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Abstract
Flash-based solid-state drives (SSDs) are increasingly
adopted as the mainstream storage media in modern data
centers. However, little is known about how SSD failures in
the field are correlated, both spatially and temporally. We ar-
gue that characterizing correlated failures of SSDs is critical,
especially for guiding the design of redundancy protection for
high storage reliability. We present an in-depth data-driven
analysis on the correlated failures in the SSD-based data cen-
ters at Alibaba. We study nearly one million SSDs of 11 drive
models based on a dataset of SMART logs, trouble tickets,
physical locations, and applications. We show that correlated
failures in the same node or rack are common, and study the
possible impacting factors on those correlated failures. We
also evaluate via trace-driven simulation how various redun-
dancy schemes affect the storage reliability under correlated
failures. To this end, we report 15 findings. Our dataset and
source code are now released for public use.

1 Introduction
Maintaining high storage reliability is undoubtedly impor-
tant for modern data centers, yet it is often challenged by
correlated failures, such as bursts of latent sector errors [25],
correlated disk failures [5, 26], co-occurring node failures
[5, 8, 11, 19], or correlated crashes of data and protocols [1].
Correlated failures complicate the design of redundancy pro-
tection schemes, which may be sufficient for tolerating inde-
pendent failures but not correlated failures [19].

Modern data centers now increasingly build on flash-based
solid-state drives (SSDs), and their storage reliability guar-
antees critically depend on the reliability of SSDs. Several
field studies have characterized SSD failures in production
environments, including Facebook [16], Google [2, 27], Mi-
crosoft [18], Alibaba [30], and NetApp [15] (see §6 for de-
tails). However, some of the studies [2, 15, 16, 27] analyze
the proprietary customized attributes that are inapplicable for
general production environments; others [18, 30] leverage the
SMART (Self-Monitoring, Analysis and Reporting Technol-
ogy) attributes that are known to provide statistical details for
disk drive failure symptoms, yet SMART attributes do not
provide the location details of how multiple failures mani-
fest across storage scopes (e.g., nodes and racks). Although
correlated failures are reportedly found in SSD-based data
centers [15, 16], little is known about the characteristics of
correlated failures and their implications on storage reliability
in production environments.

To elaborate, the following questions on correlated failures
remain unexplored: (i) How far are SSD failures spaced apart
across different scopes in large-scale data centers? (ii) How
likely does an SSD fail after another failure occurs in the
same scope? (iii) How long is the time interval between two
consecutive SSD failures in the same scope? (iv) Do SSD
failures that are close in space imply that they are also close
in time? (v) What are the factors that affect the correlated fail-
ures? (vi) What should be the proper redundancy protection
schemes in the presence of correlated failures? The answers
to these questions can provide insights into achieving high
storage reliability in production environments.

In this paper, we present an in-depth data-driven analysis
on the correlated failures, from both spatial and temporal
perspectives, of SSD-based data centers at Alibaba, one of
the largest Internet companies in the world. We present an
extensive study on the correlated failures of nearly one million
SSDs, belonging to 11 drive models from three vendors, over
a span of two years. Our dataset covers the SMART logs,
trouble tickets, physical locations of SSDs (e.g., nodes and
racks), and the applications hosted by the underlying SSDs.
Our analysis makes the following findings:

• We characterize two main types of correlated failures in the
same node and rack that occur within a short time (e.g., 30
minutes), referred to as intra-node failures and intra-rack
failures, respectively. We observe a non-negligible fraction
of intra-node and intra-rack failures, implying the existence
of strong spatial and temporal correlations of SSD failures.

• We analyze four impacting factors of drive characteristics
on the correlated failures: drive models, lithography, age,
and capacity. We show that such factors pose different
effects on the spatial and temporal correlations of SSD
failures. In particular, intra-node (intra-rack) failures likely
occur in the nodes (racks) that are attached by many SSDs
of the same drive model. Both intra-node and intra-rack
failures of aged SSDs tend to occur within a short time.

• We analyze the impact of SMART attributes and applica-
tions on both intra-node and intra-rack failures. We find
that SMART attributes have limited correlations with both
intra-node and intra-rack failures and are not good indica-
tors for detecting the existence of intra-node and intra-rack
failures. Also, write-dominant applications lead to more
intra-node and intra-rack failures than read-dominant ones.

