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Abstract—Encrypted deduplication seamlessly combines en-
cryption and deduplication to simultaneously achieve both data
security and storage efficiency. State-of-the-art encrypted dedu-
plication systems mostly adopt a deterministic encryption ap-
proach that encrypts each plaintext chunk with a key derived
from the content of the chunk itself, so that identical plaintext
chunks are always encrypted into identical ciphertext chunks for
deduplication. However, such deterministic encryption inherently
reveals the underlying frequency distribution of the original
plaintext chunks. This allows an adversary to launch frequency
analysis against the resulting ciphertext chunks, and ultimately
infer the content of the original plaintext chunks.

In this paper, we study how frequency analysis practically
affects information leakage in encrypted deduplication storage,
from both attack and defense perspectives. We first propose a
new inference attack that exploits chunk locality to increase the
coverage of inferred chunks. We conduct trace-driven evaluation
on both real-world and synthetic datasets, and show that the
new inference attack can infer a significant fraction of plaintext
chunks under backup workloads. To protect against frequency
analysis, we borrow the idea of existing performance-driven
deduplication approaches and consider an encryption scheme
called MinHash encryption, which disturbs the frequency rank
of ciphertext chunks by encrypting some identical plaintext
chunks into multiple distinct ciphertext chunks. Our trace-driven
evaluation shows that MinHash encryption effectively mitigates
the inference attack, while maintaining high storage efficiency.

I. INTRODUCTION

To manage massive amounts of data in the wild, modern

storage systems employ deduplication to eliminate content du-

plicates and save storage space. The main idea of deduplication

is to store only data copies, called chunks, that have unique

content among all already stored chunks. Field studies have

demonstrated that deduplication achieves significant storage

savings in production environments, for example, by 50% in

primary storage [33] and up to 98% in backup storage [45].

Deduplication is also adopted by commercial cloud storage

services (e.g., Dropbox, Google Drive, Bitcasa, etc.) for cost-

efficient outsourced data management [22], [34].

In the security context, combining encryption and dedupli-

cation, referred to as encrypted deduplication, is essential for

protecting against content leakage in deduplication storage.

Conventional (symmetric) encryption is incompatible with

deduplication, as it requires that users encrypt data with

their own distinct secret keys, thereby encrypting duplicate

plaintext chunks into distinct ciphertext chunks. To preserve

deduplication effectiveness, encrypted deduplication ensures
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Fig. 1. Frequency distribution of chunks in the FSL dataset.

that ciphertext chunks originated from duplicate plaintext

chunks can still be deduplicated. Message-locked encryption

(MLE) [9] formalizes a cryptographic primitive to address

the issue, by encrypting each chunk with a secret key that

is derived from the chunk itself via some one-way function.

For example, convergent encryption [16] is one classical

instantiation of MLE by deriving the secret key through the

hash of a chunk. On top of MLE, several storage systems

address additional security issues, such as brute-force attacks

[8], key management failures [17], side-channel attacks [28],

and access control [38].

However, we argue that existing MLE implementations (see

Section VIII) still cannot fully protect against content leakage,

mainly because their encryption approaches are deterministic.

That is, each ciphertext chunk is encrypted by a key that is

deterministically derived from the original plaintext chunk.

Thus, an adversary, which can be malicious users or storage

system administrators, can analyze the frequency distribution

of ciphertext chunks and infer the original plaintext chunks

based on classical frequency analysis [36]. In addition, prac-

tical storage workloads often exhibit non-uniform frequency

distributions in terms of the occurrences of chunks with the

same content, thereby allowing the adversary to accurately

differentiate chunks by their frequencies in frequency analysis.

Figure 1 depicts the frequency distribution of chunks in the

real-world FSL dataset used in our evaluation (see Section V).

We observe that the frequency distribution varies significantly:

99.8% of chunks occur less than 100 times, while around 30

chunks occur over 10,000 times.

The deterministic nature of MLE makes encrypted dedupli-

cation vulnerable to frequency analysis. In the simplest form

of the attack, an adversary first obtains prior knowledge of



frequency distributions of plaintext chunks (e.g., by unintended

data release [6] or data breaches [20]), counts the frequencies

of all ciphertext chunks, and finally infers their corresponding

plaintext chunks based on the frequency distribution of cipher-

text chunks. While previous studies [3], [7] have addressed the

possibility of launching frequency analysis against MLE-based

storage and also proposed cryptographic mechanisms to miti-

gate the issue, their investigations are theoretically driven. The

practical implications of frequency analysis against encrypted

deduplication remain unexplored.

Contributions: In this paper, we conduct an in-depth study of

how frequency analysis practically affects information leakage

in encrypted deduplication. Our study spans both attack and

defense perspectives, and is specifically driven by the charac-

teristics of storage workloads in deduplication systems.

On the attack side, we propose a locality-based attack to en-

hance the severity of classical frequency analysis by exploiting

chunk locality, which is prevalent in backup workloads. Chunk

locality states that chunks are likely to re-occur together with

their neighboring chunks across backups. In practice, changes

to backups often appear in few clustered regions of chunks,

while the remaining regions of chunks will appear in the same

order in previous backups. Previous studies have exploited

chunk locality to improve deduplication performance [30],

[47], [49]. Here, we adapt this idea from a security perspective

into frequency analysis: if a plaintext chunk M corresponds to

a ciphertext chunk C, then the neighboring plaintext chunks

of M are likely to correspond to the neighboring ciphertext

chunks of C. Our trace-driven evaluation, using both real-

world and synthetic datasets, shows that the locality-based

attack can identify significantly more ciphertext-plaintext pairs

than classical frequency analysis. For example, for the real-

world FSL dataset, we find that the locality-based attack can

infer a fraction of 17.8% of the latest backup data, while

the basic attack based on the direct application of classical

frequency analysis can only infer 0.0001% of data. In addition,

if a limited fraction (e.g., 0.2%) of plaintext information of the

latest backup is leaked, the inference rate of the locality-based

attack can reach up to 27.1%.

On the defense side, our key insight of combating frequency

analysis is to disturb the frequency ranking of ciphertext

chunks. To this end, we borrow the idea from previous

performance-driven deduplication approaches [10], [38], [47].

We consider an encryption scheme called MinHash encryption,

which derives an encryption key based on the minimum

fingerprint over a set of adjacent chunks, such that some iden-

tical plaintext chunks can be encrypted into multiple distinct

ciphertext chunks. Our trace-driven evaluation shows that Min-

Hash encryption effectively mitigates the locality-based attack,

while maintaining high storage efficiency as demonstrated in

previous deduplication approaches. For example, for the real-

world dataset, if we repeat our attack evaluation that 0.2% of

plaintext information of the latest backup is leaked, MinHash

encryption can now suppress the inference rate of the locality-

based attack to below 0.45%; meanwhile, it achieves a storage

saving of up to 83.61%, which is only 3-4% less than that of

original chunk-based deduplication.

