log



chunk fails. In Section IV, we conduct mathematical analysis
to investigate how EPLOG affects the system reliability.

Chunk writes: EPLOG writes both data and parity chunks of
a data stripe, as well as the data chunks of a log stripe, to
the main array via the SSD write module, while writing the
log chunks of a log stripe to the log devices via the log write
module. The two modules use different write policies. First,
the SSD write module uses the no-overwrite policy. When
it updates a data chunk in an SSD, it writes the new data
chunk to a new logical address instead of overwriting the old
one, and maintains a pointer to refer to the old data chunk.
This makes both the old and new data chunks accessible after
the update request. Since the parity chunks in the main array
are not yet updated, keeping both the old and new versions
of data chunks is necessary to preserve fault tolerance (see
Section II-B for example). When the parity chunks in the main
array are updated after parity commit, the old versions of the
data chunks can be removed. On the other hand, the log write
module uses the append-only policy, so as to ensure sequential
writes of log chunks to the log devices and hence preserve
performance.

C. Parity Commit

EPLOG regularly performs the parity commit operation to
ensure all data and parity chunks of data stripes are based
on the latest updates. It can trigger parity commit in one of
the following scenarios: (i) the system is idle, (ii) there is no
available space in any SSD and log device, (iii) an upper-layer
application issues a parity commit, and (iv) after every fixed
number of write requests.

In each parity commit operation, we identify the data
stripes, via the metadata structure (see Section III-E), whose
data chunks have been updated since the last parity commit.
For each identified data stripe, we read the latest data chunks
from SSDs, compute the corresponding parity chunks, and
write back the updated parity chunks to SSDs in the main
array. Finally, we update the metadata and release the space
occupied by both the obsolete data chunks from the main array
and log chunks from the log devices.

We emphasize that parity commit does not need to access
any log chunks in the log devices in normal mode when there
is no SSD failure. The reason is that all up-to-date data chunks,
which will be used for computing parities, are kept in SSDs.
This guarantees that the log devices can be always accessed in
a sequential order when writing log chunks with the append-
only policy (see Section III-B). In case of SSD failures, we
scan and commit log chunks in batches, in which the batch
size presents a trade-off between memory usage and parity
commit overhead. We point out that parity commit introduces
extra writes to the main array, yet we show that the write
traffic remains limited compared to conventional RAID (see
Section V). The reason is that we only need to perform parity
commit on the latest data chunks in the main array to construct
the corresponding parity chunks, while a data chunk may have
received multiple updates before parity commit.

We may explore the use of TRIM to explicitly remove the
obsolete data chunks during parity commit and further remove
GC overhead. On the other hand, the use of TRIM can be
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Fig. 3: Illustration of buffers in EPLOG.

tricky and require special handling in SSD RAID arrays [18].
We pose the use of TRIM as future work.

D. Caching

To further reduce parity traffic, EPLOG supports an op-
tional caching feature to batch-process multiple write requests
in memory. It includes two types of buffers in the log module:
a stripe buffer and multiple device buffers, which process new
writes and updates, respectively.

The stripe buffer is used to cache new writes, which are
directed to the main array, so as to increase the chance of full-
stripe writes when generating data stripes. We set the size of
the stripe buffer to be multiples of data stripes. Specifically,
when a new write request arrives, the data chunks contained in
the write request are appended to the stripe buffer. If the stripe
buffer is full, all cached data chunks are grouped together to
generate full data stripes and written to the main array in batch.

In addition, there are multiple device buffers, each of which
is associated with an SSD in the main array. Each device
buffer is used to cache update requests. The rationale is that
real-world workloads often exhibit high locality both spatially
and temporally [34], [43], [46], such that recently updated
chunks and their nearby chunks tend to be updated more
frequently. Thus, the device buffers can potentially absorb
multiple updates for the same data chunk, thereby reducing
both data chunks and log chunks written to the main array
and the log devices, respectively. Specifically, when an update
request arrives, each of the data chunks in the request is cached
in the corresponding device buffer, according to the destined
SSDs of these data chunks. If the same data chunk is found in
the device buffer, it is directly updated in place. When one of
the device buffers is full, we extract one data chunk from the
head of each non-empty device buffer to form a log stripe.