• We conduct trace-driven simulation using our dataset on
the impact of different redundancy protection schemes on



storage reliability. We show that redundancy schemes with
high fault tolerance are critical to storage reliability under
correlated failures.

We release our dataset, including the SMART logs of
all failed SSDs, trouble tickets, locations, and applications,
for the 11 drive models at https://github.com/alibaba-
edu/dcbrain/tree/master/ssd open data. The community
can leverage our dataset and findings to design effective
reliability solutions in production environments. We also
open-source our analysis scripts and simulator prototype at
http://adslab.cse.cuhk.edu.hk/software/ssdanalysis.

2 Dataset
In this section, we introduce the dataset for our analysis. We
describe our data collection methodology (§2.1) and study the
drive population and characteristics of our dataset (§2.2). We
also discuss the limitations of our dataset (§2.3).

2.1 Data Collection
We collected data from multiple SSD-based data centers at
Alibaba. Each data center comprises multiple racks, each of
which holds multiple machines called nodes. Each node is
further attached with one or multiple SSDs.

Our dataset spans two years from January 2018 to Decem-
ber 2019. It covers a population of nearly one million SSDs of
11 drive models from three vendors. The SSDs are deployed
in 200 K nodes of 30 K racks. Note that the SSDs of the same
drive model were typically purchased from multiple batches
at different times, and the SSDs attached to each node may be
heterogeneous in terms of vendors, models, capacities, and
deployment times. However, among the nodes with at least
two SSDs, 88.6% of them are attached to the SSDs of the
same drive model.

Our dataset includes multiple data types: SMART logs,
trouble tickets, locations, and applications.

SMART logs. SMART is a widely adopted tool for moni-
toring disk drive status. It periodically reports the numerical
values of the performance and reliability statistics on dif-
ferent dimensions, called attributes. Each SMART attribute
includes both the raw and normalized values. Our dataset con-
tains daily collected SMART logs over the two-year span, and
its collected SMART attributes are summarized in Table 1.
Since the definitions of SMART attributes vary across ven-
dors, for easy comparison, we focus on the SMART attributes
that are reported by more than half of SSDs (shown in the
“Reported%” column). We categorize the SMART attributes
by their monitoring types into five groups, namely internal
errors, spare blocks, wearout degree, workload, and power.
Some SMART attributes have identical meanings but are as-
signed different SMART IDs by vendors (e.g., S170/S180,
S171/S181, and S172/S182). Also, some SMART attributes
have vendor-specific raw values (marked with an asterisk ‘*’
in Table 1), so we only consider their normalized values.

Category ID Attribute name Reported%

Internal
errors

S5 Reallocated sector count 100.0%
S183 SATA downshift error count 96.5%
S184 End-to-end errors 100.0%
S187 Reported uncorrectable errors 100.0%
S195 Hardware ECC recovered 55.4%
S197 Current pending sector count 87.5%
S199 UltraDMA CRC error count 100.0%

S171/S181 Program failed count 100.0%
S172/S182 Erase failed count 100.0%

Spare
blocks*

S170/S180 Available reserved blocks 100.0%

Wearout
degree*

S173 Wear leveling count
100.0%S177 Wear range delta

S233 Media wearout indicator

Workload
S241 Number of blocks written 68.8%
S242 Number of blocks read 56.3%

Power

S9 Power on hours 100.0%
S12 Power cycle count 99.1%

S174 Unexpected power loss count 78.5%
S175* Power loss protection failure 57.0%

Table 1: Overview of SMART attributes in our dataset. “Reported%”
is the percentage of SSDs with the corresponding SMART attribute.
Only the normalized values are considered for the vendor-specific
SMART attributes marked by an asterisk ‘*’.

Trouble tickets. Each node runs a background monitor-
ing daemon that periodically collects SMART statistics and
system-level logs/alerts from its attached SSDs and sends
the collected data to a centralized maintenance system that
monitors failures. The maintenance system applies rule-based
detection, defined by administrators, to detect and report any
failure behavior in the form of trouble tickets. Each trouble
ticket records the node ID, drive ID, timestamp, and failure
description. Administrators further manually validate each
trouble ticket to confirm the failure status. We use the trouble
tickets as the ground-truths for our failure analysis. Through-
out the two-year span, we collected about 19 K trouble tickets
(i.e., 19 K failed SSDs in total).