II. BASICS

Following Section I, we elaborate the basics of deduplica-

tion, encrypted deduplication, and frequency analysis.

A. Deduplication

Deduplication can be viewed as a coarse-grained compres-

sion technique to save storage space. While it can operate

at the granularities of files or chunks, this paper focuses on

chunk-based deduplication as it achieves more fine-grained re-

dundancy elimination. Specifically, a storage system partitions

input data into variable-size chunks through content-defined

chunking (e.g., Rabin fingerprinting [39]), which identifies

chunk boundaries that match specific content patterns so as

to remain robust against content shifts [18]. We can configure

the minimum, average, and maximum chunk sizes in content-

defined chunking for different granularities. After chunking,

each chunk is identified by a fingerprint, which is computed

from the cryptographic hash of the content of the chunk. Any

two chunks are said to be identical if they have the same

fingerprint, and the collision probability that two non-identical

chunks have the same fingerprint is practically negligible [11].

Deduplication requires that only one physical copy of identical

chunks is kept in the storage system, while any identical chunk

refers to the physical chunk via a small-size reference.

To check if any identical chunk exists, the storage system

maintains a fingerprint index, a key-value store that holds

the mappings of all fingerprints to the addresses of physical

chunks that are currently stored. For each file, the storage

system also stores a file recipe that lists the references to all

chunks of the file for future reconstruction.

B. Encrypted Deduplication

Encrypted deduplication ensures that all physical chunks are

encrypted for confidentiality (i.e., data remains secret from

unauthorized users and even storage system administrators),

while the ciphertext chunks that are originated from identical

plaintext chunks can still be deduplicated for storage savings.

As stated in Section I, message-locked encryption (MLE) [9] is

a formal cryptographic primitive to achieve encrypted dedupli-

cation, in which each chunk is encrypted by a symmetric key

that is derived from the chunk itself. Thus, identical plaintext

chunks will be encrypted into the identical ciphertext chunks,

thereby preserving deduplication effectiveness.

MLE is inherently vulnerable to the offline brute-force

attack [9], which allows an adversary to determine which

plaintext chunk is encrypted into an input ciphertext chunk.

Suppose that the adversary knows the set of chunks from

which the plaintext chunk is drawn. Then it can launch the

brute-force attack as follows: for each chunk from the set, it

finds the chunk-derived key (whose key derivation algorithm is

supposed to be publicly available), encrypts the chunk with the

chunk-derived key, and finally checks if the output ciphertext

chunk is identical to the input ciphertext chunk. If so, the



plaintext chunk is the answer. Thus, MLE can only achieve

security for unpredictable chunks [9], meaning that the size of

the set of chunks is sufficiently large, such that the brute-force

attack becomes infeasible.

To protect against the brute-force attack, DupLESS [8]

realizes server-aided MLE, which outsources MLE key man-

agement to a dedicated key manager that is only accessible

by authenticated clients. Each authenticated client first queries

the key manager for the chunk-derived key. Then the key

manager computes and returns the key via a deterministic key

derivation algorithm that takes the inputs of both the chunk

fingerprint and a system-wide secret maintained by the key

manager itself. This makes the resulting ciphertext chunks

appear to be encrypted by a random key from the adversary’s

point of view. In addition, the key manager limits the rate

of key generation to slow down any online brute-force attack

for querying the encryption key. If the key manager is secure

from adversaries, server-aided MLE ensures security even for

predictable chunks; otherwise, it still maintains security for

unpredictable chunks as in original MLE [9].

Most existing implementations of MLE-based encrypted

deduplication, either realized as convergent encryption or

server-aided MLE, follow the notion of deterministic encryp-

tion, which ensures that identical plaintext chunks always form

identical ciphertext chunks to make deduplication possible.

Thus, they inherently become vulnerable to frequency analysis

as we show in this paper. Some encrypted deduplication

designs are based on non-deterministic encryption [3], [7], [9],

[31], yet they still keep deterministic components [9], incur

high performance overhead [31], or require cryptographic

primitives that are not readily implemented [3], [7]. We

elaborate the details in Section VIII.

C. Frequency Analysis

Frequency analysis [32] is a classical inference attack

that has been historically used to recover plaintexts from

substitution-based ciphertexts, and is known to be useful for

breaking deterministic encryption. In frequency analysis, an

adversary has access to a set of plaintexts and a set of

ciphertexts, and its attack goal is to relate each ciphertext to

the plaintext in both sets. To launch the attack, the adversary

ranks the available plaintexts and ciphertexts separately by

frequency, and maps each ciphertext to the plaintext in the

same frequency rank. In this paper, we examine how frequency

analysis can be used to attack encrypted deduplication.

III. THREAT MODEL

We focus on backup workloads, which have substantial

content redundancy and are proven to be effective for dedu-

plication in practice [45], [49]. Backups are copies of primary

data (e.g., application states, file systems, and virtual disk

images) over time. They are typically represented as weekly

full backups (i.e., complete copies of data) followed by daily

incremental backups (i.e., changes of data since the last full

backup). Our threat model focuses on comparing different

versions of full backups from the same primary data source at

different times. In the following discussion, we simply refer

to “full backups” as “backups”.

We consider an adversary that launches frequency analysis

against an encrypted deduplication storage system that applies

MLE-based deterministic encryption (e.g., convergent encryp-

tion [16] and server-aided MLE [8]) to each chunk of a backup.

We assume that the adversary is honest-but-curious, meaning

that it does not change the prescribed protocols of the storage

system and modify any data in storage.

To launch frequency analysis, the adversary should have

access to auxiliary information [36] that provides ground

truths about the backups being stored. In this work, we

model the auxiliary information as the plaintext chunks of

a prior (non-latest) backup, which may be obtained through

unintended data releases [6] or data breaches [20]. Clearly, the

success of frequency analysis heavily depends on how accurate

the available auxiliary information describes the backups [36].

Our focus is not to address how to obtain accurate auxiliary

information, which we pose as future work; instead, given the

available auxiliary information, we study how an adversary can

design a severe attack based on frequency analysis and how

we can defend against the attack. We also evaluate the attack

given publicly available auxiliary information (see Section V).

Based on the available auxiliary information (which de-

scribes a prior backup), the primary goal of the adversary is

to infer the content of the plaintext chunks that are mapped to

the ciphertext chunks of the latest backup. The attack can be

based on two modes:

• Ciphertext-only mode: It models a typical case in which

the adversary can access the ciphertext chunks of the

latest backup (as well as the auxiliary information about

a prior backup).