We further illustrate via an example how the buffers work
in EPLOG, as shown in Figure 3. We consider a stream of
write requests issued to an SSD RAID-5 array. Specifically,
when the new write request {A4, B4} arrives, we add the data
chunks to the stripe buffer. For the subsequent update requests
{B0’, C0’, A1’} and {C1’, A2’}, we add them to the device



buffers. We add the data chunks A1’ and A2’ to the device
buffer of SSD0, since both their original data chunks A1 and
A2 belong to SSD0. Similarly, we add the data chunks B0’,
C0’, C1’ to the device buffers of SSD1, SSD2, and SSD3,
respectively. Suppose that the size of each device buffer is
configured to hold at most two data chunks. Now the device
buffer of SSD0 becomes full. Thus, we construct a log stripe
using the set of data chunks {A1’, B0’, C0’, C1’}. Finally,
we write the new data chunks A1’, B0’, C0’, and C1’ to the
main array by using the no-overwrite policy, and append the
generated log chunks to the log devices as shown in Figure 3.

E. Implementation Details

We build EPLOG as a user-level block device that is
compatible with commodity hardware configurations. We im-
plement the EPLOG prototype in C++ on Linux. It exports
the basic block device interface, which operates on logical
addresses on underlying physical devices, as a client API to
allow upper-layer applications to access the storage devices.
For parity computations, EPLOG implements erasure coding
based on Cauchy Reed-Solomon codes [4] using the Jerasure
2.0 library [42].

EPLOG is designed to provide persistent metadata manage-
ment, and it supports two metadata checkpoint operations: full
checkpoint and incremental checkpoint. The full checkpoint
flushes all metadata, while the incremental checkpoint flushes
any modified metadata since the last full/incremental check-
point. Both checkpoint operations can be triggered regularly
in the background, or by the upper-layer applications.

EPLOG maintains a flat namespace and comprises two
types of metadata: data stripe metadata and log stripe meta-
data. The data stripe metadata describes the mapping of each
data stripe to data chunks, including both the latest and stale
ones. It includes the stripe ID and chunk locations. The log
stripe metadata describes the mapping of each log stripe to
data chunks, referenced by data stripes, and log chunks on the
log devices. It contains stripe ID, number of chunks, and a list
of chunk locations.

EPLOG provides persistent metadata storage on SSDs. It
creates a separate metadata volume from the main array to
keep the metadata checkpoints. The metadata volume com-
prises three areas: super block area, full checkpoint area, and
incremental checkpoint area. The superblock area is located
at the front of the metadata partition, and keeps the essential
information of the metadata layout. The full checkpoint area
follows the super block area, and keeps the full checkpoints.
It has two sub-areas [24], which hold the latest and previous
full checkpoints. The intuition is to write the full checkpoints
alternately to one of the sub-areas, so as to ensure that
there always exists a consistent copy of the full checkpoint
and hence survive any unexpected system failure during the
checkpoint operation. The incremental checkpoint area follows
the full checkpoint area. It stores all incremental checkpoints
in append-only mode.

To create the metadata volume, we first create two parti-
tions in each SSD in the main array, one for data and another
for metadata. We then mount a RAID-10 volume on the
metadata partitions of all SSDs using mdadm [37], and EPLOG

directly accesses the metadata on the volume. In addition,

EPLOG directly accesses the data partitions of SSDs and the
log devices as raw block devices in JBOD mode. To maintain
I/O performance, EPLOG uses multi-threading to read/write
data via the devices in parallel.

IV. RELIABILITY ANALYSIS

In this section, we analyze the system reliability of EPLOG

and compare it with that of conventional RAID (i.e., we deploy
RAID directly in the main array without using any log device).
At first glance, the impact of EPLOG on the system reliability
is debatable. EPLOG reduces write traffic to the main array via
elastic parity logging. This slows down the wearing of flash
memory, and potentially decreases the failure rates of SSDs as
well [12], [26]. On the other hand, EPLOG adds log devices,
while still tolerating the same number of device failures. This
degrades the system reliability.

We resolve this debate as follows. Specifically, we measure
the system reliability of EPLOG and conventional RAID in
terms of mean-time-to-data-loss (MTTDL) (i.e., the expected
time until data loss happens) through a simplified setting.
Suppose that a storage system (either EPLOG or conventional
RAID) reaches a certain system state after processing some
workload. We fix the current system state, which implies that
the corresponding error and recovery rates are fixed. Then
under the same system state, we analyze how much longer the
storage system continues to survive without any data loss based
on MTTDL. Note that our simplified reliability analysis does
not consider the time-varying bit error rate of flash memory
[29]. Also, the correctness of MTTDL remains a concern [11].
Nevertheless, our analysis only serves to provide reliability
comparisons between EPLOG and conventional RAID, and by
no means do we use the absolute values to provide accurate
quantifications.

