Parity Logging with Reserved Space: Towards Efficient Updates and

Recovery in Erasure-coded Clustered Storage

Jeremy C. W. Chan, Qian Ding, Patrick P. C. Lee, and Helen H. W. Chan
The Chinese University of Hong Kong
Source code available at http://ansrlab.cse.cuhk.edu.hk/software/codfs

Idea

» Design an erasure-coded clustered storage system for update-dominant workloads
» Mitigate disk seeks for efficient updates and recovery

the write path and offloads encoding
computations to the storage cluster

» Build CodFS, which performs erasure coding on

segments
OSD

» Compute and stripe parity deltas for data

updates among storage nodes (OSDs)

» Propose an efficient parity update scheme:

Parity logging with reserved space

chunks

D fiec

Client

7 I

S

Parity Logging with Reserved Space (PLR)

os)

OSD

Data stream <=

BRI ==N===T
» Combine in-place data updates m .
and log-based parity updates - Fo | = U e
Parit O L L L
> Reserve storage space next to S S m— J—] i —] | — e
. . O: Overwrite L: Logging
eaCh parlty Chunk for keeplng FO Full overwrite PL . a c-:l b-:l d a+b If_\:.la c+d Ab A
parity deltas FL - Full logging PLR B —n)]I o
oL s - I B | e s
. . d . PLR Parity logging with Reserved Space
DEtermlnlng reserve Space Slze Storage Node 1 Storage Node 2 Storage Node 3
» Baseline approach — fixed reserved space for
eaCh parlty Chunks 31.8 ‘ ‘ Storage Overhead ‘ ‘ ‘ E - ‘ .‘ No. Tf Merg.es ‘
£ 16§ [T baseline M shrinkonly |
» Workload-aware approach: g;-gif baseline M = shrinkonly 1 8 | baseline 16V
. . 8 . \“ L :22 :22 """ SNriNK + merge C‘_I: I
» predicts the reserved space for each parity &2 ' — g
. . E 0.6 ’* W‘M“*AAM*AAE‘A“‘“‘ ASAAA ALy asaaka POV TV o) @ 20 l"‘*\\ X,
chunk using previous workload pattern S04 e,) LB A
502 T - e
e 0.0 2 0 30 35 40

shrinks the reserved space and releases
unused space back to the system
merges parity deltas in the reserved space

15 20 25
Elapsed time (day)

10

10 15

20

25

Elapsed time (day)

Storage overhead and no. of merges of different reserved space
management strategies under Harvard NFS traces

Testbed Experiments

Experiments on Real-world Traces
» Random write

* Parity logging schemes (FL, PL, PLR) are much faster than FO
PLR is 63.1% faster than FO

» Recovery

PLR saves disk seeks to parity deltas and outperforms both
FL and PL in recovery
PLR is up to 10x faster than FL

Experiments on Synthetic Traces
» Show CodFS achieves theoretical throughput

» Show trade-off between reserved space and storage efficiency

» Details in the paper

Agg. 1/0 per second (KIOPS)

Random Write

ol

o= .

T

PL PLR |

mZ

{

~

I

|

{7

[

{

src22 mdsO0 rsrchO usrO web0 tsO stg0 hmO prnl projo

Recovery

FO mmmm

"FL === PL ____ PLR |

ve

v

>

ey

e

Ve

v

7

src22 mdsO0 rsrchO usr0 web0 tsO0 stg0 hmO prnl projo
Random write and recovery under
MSR Cambridge traces with RDP (6,4)