• Known-plaintext mode: It models a more severe case

in which a powerful adversary not only can access the

ciphertext chunks of the latest backup and the auxiliary

information about a prior backup as in ciphertext-only

mode, but also knows a small fraction of the ciphertext-

plaintext chunk pairs about the latest backup (e.g., from

stolen devices [15]).

In both attack modes, we assume that the adversary can

monitor the processing sequence of the storage system and

access the logical order of ciphertext chunks of the latest

backup before deduplication. Our rationale is that existing

deduplication storage systems [47], [49] often process chunks

in logical order, so as to effectively cache metadata for efficient

deduplication. On the other hand, the adversary cannot access

any metadata information (e.g., the fingerprint index, file

recipes of all files). In practice, we do not apply deduplication

to the metadata, which can be protected by conventional

encryption. For example, the file recipes can be encrypted by

user-specific secret keys. Also, the adversary cannot identify

which prior backup a stored ciphertext chunk belongs to by

analyzing the physical storage space, as the storage system can

store ciphertext chunks in randomized physical addresses or

commercial public clouds (the latter is more difficult to access

directly).



While this work focuses on frequency analysis, another

inference attack based on combinatorial optimization, called

lp-optimization, has been proposed to attack deterministic en-

cryption [36]. Nevertheless, frequency analysis is shown to be

as effective as the lp-optimization attack in experiments [36],

and later studies [27], [37] even point out that both frequency

analysis and lp-optimization may have equivalent severity.

Thus, we believe that frequency analysis is representative as

our baseline.

We do not consider other threats launched against encrypted

deduplication, as they can be addressed independently by

existing approaches. For example, the side-channel attack

against encrypted deduplication [21], [22] can be addressed

by server-side deduplication [22], [28] and proof of ownership

[21]; the leakage of access pattern [23] can be addressed by

oblivious RAM [42] and blind storage [35].

IV. ATTACKS

In this section, we present inference attacks based on

frequency analysis against encrypted deduplication. We first

present a basic attack (see Section IV-A), which builds on clas-

sical frequency analysis to infer plaintext content in encrypted

deduplication. We next propose a more severe locality-based

attack (see Section IV-B), which enhances the basic attack by

exploiting chunk locality.

Table I summarizes the major notation used in this paper.

We first formalize the adversarial goal of both basic and

locality-based attacks based on the threat model in Section III.

Let C = 〈C1, C2, . . .〉 be the sequence of ciphertext chunks in

logical order for the latest backup, and M = 〈M1,M2, . . .〉 be

the sequence of plaintext chunks in logical order for a prior

backup (i.e., M is the auxiliary information). Both C and

M show the logical orders of chunks before deduplication as

perceived by the adversary (i.e., identical chunks may repeat),

and each of them can have multiple identical chunks that

have the same content. Note that both C and M do not

necessarily have the same number of chunks. Furthermore, the

i-th plaintext chunk Mi in M (where i ≥ 1) is not necessarily

mapped to the i-th ciphertext chunk in C; in fact, Mi may not

be mapped to any ciphertext chunk in C, for example, when

Mi has been updated before the latest backup is generated.

Given C and M, the goal of an adversary is to infer the content

of the original plaintext chunks in C.

A. Basic Attack

We first demonstrate how we can apply frequency analysis

to infer the original plaintext chunks of the latest backup in

encrypted deduplication. We call this attack the basic attack.

Overview: In the basic attack, we identify each chunk by

its fingerprint, and count the frequency of each chunk by the

number of fingerprints that appear in a backup. Thus, a chunk

(or a fingerprint) has a high frequency if there exist many

identical chunks with the same content. We sort the chunks of

both C and M by their frequencies. We then infer that the i-th

frequent plaintext chunk in M is the original plaintext chunk

of the i-th frequent ciphertext chunk in C. Our rationale is

TABLE I
MAJOR NOTATION USED IN THIS PAPER.

Notation Description

Defined in Section IV

C sequence of ciphertext chunks 〈C1, . . .〉 in logical order for
the latest backup

M sequence of plaintext chunks 〈M1, . . .〉 in logical order for
a prior backup

FC associative array that maps each ciphertext chunk in C to
its frequency

FM associative array that maps each plaintext chunk in M to its
frequency

T set of inferred ciphertext-plaintext chunk pairs

LC set of left neighbors of ciphertext chunk C

LM set of left neighbors of plaintext chunk M

RC set of right neighbors of ciphertext chunk C

RM set of right neighbors of plaintext chunk M

G set of currently inferred ciphertext-plaintext chunk pairs

u number of ciphertext-plaintext chunk pairs returned from
frequency analysis during the initialization of G

v number of ciphertext-plaintext chunk pairs returned from
frequency analysis in each iteration of locality-based attack

w maximum size of G

LC associative array that maps each ciphertext chunk in C to
its left neighbor and co-occurrence frequency

LM associative array that maps each plaintext chunk in M to its
left neighbor and co-occurrence frequency

RC associative array that maps each ciphertext chunk in C to
its right neighbor and co-occurrence frequency

RM associative array that maps each plaintext chunk in M to its
right neighbor and co-occurrence frequency

Defined in Section VI

KS segment-based key of segment S

h minimum fingerprint of chunks in a segment

that the frequency of a plaintext chunk is correlated to that of

a ciphertext chunk due to deterministic encryption.

Algorithm details: Algorithm 1 shows the pseudo-code of

the basic attack. It takes C and M as input, and returns the

result set T of all inferred ciphertext-plaintext chunk pairs.

It first calls the function COUNT to obtain the frequencies of

all ciphertext and plaintext chunks, identified by fingerprints,

in associative arrays FC and FM, respectively (Lines 2-3).

It then calls the function FREQ-ANALYSIS to infer the set T
of ciphertext-plaintext chunk pairs (Line 4), and returns T
(Line 5).

The function COUNT constructs an associative array FX

(where X can be either C and M) that holds the frequencies

of all chunks. If a chunk X does not exist in FX (i.e., its

fingerprint is not found), then the function adds X to FX and

initializes FX[X] as zero (Lines 10-12). The function then

increments FX[X] by one (Line 13).

The function FREQ-ANALYSIS performs frequency analysis

based on FC and FM. It first sorts each of FC and FM

by frequency (Lines 18-19). Since FC and FM may not

have the same number of elements, it finds the minimum

number of elements in FC and FM (Line 20). Finally, it

returns the ciphertext-plaintext chunk pairs, in which both the

ciphertext and plaintext chunks of each pair have the same

rank (Lines 21-26).