A. MTTDL Computation

We first define the notations. Let n be the number of SSDs
in the main array. Given a fixed system state, let λs be the
failure rate of an SSD in EPLOG, and λ′

s
be the failure rate

of an SSD in conventional RAID. Let µs be recovery rate of
an SSD. Let λh and µh be the failure rate and recovery rate
of an HDD for EPLOG, respectively.

Note that both λs and λ′

s
generally increase with the

number of P/E cycles performed, which depends on the amount
of write traffic. For simplicity, we assume that the failure rate
of an SSD increases proportionally with the amount of writes
issued2.

λs = αλ′

s
, (1)

where α denotes the ratio of the amount of writes issued
to the main array in EPLOG to that in conventional RAID.
Note that EPLOG keeps α < 1 by reducing parity writes to
SSDs. In practice, we can estimate α through measurements.
For example, from our experiments (see Section V), we can
estimate that α = 0.5 according to the results in Figure 7.

2The recent study [32] shows that the failure rate of an SSD does not
monotonically increase as flash memory wears. However, as an SSD enters
the wear-out period, which accounts for the majority of the SSD lifetime, the
increasing trend actually holds and supports our assumption.



Fig. 4: State transition diagram of the Markov model for
EPLOG’s RAID-5.

EPLOG’s RAID-5: We first consider EPLOG’s RAID-5
design, which tolerates a single device failure. Recall that
EPLOG adds one additional HDD as the log device. We now
compute its MTTDL through a Markov model. Specifically,
suppose that the storage system has a total of i device failures,
j of which are SSDs. When i ≥ 2, the storage system has a
data loss, so we can focus on 0 ≤ j ≤ i ≤ 2. Let (i, j) denote
a state. Thus, the storage system can be at one of the following
states: S0 = (0, 0), S1 = (1, 0), S2 = (1, 1), and S3 = (2, ∗)
(note that S3 can be (2, 1) or (2, 2), both of which imply a
data loss).

Figure 4 shows the state transition diagram of the Markov
model for EPLOG’s RAID-5. Take S2 = (1, 1) as an example,
in which one SSD fails. If the failed SSD is recovered, S2

transits to S0, where the transition rate is µs. If one more
device (either an SSD or the log device) fails, S2 transits to
S3, where the total transition rate is (n− 1)λs + λh.

We denote the system state at time t as πt =
(π0(t), π1(t), π2(t), π3(t)), where πi(t) denotes the probability
that EPLOG is at state Si at time t. Let π(0) = (1, 0, 0, 0),
meaning that there is no device failure initially. Based on the
Kolmogorov’s forward equation, we have

π′(t) = π(t)Q, (2)

where Q denotes the transition rate matrix given by:

Q=







−(nλs+λh) λh nλs 0
µh −(µh+nλs) 0 nλs

µs 0 −(µs+(n−1)λs+λh) (n−1)λs+λh

0 0 0 0






.

(3)

We can now derive the closed-form MTTDL of EPLOG’s
RAID-5 through standard approaches (e.g., by a Laplace
transform) as follows:

MTTDL=

[

(2n−1)λs+µs

]

+
[

2(λh+µh)+
(λh+µh)(λh−λs+µs)

nλs

]

[

n(n−1)λ2
s

]

+
[

nλs(2λh+µh)+(λh+µh)(λh−λs)+λhµs

] .

(4)

EPLOG’s RAID-6: We now consider EPLOG’s RAID-6 de-
sign, which tolerates two device failures. Recall that EPLOG

introduces two additional HDDs as log devices. We follow the
same approach as in the RAID-5 case.

Figure 5 shows the state transition diagram of the Markov
model for EPLOG’s RAID-6. Let (i, j) denote a state as
defined in the RAID-5 case. There are a total of six states,
where 0 ≤ j ≤ i ≤ 3. In particular, the state S6 = (3, ∗)
represents a data loss. One subtlety is that for the state S4,
which has one SSD failure and one HDD failure, we select a

Fig. 5: State transition diagram of the Markov model for
EPLOG’s RAID-6.

failed device for recovery via random tie-breaking. In this case,
S4 transits to S1 and S2 with rates 1

2
µs and 1

2
µh, respectively.