Our trouble tickets cover two main types of SSD failures:
(i) whole drive failures, in which an SSD either cannot be
accessed or loses all data that is unrecoverable; and (ii) partial
drive failure, in which part of the data in an SSD either cannot
be accessed and is unrecoverable.
Locations. Our dataset records the physical location of each
SSD, including the machine room ID, rack ID, node ID, drive
ID, and slot number. In particular, we can correlate an SSD
to the SMART logs and trouble tickets by its drive ID.
Applications. Our dataset covers hundreds of applications,
including both internal (e.g., resource management, develop-
ment, testing, etc.) and external services (e.g., web services,
data analytics, etc.). Each node is configured to serve a single
application (note that the applications within a rack may be
different) and distributes a set of tasks to the attached SSDs
as evenly as possible. We can correlate an SSD to its hosted

https://github.com/alibaba-edu/dcbrain/tree/master/ssd_open_data
https://github.com/alibaba-edu/dcbrain/tree/master/ssd_open_data
http://adslab.cse.cuhk.edu.hk/software/ssdanalysis


Applications Total% Failures%
Web service management (WSM) 39.4% 48.5%
Resource management (RM) 19.1% 16.4%
Web proxy services (WPS) 4.6% 2.9%
SQL services (SS) 3.4% 1.0%
Database (DB) 2.8% 1.1%
Web services (WS) 1.8% 1.3%
Data analytics engine (DAE) 1.7% 6.6%
Network attached storage (NAS) 1.5% 2.9%

Table 2: Overview of the top eight most widely used applications
with more than hundreds of failed SSDs, including the percentage
of deployed SSDs in the whole population (“Total%”) and the per-
centage of SSD failures in the failed SSD population (“Failures%”).
Note that SS and DB are two similar applications, but belong to
different business units.

application via its node ID. Table 2 shows the top eight most
widely used applications, each of which contains hundreds of
failed SSDs in our dataset. Specifically, WSM covers 39.4%
of all SSDs and 48.5% of all failed SSDs. WPS, SS, and DB
cover 10.8% of all SSDs, while covering only 5.0% of all
failed SSDs. DAE and NAS have 3.2% of all SSDs, while
covering 9.5% of all failed SSDs. We will give a detailed
analysis on the relationships between the failure patterns and
workload distributions of the eight applications (§4.4).

2.2 Summary of Statistics
We first analyze the basic statistics and SSD characteristics in
our dataset, as shown in Table 3.

Population statistics. We consider 11 drive models from
three vendors. Each drive model is denoted by “Vendor”“k”,
where “Vendor” is represented by a letter (‘A’, ‘B’, and ‘C’)
for each of the three vendors, and “k” (1 to 6) refers to the
k-th most numerous model in the same vendor. The first three
columns in Table 3 show the percentages of each drive model
in the same vendor and the whole population. The 11 drive
models together cover nearly one million SSDs.

Drive characteristics. The fourth to sixth columns in Table 3
describe the key drive characteristics, including the flash tech-
nology, lithography, and capacity. All 11 drive models use the
SATA interface. The drive models in vendors A and B build
on enterprise-class MLC NAND cells, while those in vendor
C build on 3D-TLC flash. These drive models have different
lithography parameters (bill-of-material (BOM) revision for
3D-TLC) and capacities (ranging from 240 to 1920 GB).

Usage. The seventh to ninth columns in Table 3 show
the statistical summaries of SSD usage, including the over-
provisioning (OP) factor (i.e., the fraction of dedicatedly re-
served space in SSDs for internal garbage collection), the
average power-on years computed from S9 (Table 1), and
the mean of rated life used (i.e., the percentage of erase cy-
cles over the erase cycle limit) computed from the SMART
attributes related to the wearout degree (Table 1).