Algorithm 1 Basic Attack

1: procedure BASIC ATTACK(C,M)
2: FC ←COUNT(C)
3: FM ←COUNT(M)
4: T ←FREQ-ANALYSIS(FC,FM)
5: return T
6: end procedure

7: function COUNT(X)
8: Initialize FX

9: for each X in X do
10: if X does not exist in FX then
11: Initialize FX[X]← 0
12: end if
13: FX[X]← FX[X] + 1
14: end for
15: return FX

16: end function

17: function FREQ-ANALYSIS(FC,FM)
18: Sort FC by frequency
19: Sort FM by frequency
20: min← min{|FC|, |FM|}
21: for i = 1 to min do
22: C ← i-th frequent ciphertext chunk
23: M ← i-th frequent plaintext chunk
24: Add (C,M) to T ′

25: end for
26: return T ′

27: end function

Discussion: The basic attack demonstrates how frequency

analysis can be applied to encrypted deduplication. However,

it only achieves small inference accuracy, as shown in our

trace-driven evaluation (see Section V). One reason is that

the basic attack is sensitive to data updates that occur across

different versions of backups over time. An update to a chunk

can change the frequency ranks of multiple chunks, including

the chunk itself and other chunks with similar frequencies.

Another reason is that there exist many ties, in which chunks

have the same frequency. How to break a tie during sorting also

affects the frequency rank and hence the inference accuracy of

the tied chunks. In the following, we extend the basic attack

to improve its inference accuracy.

B. Locality-based Attack

We propose the locality-based attack, which exploits chunk

locality [30], [47], [49] to improve the severity of frequency

analysis.

Overview: We first define the notation that captures the notion

of chunk locality. Consider two ordered pairs 〈Ci, Ci+1〉 and

〈Mi,Mi+1〉 of neighboring ciphertext and plaintext chunks in

C and M, respectively. We say that Ci is the left neighbor

of Ci+1, while Ci+1 is the right neighbor of Ci; similar

definitions apply to Mi and Mi+1. Note that a ciphertext chunk

in C or a plaintext chunk in M may repeat many times (i.e.,

there are many duplicate copies), so if we identify each chunk

by its fingerprint, it can be associated with more than one left

or right neighbor. Let LC and RC be the sets of left neighbors

and right neighbors of a ciphertext chunk C, respectively, and

LM and RM be the left and right neighbors of a plaintext

chunk M , respectively.

Our insight is that if a plaintext chunk M of a prior

backup has been identified as the original plaintext chunk of

a ciphertext chunk C of the latest backup, then the left and

right neighbors of M are also likely to be original plaintext

chunks of the left and right neighbors of C, mainly because

chunk locality implies that the ordering of chunks is likely

to be preserved across backups. In other words, for any

inferred ciphertext-plaintext chunk pair (C,M), we further

infer more ciphertext-plaintext chunk pairs through the left

and right neighboring chunks of C and M , and repeat the

same inference on those newly inferred chunk pairs. Thus, we

can significantly increase the attack severity.

The locality-based attack operates on an inferred set G,

which stores the currently inferred set of ciphertext-plaintext

chunks pairs. How to initialize G depends on the attack

modes (see Section III). In ciphertext-only mode, in which

an adversary only knows C and M, we apply frequency

analysis to find the most frequent ciphertext-plaintext chunk

pairs and add them to G. Here, we configure a parameter

u to indicate the number of most frequent chunk pairs to

be returned (e.g., u = 5 by default in our implementation).

Our rationale is that a small number of top-frequent chunks

often have significantly high frequencies (see Figure 1), and

their frequency ranks are relatively stable across backups. This

ensures the correctness of the ciphertext-plaintext chunk pairs

in G with a high probability throughout the attack. On the

other hand, in known-plaintext mode, in which the adversary

knows some leaked ciphertext-plaintext chunk pairs about C

for the latest backup, we initialize G with the set of leaked

chunk pairs.

The locality-based attack proceeds as follows. In each

iteration, it picks one ciphertext-plaintext chunk pair (C,M)
from G. It collects the corresponding sets of neighboring

chunks LC , LM , RC , and RM . We apply frequency analysis

to find the most frequent ciphertext-plaintext chunk pairs from

each of LC and LM , and similarly from RC and RM . In

other words, we find the left and right neighboring chunks of

C and M that have the most co-occurrences with C and M

themselves, respectively. We configure a parameter v (e.g.,

v = 30 by default in our implementation) to indicate the

number of most frequent chunk pairs returned from frequent

analysis in an iteration. A larger v increases the number of

inferred ciphertext-plaintext chunk pairs, but it also potentially

compromises the inference accuracy. The attack adds all

inferred chunk pairs into G, and iterates until all inferred chunk

pairs in G have been processed.

Note that G may grow very large as the backup size

increases. A very large G can exhaust memory space. We

configure a parameter w (e.g., w = 200,000 by default in

our implementation) to bound the maximum size of G.

In our evaluation (see Section V), we carefully examine the

impact of the configurable parameters u, v, and w.

Algorithm details: Algorithm 2 shows the pseudo-code of

the locality-based attack. It takes C, M, u, v, and w as input,



Algorithm 2 Locality-based Attack

1: procedure LOCALITY-BASED ATTACK(C,M, u, v, w)
2: (FC,LC,RC)← COUNT(C)
3: (FM,LM,RM)← COUNT(M)
4: if ciphertext-only mode then
5: G ← FREQ-ANALYSIS(FC,FM, u)
6: else if known-plaintext mode then
7: G ← set of leaked ciphertext-plaintext chunk pairs
8: end if
9: T ← G

10: while G is non-empty do
11: Remove (C,M) from G
12: Tl ← FREQ-ANALYSIS(LC[C],LM[M ], v)
13: Tr ← FREQ-ANALYSIS(RC[C],RM[M ], v)
14: for each (C,M) in Tl ∪ Tr do
15: if (C, ∗) is not in T then
16: Add (C,M) to T
17: if |G| ≤ w (i.e., G is not full) then
18: Add (C,M) to G
19: end if
20: end if
21: end for
22: end while
23: return T
24: end procedure

25: function COUNT(X)
26: Initialize FX, LX, and RX

27: for each X in X do
28: if X does not exist in FX then
29: Initialize FX[X]← 0
30: end if
31: FX[X]← FX[X] + 1
32: if X has a left neighbor Xl then
33: if Xl does not exist in LX[X] then
34: Initialize LX[X][Xl]← 0
35: end if
36: LX[X][Xl]← LX[X][Xl] + 1
37: end if
38: if X has a right neighbor Xr then
39: if Xr does not exist in RX[X] then
40: Initialize RX[X][Xr]← 0
41: end if
42: RX[X][Xr]← RX[X][Xr] + 1
43: end if
44: end for
45: return (FX,LX,RX)
46: end function