We do not present the closed-form solution for the MTTDL
of EPLOG’s RAID-6 due to its complexity, but we can
compute the MTTDL through numerical methods. We can
further extend our analysis for the tolerance against a general
number of device failures, and obtain the MTTDL through
numerical methods.

Conventional RAID: The derivations of the MTTDLs for
conventional RAID-5 and RAID-6 are well-known in the
literature (e.g., [8], [9]). For completeness, we write down the
results, in terms of λ′

s
(see Equation (1)) and µs.

MTTDL for RAID-5 =
µs + (2n− 1)λ′

s

n(n− 1)(λ′
s)2

, (5)

MTTDL for RAID-6 =
µ2
s+2(n−1)λ′

sµs+(3n
2
−6n+2)(λ′

s)
2

n(n− 1)(n− 2)(λ′
s)3

. (6)

B. Results

To better illustrate whether EPLOG really improves the
system reliability, we now compare the MTTDL of EPLOG

and that of conventional RAID via numerical analysis. We first
configure the parameters for conventional RAID. Suppose that
the main array contains n = 10 SSDs. For the failure rate λ′

s
,

we note that it is challenging to maintain a minimum SSD
lifetime of 3-5 years in a write-intensive environment [25], we
set the average failure rate as 1/λ′

s
= 4 years (i.e., λ′

s
= 0.25).

For the recovery rate µs, suppose that the capacity of each
SSD is around 400GB, and the I/O throughput for sequential
writes is around 100MB/s, the average time to recover one
device (i.e., rewrite all data) as around 1/µs = 10−4 year
(i.e., µs = 104).

We now configure the parameters for EPLOG. We vary
the failure rate of an HDD λh from λ′

s
to 10λ′

s
, and still

set µh = 104. We set λs by considering three values of α,
including 0.3, 0.5, and 0.7. Note that α = 0.5 can be justified
from our trace-driven evaluations (see Figure 7).

Figure 6 shows the MTTDL results versus the ratio λh/λ
′

s

for RAID-5 and RAID-6 (note that the MTTDL for conven-
tional RAID is fixed since no HDD is used). It is reported
that SSDs and HDDs have comparable failure rates [48] (i.e.,
λh ≈ λ′

s
). In this case, EPLOG achieves higher system

reliability. For example, if λh = λ′

s
and α = 0.5, EPLOG
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Fig. 6: Reliability comparison between EPLOG and conven-
tional RAID.

achieves 2.8× MTTDL compared to conventional RAID for
both RAID-5 and RAID-6. The system reliability of EPLOG

heavily depends on the failure rate of the log devices. As
the failure rate λh increases, the system reliability of EPLOG

drops dramatically, and the drop rate is even more significant
when more HDDs are used (e.g., in RAID-6). In particular,
when α = 0.5, EPLOG maintains higher system reliability
provided that λh is less than 6λ′

s
and 2λ′

s
for RAID-5 and

RAID-6, respectively.

V. EXPERIMENTS

We evaluate EPLOG via trace-driven testbed experiments,
and compare its endurance and performance with those of the
original parity logging and conventional RAID implemented
by Linux software RAID based on mdadm. To summarize,
our experiments have the following key findings: (i) EPLOG

improves the endurance of SSD RAID by reducing both the
write traffic to SSDs and the number of GC requests, (ii)
EPLOG achieves potential gains with small-sized caching,
(iii) EPLOG has limited parity commit overhead, (iv) EPLOG

achieves higher I/O throughput than baseline approaches, and
(v) EPLOG has limited metadata management overhead.

A. Setup

Testbed: We conduct our experiments on a machine running
Linux Ubuntu 14.04 LTS with kernel 3.13. The machine has
a quad-core 3.4GHz Intel Xeon E3-1240v2, 32GB RAM,
multiple Plextor M5 Pro 128GB SSDs as the main array, and
multiple Seagate ST1000DM003 7200RPM 1TB SATA HDDs
as the log devices. It interconnects all SSDs and HDDs via an
LSI SAS 9201-16i host bus adapter. Also, we attach an extra
SSD to the motherboard as the OS drive.

We compare EPLOG with two baseline parity update
schemes. The first one is the Linux software RAID imple-
mentation based on mdadm (denoted by MD) [37], which
implements conventional RAID and writes parity traffic to
SSDs directly. The second one is the original parity logging
(denoted by PL) [47], which performs parity updates at the
stripe level (see Figure 1(a)). We implement PL based on our
EPLOG prototype (see Section III-E) for fair comparisons.

