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Idea

» Design an erasure-coded clustered storage system for update-dominant workloads
» Mitigate disk seeks for efficient updates and recovery

the write path and offloads encoding
computations to the storage cluster

» Build CodFS, which performs erasure coding on

segments
OSD

» Compute and stripe parity deltas for data

updates among storage nodes (OSDs)

» Propose an efficient parity update scheme:
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Storage overhead and no. of merges of different reserved space
management strategies under Harvard NFS traces

Testbed Experiments

Experiments on Real-world Traces
» Random write

* Parity logging schemes (FL, PL, PLR) are much faster than FO
PLR is 63.1% faster than FO

» Recovery

PLR saves disk seeks to parity deltas and outperforms both
FL and PL in recovery
PLR is up to 10x faster than FL

Experiments on Synthetic Traces
» Show CodFS achieves theoretical throughput

» Show trade-off between reserved space and storage efficiency

» Details in the paper
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Random write and recovery under
MSR Cambridge traces with RDP (6,4)