47: function FREQ-ANALYSIS(YC, YM, x)
48: Sort YC by frequency
49: Sort YM by frequency
50: for i = 1 to x do
51: C ← i-th frequent ciphertext chunk
52: M ← i-th frequent plaintext chunk
53: Add (C,M) to T ′

54: end for
55: return T ′

56: end function

and returns the result set T of all inferred ciphertext-plaintext

chunk pairs. It first calls the function COUNT to obtain the

following associative arrays: FC, which stores the frequencies

of all ciphertext chunks, as well as LC and RC, which store

the co-occurrence frequencies of the left and right neighbors of

all ciphertext chunks, respectively (Line 2); similarly, it obtains

the associative arrays FM, LM, and RM for the plaintext

chunks (Line 3). It then initializes the inferred set G, either

by obtaining u most frequent ciphertext-plaintext chunk pairs

from frequency analysis in ciphertext-only mode, or by adding

the set of leaked ciphertext-plaintext chunk pairs from the

latest backup in known-plaintext mode (Lines 4-8). It also

initializes T with G (Line 9).

In the main loop (Lines 10-22), the algorithm removes a

pair (C,M) from G (Line 11) and uses it to infer additional

ciphertext-plaintext chunk pairs from the neighboring chunks

of C and M . It first examines all left neighbors by running the

function FREQ-ANALYSIS on LC[C] and LM[M ], and stores v

most frequent ciphertext-plaintext chunk pairs in Tl (Line 12).

Similarly, it examines all right neighbors and stores the results

in Tr (Line 13). For each (C,M) in Tl∪Tr, if (C, ∗) is not in

T (i.e., the ciphertext chunk C has not been inferred yet), we

add (C,M) to T and also to G if G is not full (Lines 14-21).

The main loop iterates until G becomes empty. Finally, T is

returned.

Both the functions COUNT and FREQ-ANALYSIS are similar

to those in the basic attack (see Algorithm 1), with the

following extensions. For COUNT, in addition to constructing

the associative array FX (where X can be either C and M)

that holds the frequencies of all chunks, it also constructs the

associative arrays LX and RX that hold the co-occurrence

frequencies of the left and right neighbors of each chunk X ,

respectively. For FREQ-ANALYSIS, it now performs frequency

analysis on the associative arrays YC and YM, in which YC

(resp. YM) refers to either FC (resp. FM) that holds the

frequency counts of all chunks, or LC[C] and RC[C] (resp.

LM[M ] and RM[M ]) that hold the frequency counts of all

ordered pairs of chunks associated with ciphertext chunk C

(resp. plaintext chunk M ). Also, FREQ-ANALYSIS only returns

x (where x can be either u or v) most frequent ciphertext-

plaintext chunk pairs.

Example: Figure 2 shows an example of how the locality-

based attack works. Here, we consider ciphertext-only mode.

Suppose that we have obtained the auxiliary information

M = 〈M1,M2,M1,M2,M3,M4,M2,M3,M4〉 of some prior

backup, and use it to infer the original plaintext chunks of C =
〈C1, C2, C5, C2, C1, C2, C3, C4, C2, C3, C4, C4〉 of the latest

backup. We set u = v = 1, and w → ∞ (i.e., the inferred set

G is unbounded). We assume that the ground truth is that the

original plaintext chunk of the ciphertext chunk Ci is Mi for

i = 1, 2, 3, 4, while that of C5 is some new plaintext chunk

not in M (note that in reality, an adversary does not know the

ground truth).

We first apply frequency analysis and find that (C2,M2)
is the most frequent ciphertext-plaintext chunk pair, so we

initialize G = {(C2,M2)} and add it into T . We then remove

and operate on (C2,M2) from G, and find that LC2
=

{C1, C4, C5}, LM2
= {M1,M4}, RC2

= {C1, C3, C5},

and RM2
= {M1,M3}. From LC2

and LM2
, we find that



Fig. 2. Example of the locality-based attack.

(C1,M1) is the most frequent ciphertext-plaintext chunk pair,

while from RC2
and RM2

, we find (C3,M3). Thus, we

add both (C1,M1) and (C3,M3) into G and T . We repeat

the processing on (C1,M1) and (C3,M3), and we can infer

another pair (C4,M4) from the right neighbors of (C3,M3).
To summarize, the locality-based attack can successfully

infer the original plaintext chunks of all four ciphertext chunks

C1, C2, C3, and C4. It cannot infer the original plaintext chunk

of C5, as it does not appear in M.

V. ATTACK EVALUATION

In this section, we present trace-driven evaluation results

to show the severity of frequency analysis against encrypted

deduplication.

A. Implementation

We implement both the basic and locality-based attacks

in C++. We benchmark our current implementation on a

Ubuntu 16.04 Linux machine with an AMD Athlon II X4 640

quad-core 3.0GHz CPU and 16GB RAM, and find that the

locality-based attack takes around 15 hours to process an FSL

backup of size around 500GB (see Section V-B for dataset

details). In the following, we highlight the implementation

details of some data structures used by the attacks.

Associative arrays: Recall that there are three types of

associative arrays: (i) FC and FM, (ii) LC and LM, and (iii)

RC and RM (the latter two are only used by the locality-

based attack). We implement them as key-value stores using

LevelDB [19]. Each key-value store is keyed by the fingerprint

of the ciphertext/plaintext chunk. For FC and FM, each entry

stores a frequency count; for LC, LM, RC, and RM, each

entry stores a sequential list of the fingerprints of all the

left/right neighbors of the keyed chunk and the co-occurrence

frequency counts. For the latter, keeping neighboring chunks

sequentially simplifies our implementation, but also increases

the search time of a particular neighbor (which dominates the

overall running time); we pose the optimization as future work.

Inferred set: We implement the inferred set G in the locality-

based attack as a first-in-first-out queue, whose maximum size

is bounded by w (see Section IV-B). Each time we remove

the first ciphertext-plaintext chunk pair from the queue for

inferring more chunk pairs from the neighbors.

B. Datasets

We consider two types of datasets to drive our evaluation.

FSL: This is a real-world dataset collected by the File systems

and Storage Lab (FSL) at Stony Brook University [2], [44].

We focus on the Fslhomes dataset, which contains the daily

snapshots of users’ home directories on a shared file system.

Each snapshot is represented by a collection of 48-bit chunk

fingerprints produced by variable-size chunking of different

average sizes. We pick the snapshots from January 22 to May

21 in 2013, and fix the average size as 8KB for our evaluation.