We focus on RAID-5 and RAID-6, which tolerate one and
two device failures, respectively. We consider four settings:
(4+1)-RAID-5 (i.e., five SSDs), (6+1)-RAID-5 (i.e., seven
SSDs), (4+2)-RAID-6 (i.e., six SSDs), and (6+2)-RAID-6 (i.e.,

No. of Avg. write Random WSS

writes size (KB) write (%) (GB)

FIN 4,110,563 7.19 76.17 3.67

WEB 1,431,628 12.50 77.62 7.26

USR 1,363,855 10.05 76.19 2.44

MDS 1,069,421 7.22 82.99 3.09

TABLE I: Trace statistics: total number of writes, average write
size, ratio of random writes, and working set size.

eight SSDs). For PL and EPLOG, we allocate one and two
additional HDDs as log devices for RAID-5 and RAID-6,
respectively. In all schemes, we set the chunk size as 4KB.
We use the O_DIRECT mode to bypass the internal cache.
For PL and EPLOG, we disable caching, parity commit, and
metadata checkpointing (i.e., the metadata structure remains in
memory), except when we evaluate these features.

Traces: We consider four real-world I/O traces:

• FIN: It is an I/O trace collected by the Storage
Performance Council [1]. The trace captures the work-
loads of a financial OLTP application over a 12-
hour period. We choose the write-dominant trace file
Financial1.spc out of the two available traces.

• WEB, USR, and MDS: They are three I/O traces col-
lected by Microsoft Research Cambridge [36]. They
describe the workloads of enterprise servers of three
volumes, namely web0, usr0, and mds0, respec-
tively, over a one-week period.

Note that each of the original traces spans a very large
address space, yet only a small proportion of the addresses are
actually accessed. To fit the traces into our testbed, which has
a limited storage capacity, we compact each trace by skipping
the addresses that are not accessed. Specifically, we divide the
whole logical address space of each trace into 1MB segments.
We then skip any segment that is not accessed, and also shift
the offsets of the requests in the following accessed segments
accordingly. We keep the same request order, so as to preserve
workload locality.

Before replaying each trace, we first sequentially write to
all remaining segments (after our compaction) to fully occupy
the working set. Each write request in a trace will be treated
as an update. In addition, we round up the size of each write
request to the nearest multiple of the chunk size. By making
all write requests as updates, we can stress-test the impact of
parity updates.

Table I summarizes the write statistics of the four traces,
after we round up the sizes of all write requests. It shows a
few key properties. First, their average write sizes are generally
small (7-13KB). Second, if we examine the access pattern,
we see that all traces have a high proportion of random write
requests. Here, by a random write request, we mean that a write
request whose starting offset differs from the ending offset of
the last write request by at least 64KB. Finally, if we examine
the working set size (i.e., the size of unique data accessed
throughout the trace duration), all traces have small working
set sizes.
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Fig. 7: Experiment 1: Total size of write traffic to SSDs.

B. Results

Experiment 1 (Write traffic to SSDs): We first show the
effectiveness of EPLOG in reducing write traffic to SSDs due
to parity updates, given that our traces are dominated by small
random writes. Figure 7(a) shows the total size of write traffic
to SSDs across different traces under (6+2)-RAID-6. Overall,
EPLOG achieves a 45.6-54.9% reduction in write size when
compared to MD. Both PL and EPLOG have the same results,
since they write the same amount of data updates to SSDs (see
Figure 1), while redirecting parity traffic to log devices. We
emphasize that even though EPLOG has the same write traffic
to SSDs with PL, it achieves much higher I/O throughput
than PL due to elastic parity logging (see Experiment 5).
Figure 7(b) shows the reduction of write traffic to SSDs across
four different RAID settings under the FIN trace (which has
the most write requests among all traces). EPLOG reduces
38.6-39.9% and 49.3-57.0% of write traffic over MD for RAID-
5 and RAID-6, respectively. Note that RAID-6 shows more
significant reduction of write traffic than RAID-5.

Experiment 2 (GC overhead): We study the endurance in
terms of GC overhead, which we measure by the average
number of GC requests to each SSD. Since SSD controllers
do not expose GC information, we resort to trace-driven
simulations using Microsoft’s SSD simulator [2] that builds on
Disksim [5]. For the simulator, we configure each SSD with
20GB raw capacity and 16,384 blocks with 64 4KB pages each
(i.e., 256KB per block). Also, based on the default simulator
settings, each SSD over-provisions 15% of blocks for GC (i.e.,
the effective capacity of each SSD is 17GB) and triggers GC
when the number of clean blocks drops below 5%. We use
the default greedy algorithm in the simulator and disable the
wear-leveling block migration.