We select six users (User4, User7, User12, User13, User15,

and User28) that have the complete daily snapshots over the

whole duration. We aggregate each user’s snapshots on a

monthly basis (on January 22, February 22, March 22, April

21, and May 21), and hence form five monthly full backups

per user. Our post-processed dataset covers a total of 2.69TB

of logical data before deduplication.

Synthetic: This dataset contains a sequence of synthetic

backup snapshots that are generated based on Lillibridge et

al.’s approach [29]. Specifically, we create an initial snapshot

from a Ubuntu 14.04 virtual disk image (originally with 1.1GB

of data) with a total of 4.28GB space. We create a sequence

of snapshots starting from the initial snapshot, such that each

snapshot is created from the previous one by randomly picking

2% of files and modifying 2.5% of their content, and also

adding 10MB of new data. Finally, we generate a sequence

of ten snapshots, each of which is treated as a backup.

Based on our choices of parameters, the resulting storage

saving is around 90% (see Experiment B.2 in Section VII-B);

equivalently, the deduplication ratio is around 10:1, which is

typical in real-life backup workloads [45]. Note that the initial

snapshot is publicly available. Later in our evaluation, we

study the effectiveness of the attacks by using it as public

auxiliary information.

C. Results

We present evaluation results. We quantify the severity of

an attack using the inference rate, defined as the ratio of the

number of unique ciphertext chunks whose plaintext chunks

are successfully inferred over the total number of unique

ciphertext chunks in the latest backup; a higher inference rate

implies that the attack is more severe.

Experiment A.1 (Impact of parameters): We first evaluate

the impact of parameters on the locality-based attack, in order

to justify our choices of parameters. Recall that the locality-

based attack is configured with three parameters: u, v, and w.

In this experiment, we use the FSL dataset, and focus on the

attack in ciphertext-only mode. We use the middle version of

the backup on March 22 as auxiliary information, and launch

the attack to infer the original plaintext chunks of the latest

backup on May 21. In each experiment, we fix two out of the
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Fig. 3. Experiment A.1 (Impact of parameters).
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three parameters and vary the remaining parameter to identify

the largest inference rate in each case.

Figure 3(a) first shows the impact of u, in which we fix

v = 20 and w = 100,000. The inference rate decreases with

u. For example, when u = 5, the attack can successfully infer

10.28% of plaintext chunks, while the inference rate drops to

7.37% when u increases to 20. The reason is that a larger u

implies that incorrect ciphertext-plaintext chunk pairs are more

likely to be included into the inferred set during initialization,

thereby compromising the inference accuracy.

Figure 3(b) next shows the impact of v, in which we fix

u = 10 and w = 100,000. Initially, the inference rate increases

with v as the underlying frequency analysis infers more

ciphertext-plaintext chunk pairs in each iteration. It hits the

maximum value at about 10% when v = 30. When v increases

to 40, the inference rate drops slightly to about 9.52%. The

reason is that some incorrectly inferred ciphertext-plaintext

chunk pairs are also included into G, which compromises the

inference rate.

Figure 3(c) finally shows the impact of w, in which we fix

u = 10 and v = 20. A larger w increases the inference rate,

since G can hold more ciphertext-plaintext chunk pairs across

iterations. We observe that when w increases beyond 200,000,

the inference rate becomes steady at about 10.2%.

Experiment A.2 (Inference rate in ciphertext-only mode):

We now compare both basic and locality-based attacks in

ciphertext-only mode. From Experiment A.1, we select u = 5,

v = 30, and w = 200,000 as default parameters, as they give

the highest possible inference rate for the locality-based attack.

We first consider the FSL dataset. We choose each of the

prior FSL backups on January 22, February 22, March 22,

and April 21 as auxiliary information, and we launch attacks

to infer the original plaintext chunks in the latest backup

on May 21. Figure 4 shows the inference rate versus the

prior backup. As expected, the inference rate of both attacks

increases as we use more recent non-latest backups as auxiliary

information, since a more recent backup has higher content

redundancy with the target latest backup. We observe that the

basic attack is ineffective in all cases, as the inference rate

is no more than 0.0001%. On the other hand, the locality-

based attack can achieve a significantly high inference rate.

For example, if we use the most recent non-latest backup on

April 21 as auxiliary information, the inference rate of the

locality-based attack can reach as high as 17.8%.

We now consider the synthetic dataset. We use the initial

snapshot (which is publicly available) as auxiliary information.

We then infer the original plaintext chunks in each of the

following synthetic backups. Figure 4(b) shows the inference

rates of both the basic and locality-based attacks over the

sequence of backups. The locality-based attack is again more

severe than the basic attack, whose inference rate is less than

0.2%. For example, the locality-based attack can infer 12.93%

of original plaintext chunks in the first backup, while that

of the basic attack is only 0.19%. After ten backups, since

more chunks have been updated since the initial snapshot, the



inference rates of the locality-based and basic attacks drop to

6% and 0.0007%, respectively. Nevertheless, we observe that

the locality-based attack always incurs a higher inference rate

than the basic attack.

Experiment A.3 (Inference rate in known-plaintext mode):

We further evaluate the severity of the locality-based attack

in known-plaintext mode. To quantify the amount of leakage

about the latest backup (see Section III), we define the leakage

rate as the ratio of the number of ciphertext-plaintext chunk

pairs known by the adversary to the total number of ciphertext

chunks in the latest backup. We consider the medium case of

the attack: for the FSL dataset, we choose the middle version

of the backup on March 22 as auxiliary information to infer the

latest backup on May 21; for the synthetic dataset, we use the

initial snapshot as auxiliary information to infer the 5th backup

snapshot. We configure u = 5, v = 30, and w = 500,000. Note

that we increase w to 500,000 (as compared to w = 200,000

in Experiment A.2), since we find that the attack in known-

plaintext mode can infer much more ciphertext-plaintext chunk

pairs across iterations. Thus, we choose a larger w to include

them into the inferred set.

Figure 5 shows the inference rate versus the leakage rate

about the target backup being inferred, which we vary from

0% to 0.2%. The slight increase in the leakage rate can lead

to a significant increase in the inference rate. For example,

when the leakage rate increases from 0 to 0.2%, the inference

rate increases from 11.09% to 27.14% and from 10.34% to

28.32% for the FSL and synthetic datasets, respectively.

VI. DEFENSE

The deterministic nature of encrypted deduplication dis-

closes the frequency distribution of the underlying plaintext

chunks, thereby making frequency analysis feasible. To defend

against frequency analysis, we consider a MinHash encryption

scheme that encrypts each copy of identical plaintext chunks

into possibly different ciphertext chunks, so as to hide the

frequency distribution of original chunks, while ensuring that

the storage efficiency is only slightly degraded.

Overview: MinHash encryption builds on Broder’s theorem

[12], which quantifies the similarity of two sets of elements:

Broder’s theorem [12]: Consider two sets of elements S1

and S2. Let U = |S1 ∪ S2| be the number of elements in

the union of S1 and S2, H be a hash function that is chosen

uniformly at random from a min-wise independent family of

permutations, and min{H(S)} be the minimum element hash

of S. Then Pr[min{H(S1)} = min{H(S2)}] =
|S1∩S2|
|S1∪S2|

.

Broder’s theorem states that if two sets share a large

fraction of common elements (i.e., they are highly similar),

then the probability that both sets share the same minimum

hash element is also high. Since two backups from the same

data source are expected to be highly similar and share a

large number of identical chunks [45], MinHash encryption

leverages this property to perform encrypted deduplication in

a different way from the original MLE [8], [9]. We emphasize

Algorithm 3 MinHash Encryption

1: procedure MINHASH ENCRYPTION(M)
2: Initialize C

3: Partition M into segments
4: for each segment S do
5: h← minimum fingerprint of all chunks in S
6: KS ← segment-based key derived from h
7: for each chunk M ∈ S do
8: C ←ENCRYPT(KS ,M)
9: Add C into C

10: end for
11: end for
12: return C

13: end procedure

that previous deduplication approaches also leverage Broder’s

theorem to minimize the memory usage of the fingerprint

index in plaintext deduplication [10], [47] or key generation

overhead in server-aided MLE [38]. Thus, we do not claim

the novelty of the design of MinHash encryption. Instead, our

contribution is to demonstrate that it can effectively defend

against frequency analysis.

Algorithm details: MinHash encryption works as follows,

as shown in Algorithm 3. It takes a sequence of plaintext

chunks M as input, and returns a sequence of ciphertext

chunks C as output. It first partitions an original stream of

plaintext chunks M into a set of large-size data units called

segments (Line 3), each of which is composed of a sequence

of plaintext chunks. One possible way of such partitioning is

to put a segment boundary at the chunk boundary if a chunk’s

modulo hash equals some specified pattern, so that segment

boundaries align with chunk boundaries [30]; we elaborate the

implementation details in Section VII-A. For each segment S,

MinHash encryption computes the minimum fingerprint h of

all chunks in S; here, we use the fingerprint value as the hash

value of each chunk. It then derives the segment-based key KS

based on h (Line 6), for example, by querying a key manager

as in DupLESS [8] to defend against brute-force attacks (see

Section II-B). It then encrypts each chunk in S using KS and

adds the resulting ciphertext chunk to C (Lines 7-10). Finally,

it returns C (Line 12).

Why MinHash encryption is effective: MinHash encryption

preserves deduplication effectiveness. The rationale is that

segments are highly similar, so their minimum fingerprints

and hence the segment-based keys are likely to be the same.

Also, the similar segments share a large fraction of identical

plaintext chunks, which will likely be encrypted by the same

segment-based keys into identical ciphertext chunks that can

be deduplicated. Since identical plaintext chunks may reside

in different segments that have different segment-based keys,

their resulting ciphertext chunks become different and cannot

be deduplicated. Thus, we can only achieve near-exact dedu-

plication and expect a slight degradation of storage efficiency.

Nevertheless, our main observation is that such near-exact

deduplication provides resilience against frequency analysis.

Since an identical chunk can now be encrypted into multiple



distinct ciphertext chunks, this breaks the deterministic nature

of encrypted deduplication. More importantly, even though it

affects only a small number of identical chunks, it is sufficient

to disturb the overall frequency rank of ciphertext chunks and

make frequency analysis ineffective.

VII. DEFENSE EVALUATION

In this section, we present trace-driven evaluation results on

the effectiveness of MinHash encryption, using the same FSL

and synthetic datasets in our attack evaluation (see Section V).

A. Implementation

Since the FSL dataset does not contain actual content,

instead of performing actual encryption, we simulate MinHash

encryption by directly operating on chunk fingerprints.

First, we need to identify segment boundaries based on

chunk fingerprints. We follow the variable-size segmentation

scheme in [30]. Specifically, the segmentation scheme is

configured by the minimum, average, and maximum segment

sizes. It places a segment boundary at the end of a chunk

fingerprint if (i) the size of each segment is at least the

minimum segment size, and (ii) the chunk fingerprint modulo

a pre-defined divisor (which determines the average segment

size) is equal to some constant (e.g., −1), or the inclusion of

the chunk makes the segment size larger than the maximum

segment size. In our evaluation, we vary the average segment

size, and fix the minimum and maximum segment sizes as half

and double of the average segment size, respectively.

We mimic the encryption process as follows. We first

calculate the minimum chunk fingerprint h of each segment.

We then concatenate h with each chunk fingerprint in the

segment and compute the MD5 hash of the concatenation.

We also truncate hash result to keep only the first 48 bits, so

as to be consistent with the fingerprint size in the original

FSL dataset. The truncated hash result can be viewed as

the fingerprint of the ciphertext chunk. We can easily check

that identical plaintext chunks under the same h will lead to

identical ciphertext chunks that can be deduplicated.

B. Results

Experiment B.1 (Robustness against leakage): We first

evaluate the effectiveness of MinHash encryption against the

locality-based attack. We vary the average segment size as

512KB, 1MB, and 2MB (while the average chunk size is

8KB). We use the same parameter setting as in Experiment A.3

and evaluate the inference rate versus the leakage rate.

Figure 6(a) first shows the results of the FSL dataset. In

ciphertext-only mode (i.e., the leakage rate is zero), MinHash

encryption suppresses the inference rate to almost zero. In

particular, when the segment sizes are 512KB, 1MB, and 2MB,

the locality-based attack can only successfully infer 6, 6, and 3

out of around 37 million ciphertext-plaintext chunk pairs. The

main reason is the frequency rank of the ciphertext chunks

has been disturbed by MinHash encryption (as explained in

Section VI). In known-plaintext mode (i.e., the leakage rate

is greater than zero), the inference rate increases with the
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Fig. 6. Experiment B.1 (Robustness against leakage).

leakage rate, but remains very small. For example, when the

leakage rate increases to 0.2%, the inference rates are only

0.41%, 0.39%, and 0.38% when the average segment sizes

are 512KB, 1MB, and 2MB, respectively. We observe that a

larger segment size implies a slightly smaller inference rate.

We conjecture the reason is that a larger segment size implies a

smaller probability that two different segments share the same

minimum chunk fingerprint in this dataset. Thus, identical

plaintext chunks are more likely to be encrypted into multiple

distinct ciphertext chunks, and the frequency rank of ciphertext

chunks is more disturbed.

Figure 6(b) next shows the results of the synthetic dataset.