We replay the workloads and use the blktrace utility
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Fig. 8: Experiment 2: GC overhead, measured in the average
number of GC requests to each SSD. Note that EPLOG triggers
no GC under MDS and (6+2)-RAID-6, since it reduces the
amount of writes to each SSD and does not cause the number
of clean blocks to drop below the threshold.

to capture block-level I/O requests for each SSD in the
background. Then we feed the block I/O requests into the
simulator. We measure the total number of GC requests per
SSD, and take an average over the results across all SSDs in
the array.

Figure 8 plots the total number of GC requests per SSD,
averaged over all SSDs. Figure 8(a) shows the results across
different traces under (6+2)-RAID-6. EPLOG significantly
reduces the number of GC requests over MD, for example, by
77.1% under the FIN trace. This implies EPLOG significantly
improves endurance. We also note that EPLOG reduces at least
8.1% of GC requests over PL in all traces. The reason is that
EPLOG updates data chunks by using the no-overwrite updat-
ing policy, which reserves part of the logical address space for
data updates. Thus, EPLOG introduces higher sequentiality for
writes to SSDs. Also, Figure 8(b) shows that EPLOG reduces
59.6-77.1% of GC requests over MD across different RAID
settings under the FIN trace.

Experiment 3 (Impact of caching): We now evaluate the
impact of caching of EPLOG. Since we focus on updates,
we do not consider the effect of the stripe buffer (which is
designed for new writes). Instead, we evaluate the impact of
the device buffers. We vary the size of device buffer of each
SSD from zero to 64 chunks. We measure both the total size
of write traffic to SSDs and the total size of log chunks in the
log devices.

Figure 9 shows the results for different traces under (6+2)-
RAID-6. From Figure 9(a), the total size of write traffic
to SSDs decreases as the device buffer size increases. For
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Fig. 9: Experiment 3: Impact of different device buffer sizes
under (6+2)-RAID-6.

example, when the device buffer size reaches 64 chunks (i.e.,
256KB per device), the write size drops by 53.3-58.4%. From
Figure 9(b), the total size of log chunks drops even more
significantly. For example, when the device buffer size reaches
64 chunks, the total size of log chunks decreases by 84.7-
91.1%. Note that the total cache size of EPLOG is very small.
For example, if we set the device buffer size per SSD as 64
chunks of size 4KB each, we only need 2MB. This implies that
a small-sized cache can effectively absorb the data updates, and
hence reduce both the write traffic to SSDs and the storage of
log chunks.

Experiment 4 (Parity commit overhead): Parity commit
introduces additional writes (see Section III-C). We study the
impact of parity commit. In particular, we consider three cases
of parity commit: (i) without any parity commit, (ii) commit
only at the end of the entire trace, and (iii) commit every
1,000 write requests. We also include the results of MD from
Experiment 1 for comparison.

Figure 10 shows the parity commit overhead for different
traces under (6+2)-RAID-6. Figure 10(a) first shows the total
size of write traffic to SSDs (as in Experiment 1). Compared
to the case without any parity commit, the write size increases
by up to 4.3% and 24.9% when we perform parity commit at
the end of a trace and every 1,000 write requests, respectively.
The write size with parity commit is still less than MD (e.g.,
by over 40% in some cases). Figure 10(b) plots the average
number of GC requests to each SSD (as in Experiment 2).
The number of GC requests of EPLOG is 74.8-97.1% and
67.8-88.2% less than that of MD when we perform parity
commit at the end of a trace and every 1,000 write requests,
respectively. The results show that the parity commit overhead
remains limited if we perform parity commit in groups of
writes.
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Fig. 10: Experiment 4: Total size of write traffic to SSDs and
GC overhead under different parity commit cases and (6+2)-
RAID-6 setting.

Experiment 5 (I/O performance): The previous experiments
examine the write size and number of GC requests. We now
examine the I/O throughput of EPLOG, measured as the
number of user-level requests issued to the SSDs divided by
the total time (in units of KIOPS); note that the total time also
includes the overheads of writes to log devices. We replay
each trace as fast as possible to obtain the maximum possible
performance.

Figure 11 shows the throughput results. Figure 11(a),
EPLOG outperforms MD by 30.1-119.2% and PL by 186.9-
305.5% across different traces under (6+2)-RAID-6. Fig-
ure 11(b), EPLOG outperforms MD by 119.2-197.3% and
PL by 295.7-366.1% across different RAID settings under
the FIN trace. Both MD and PL read data before updating
or logging parity on the update path. MD achieves higher
throughput than PL, as MD directly updates parities on SSDs,
while PL logs parity updates to HDD-based log devices for
endurance. EPLOG eliminates pre-reads of existing data in log
chunk computation, thereby increasing the I/O throughput. In
addition, EPLOG reduces the total size of log chunks by 8-15%
compared to PL (not shown in the figure) due to elastic parity
logging, and the reduction also leads to throughput gains.

Experiment 6 (Metadata management overheads): We now
evaluate the overheads of the metadata checkpoint operations
(see Section III-E). We consider the scenario where metadata
is generated after a large number of random writes. We use
IOzone [16] to first create continuous stripes covering a 8GB
area on SSD RAID using sequential writes, and then issue
uniform random updates of size 4KB each across all stripes.
We then measure the total size of write traffic to SSDs
under three cases: (i) full checkpoint after stripe creation, (ii)
incremental checkpoint after all stripe updates, and (iii) full
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Fig. 11: Experiment 5: I/O performance.

Setting EPLOG

(i) Stripe creation
w/o chkpt. (GB) 10.922

full chkpt. (GB) 10.961 (+0.36%)

(ii) Stripe update
w/o chkpt. (GB) 8.147

incr. chkpt. (GB) 8.294 (+1.81%)

(iii) Stripe update
w/o chkpt. (GB) 8.147

full chkpt. (GB) 8.331 (+2.25%)

TABLE II: Experiment 6: Total sizes of write traffic to SSDs
with/without metadata checkpoint operations.

checkpoint after all stripe updates. We evaluate the metadata
checkpoint overhead by comparing the cases with and without
checkpoint operations.

Table II shows the results. Note that stripe creation issues
new full-stripe writes, so EPLOG writes them to SSDs. The
total write size is around 11GB, including parity writes.
Later in stripe updates, EPLOG redirects parities to the log
devices, and the total write size drops to around 8GB. Overall,
the metadata checkpoint overhead in write size is at most
2.25%. The incremental checkpoint operation only writes dirty
metadata after updates, and its overhead is less than that of the
full checkpoint operation. The results show that EPLOG incurs
low overheads in metadata management.

VI. RELATED WORK

Researchers have proposed various techniques for enhanc-
ing the performance and endurance of a single SSD, such
as disk-based write caching [46], read/write separation via
redundancy [45], and flash-aware file systems (e.g., [23],
[24], [30], [34]). EPLOG targets an SSD RAID array and

is currently implemented as a user-level block device. It can
also incorporate advanced techniques of existing flash-aware
designs, such as hot/cold data grouping [24], [34] and efficient
metadata management [23], [30], for further performance and
endurance improvements.

Flash-aware RAID designs have been proposed either at
the chip level [10], [15], [22] or at the device level [3],
[26], [28], [31], [39], [40]. For example, Greenan et al. [10]
keep outstanding parity updates in NVRAM and defer them
until a full stripe of data is available. FRA [28] also defers
parity updates, but keeps outstanding parity updates in DRAM,
which is susceptible to data loss. Balakrishnan et al. [3]
propose to unevenly distribute parities among SSDs to avoid
correlated failures. Lee et al. [26] and Im et al. [15] propose the
partial parity idea, which generates parity chunks from partial
stripes and maintains the parity chunks in NVRAM. HPDA
[31] builds an SSD-HDD hybrid architecture which keeps all
parities in HDDs and uses the HDDs as write buffers. Kim et
al. [22] propose an elastic striping method that encodes the
newly written data to form new data stripes and writes the
data and parity chunks directly to SSDs without NVRAM.
Pan et al. [40] propose a diagonal coding scheme to address
the system-level wear-leveling problem in SSD RAID, and the
same research group [39] extends the elastic striping method
by Kim et al. [22] with a hotness-aware design.