In ciphertext-only mode, the locality-based attack can just suc-

cessfully infer one out of about 420 thousands of ciphertext-

plaintext chunk pairs for all segment sizes. Also, as in the

FSL dataset, the inference rate increases with the leakage

rate. However, the increasing speed of the synthetic dataset

is higher than that of the FSL dataset. The reason is that

each snapshot of the synthetic dataset is of a relatively small

size (about 4.28GB) and forms fewer segments with different

minimum fingerprints. This makes the frequency rank of

ciphertext chunks less disturbed by MinHash encryption. Even

so, when the leakage rate is 0.2%, the inference rate is about

7.63-7.68%, which is dramatically reduced from the previous

inference rate (about 28.32%) without MinHash encryption.

We pose it as a future work on how to further suppress the

inference rate in small-size backups.

Experiment B.2 (Storage efficiency): Finally, we show that

the storage efficiency is preserved by MinHash encryption.

We add the encrypted backups to storage in the order of

their creation times, and measure the storage saving as the

percentage of the total size of all ciphertext chunks reduced

by deduplication. We compare the storage saving of MinHash

encryption with that of exact deduplication that operates at the

chunk level and eliminates all duplicate chunks. Here, we do

not consider the metadata overhead.

Figure 7(a) shows the storage saving after storing each FSL

backup. We observe that after storing all five backups, the stor-

age saving achieves 83.61%, 83.17% and 82.69% for segment

sizes 512KB, 1MB, and 2MB, respectively. Compared to exact

deduplication, their savings are reduced by a difference of

3.12%, 3.56%, and 4.03%, respectively. Figure 7(b) shows the

storage saving after storing each synthetic snapshot (excluding

the initial snapshot). After ten backups, there is a storage sav-
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Fig. 7. Experiment B.2 (Storage efficiency).

ing of 86.28%, 86.15% and 85.88% for segment sizes 512KB,

1MB, and 2MB, respectively. The drop of the storage saving

is also small (less than 4%) compared to exact deduplication,

which achieves a storage saving of 89.15%. Overall, MinHash

encryption maintains high storage efficiency for both datasets.

VIII. RELATED WORK

Encrypted deduplication: Traditional encrypted deduplica-

tion systems (e.g., [4], [14], [16], [24], [43], [46]) mainly build

on convergent encryption [16], in which the encryption key is

directly derived from the cryptographic hash of the content to

be encrypted. CDStore [28] integrates convergent encryption

with secret sharing to support fault-tolerant storage. However,

convergent encryption is vulnerable to brute-force attacks (see

Section II-B). Server-aided MLE protects against brute-force

attacks by maintaining content-to-key mappings in a dedicated

key manager, and has been implemented in various storage

system prototypes [5], [8], [38], [41]. Given that the dedicated

key manager is a single-point-of-failure, Duan [17] proposes to

maintain a quorum of key managers via threshold signature for

fault-tolerant key management. Note that all the above systems

build on deterministic encryption to preserve the deduplication

capability of ciphertext chunks, and hence are vulnerable to

the inference attacks studied in this paper.

Instead of using deterministic encryption, Bellare et al. [9]

propose an MLE variant called random convergent encryp-

tion (RCE), which uses random keys for chunk encryption.

However, RCE needs to add deterministic tags into ciphertext

chunks for checking any duplicates, so that the adversary

can count the deterministic tags to obtain the frequency

distribution. Liu et al. [31] propose to encrypt each plaintext

chunk with a random key, while the key is shared among users

via password-based key exchange. However, the proposed

approach incurs significant key exchange overhead, especially

when the number of chunks is huge.

From the theoretic perspective, there are several works

that strengthen the security of encrypted deduplication and

protect the frequency distribution of original chunks. Abadi

et al. [3] propose two encrypted deduplication schemes for

the chunks that depend on public parameters, yet either of

them builds on computationally expensive non-interactive zero

knowledge (NIZK) proofs or produces deterministic ciphertext

components. Interactive MLE [7] addresses chunk correlation

and parameter dependence, yet it is impractical for the use of

fully homomorphic encryption (FHE). This paper differs from

the above works by using lightweight primitives for practical

encrypted deduplication.

Inference attacks: Frequency analysis [32] is the classical

inference attack and has been historically used to recover

plaintexts from substitution-based ciphertexts. It is also used

as a building block in recently proposed attacks. Kumar et al.

[26] use frequency-based analysis to de-anonymize query logs.

Islam et al. [23] compromise keyword privacy based on the

leakage of the access patterns in keyword search. Naveed et al.

[36] propose to conduct frequency analysis via combinatorial

optimization and present attacks against CryptDB. Kellaris

et al. [25] propose reconstruction attacks against any system

that leaks access pattern or communication volume. Pouliot

et al. [37] present the graph matching attacks on searchable

encryption. In contrast, we focus on encrypted deduplication

storage and exploit workload characteristics to construct attack

and defense approaches.

Ritzdorf et al. [40] exploit the size information of dedu-

plicated content and build an inference attack that determines

if a file has been stored. Our work is different as we focus

on inferring the content of data chunks based on chunk

frequencies. We further examine the effectiveness of MinHash

encryption in defending our proposed attack.

Some inference attacks exploit the active adversarial ca-

pability. Brekne et al. [1] construct bogus packets to de-

anonymize IP addresses. Cash et al. [13] and Zhang et al. [48]

propose file-injection attacks against searchable encryption.

Our proposed attacks do not rely on the active adversarial

capability.

IX. CONCLUSION

Encrypted deduplication has been deployed in commercial

cloud environments and extensively studied in the literature to

simultaneously achieve both data confidentiality and storage

efficiency, yet we argue that its data confidentiality remains

not fully guaranteed. In this paper, we demonstrate how the

deterministic nature of encrypted deduplication makes it sus-

ceptible to information leakage caused by frequency analysis.

We consider a locality-based attack, which exploits the chunk

locality property of backup workloads that are commonly

targeted by deduplication systems, so as to infer the content of

a large fraction of plaintext chunks from the ciphertext chunks

of the latest backup. We show how the locality-based attack

can be practically implemented, and demonstrate its severity

through trace-driven evaluation on both real-world and syn-

thetic datasets. To defend against information leakage, we con-

sider MinHash encryption, which builds on Broder’s theorem

to relax the deterministic nature of encrypted deduplication by

encrypting some identical plaintext chunks to multiple distinct

ciphertext chunks. Our trace-driven evaluation demonstrates

that MinHash encryption is robust against the locality-based

attack, while maintaining deduplication effectiveness as also

shown by previous deduplication approaches. The source code

of our attack and defense implementations is now available at

http://adslab.cse.cuhk.edu.hk/software/freqanalysis.
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