EPLOG relaxes the constraints of parity construction in
which parity can be associated with a partial stripe, following
the same rationale as previous work [15], [22], [26], [39].
Compared to previous work, EPLOG keeps log chunks with
elastic parity logging using commodity HDDs rather than
NVRAM as in [15], [26]. Also, instead of directly writing
parity chunks to SSDs [22], [39], EPLOG keeps log chunks
in log devices to limit parity write traffic to SSDs, especially
when synchronous writes are needed (see Section II-A). While
HPDA [31] also uses HDDs to keep parities as in EPLOG,
it always keeps all parities in HDDs and treats HDDs as a
write buffer, but does not explain how parities in HDDs are
generated and stored. In contrast, EPLOG ensures sequential
writes of log chunks to HDD-based log devices and regularly
performs parity commit in SSDs (note that parity commit does
not need to access log devices in normal mode). In addition,
EPLOG employs an elastic logging policy, which does not need
to pre-read old data chunks and also relaxes the constraint of
per-stripe basis in computing parity logs, so as to reduce the
amount of logs and fully utilize device-level parallelism among
SSDs. We point out that EPLOG targets general RAID schemes
that tolerate a general number of failures, as opposed to
single fault tolerance as assumed in most existing approaches
discussed above.

VII. CONCLUSIONS

We present EPLOG, a user-level block device that mitigates
parity update overhead in SSD RAID arrays through elastic
parity logging. Its idea is to encode new data chunks to
form log chunks and append the log chunks into separate
log devices, while the data chunks may span in a partial
stripe or across more than one stripe. We carefully build
our EPLOG prototype on commodity hardware, and evaluate
EPLOG through reliability analysis and testbed experiments.
We show that EPLOG improves reliability, endurance, and



performance. The source code of EPLOG is available at
http://ansrlab.cse.cuhk.edu.hk/software/eplog.

ACKNOWLEDGMENTS

This work was supported in part by National Nature
Science Foundation of China (61303048 and 61379038), An-
hui Provincial Natural Science Foundation (1508085SQF214),
CCF-Tencent Open Research Fund, the University Grants
Committee of Hong Kong (AoE/E-02/08), and Research Com-
mittee of CUHK.

REFERENCES

[1] Storage Performance Council. http://traces.cs.umass.edu/index.php/
Storage/Storage, 2002.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy. Design Tradeoffs for SSD Performance. In Proc. of

USENIX ATC, 2008.

[3] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi. Differential
RAID: Rethinking RAID for SSD Reliability. ACM Trans. on Storage,
6(2):4:1–4:22, Jul 2010.

[4] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuck-
erman. An XOR-Based Erasure-Resilient Coding Scheme. Technical
Report TR-95-048, International Computer Science Institute, UC Berke-
ley, Aug. 1995.

[5] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger. The DiskSim
Simulation Environment Version 4.0 Reference Manual, 2008.

[6] Y. Cai, E. Haratsch, O. Mutlu, and K. Mai. Error Patterns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis.
In Prof. of DATE, 2012.

[7] F. Chen, D. A. Koufaty, and X. Zhang. Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based Solid
State Drives. In Proc. of ACM SIGMETRICS, 2009.

[8] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-Performance, Reliable Secondary Storage. ACM

Computing Surveys, 26(2):145–185, 1994.

[9] J. Elerath and M. Pecht. Enhanced Reliability Modeling of RAID
Storage Systems. In IEEE/IFIP DSN, June 2007.

[10] K. Greenan, D. D. E. Long, E. L. Miller, T. Schwarz, and A. Wildani.
Building Flexible, Fault-Tolerant Flash-based Storage Systems. In Proc.

of USENIX HotDep, 2009.

[11] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean Time to Mean-
ingless: MTTDL, Markov Models, and Storage System Reliability. In
Proceedings of the 2nd USENIX HotStorage, 2010.

[12] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing Flash Memory: Anomalies,
Observations, and Applications. In Proc. of IEEE/ACM MICRO, 2009.

[13] L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak Future of NAND
Flash Memory. In Proc. of USENIX FAST, 2012.

[14] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. A File is Not a File: Understanding the I/O Behavior
of Apple Desktop Applications. In Proc. of ACM SOSP, 2011.

[15] S. Im and D. Shin. Flash-Aware RAID Techniques for Dependable and
High-Performance Flash Memory SSD. IEEE Trans. on Computers,
60(1):80–92, Jan 2011.

[16] IOzone. IOzone Filesystem Benchmark. http://www.iozone.org.

[17] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O Stack Optimization
for Smartphones. In Proc. of USENIX ATC, 2013.
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