Reliability. The last three columns in Table 3 show three
reliability metrics, including the mean percentage of spare
blocks used, the mean number of bad sectors, and the annual-
ized failure rate (AFR). We compute the percentage of spare
blocks using the SMART attributes related to spare blocks
(S170/S180), and the number of bad sectors using S5 in Ta-
ble 1. We define the AFR by the following formula [13, 18]:

AFR(%) =
f

n1 +n2 + . . .+ntwo−year
×365×100,

where f is the total number of failed SSDs reported in our
trouble tickets and ni is the number of operational SSDs on
day i over the two-year span. The overall AFR of all MLC
SSDs (A1 to A6 and B1 to B3) is 0.55%, and their AFRs range
from 0.16% to 2.52%, slightly lower than those reported for
SSDs in Google’s data centers (1-2.5%) [27]. In contrast, the
AFRs of 3D-TLC SSDs (C1 and C2) are higher than 3%. The
overall AFR of all SSDs in our dataset is 1.16%.

2.3 Limitations
Our analysis has the following limitations, mainly due to the
unavailable information in our dataset.
Data missing. We expect that the SMART logs contain daily
statistics without loss, yet our dataset indeed contains incom-
plete SMART data over time in both failed and healthy SSDs.
Reasons of such data missing include network failures, soft-
ware maintenance or upgrades, system crashes, etc. In this
work, we mainly focus on analyzing the correlations of SSD
failures via trouble tickets, rather than the correlations of
SMART attributes over time. Thus, the data missing in the
SMART logs does not compromise our analysis.
Failure symptoms. Our dataset reports SSD failures via trou-
ble tickets, but does not cover the failure symptoms at the
operating system level. Such failure symptoms can be found
in kernel syslogs, which are not collected in our dataset.
Drive repair. Our dataset does not include the repair details
for failed SSDs. In practice, how long the data in a failed
SSD is recovered depends on the importance of its stored
data to the upper-level applications. Administrators may not
immediately repair the failed SSDs that store less critical data
to save operational overhead [2, 30]. Due to limited details,
we assume that all SSDs store data with the same importance,
and the repair time depends on the amount of data to be
reconstructed (§5).
Redundancy protection. Production storage systems use
erasure coding for redundancy protection against failures
[8, 12, 17]. In Alibaba production, 3-way replication is the
commonly used redundancy mechanism [30]. However, the
redundancy parameters may also vary across applications
and we do not have access to the redundancy parameters for
each application. In this work, we assume that all applications
adopt the same redundancy parameters to drive our reliability
analysis (§5).



Population statistics Drive characteristics Usage Reliability

Model Ven- Total% Flash Litho- Capa- OP Power- Rated life Spare blocks # bad AFR
dor% Tech. graphy city on years used (%) used (%) sectors (%)

A1 52.3% 29.8% MLC 20 nm 480 GB 7% 4.6 17.8 (±0.067) 0.18 (±0.0080) 9.3 (±0.60) 0.16%
A2 21.8% 12.4% MLC 20 nm 800 GB 28% 4.5 17.2 (± 0.15) 0.19 (±0.013) 12.5 (±1.3) 0.46%
A3 7.9% 4.5% MLC 20 nm 480 GB 7% 5.5 25.9 (±0.41) 0.022 (±0.012) 12.4 (±2.4) 2.36%
A4 7.2% 4.1% MLC 16 nm 240 GB 7% 3.2 8.8 (±0.074) 0.064 (±0.013) 2.4 (±0.72) 0.64%
A5 5.7% 3.3% MLC 16 nm 480 GB 7% 3.2 27.0 (±0.28) 0.087 (±0.015) 5.0 (±1.2) 0.45%
A6 5.1% 2.9% MLC 20 nm 800 GB 28% 4.6 24.7 (±0.44) 0.018 (±0.013) 13.7 (±2.9) 0.49%
B1 51.5% 10.3% MLC 21 nm 480 GB 7% 3.8 6.4 (±0.029) 0.0063 (±0.0010) 0.036 (±0.024) 0.21%
B2 25.5% 5.1% MLC 19 nm 1920 GB 7% 3.3 2.0 (±0.014) 0.086 (±0.0092) 12.2 (±1.4) 0.71%
B3 23.0% 4.6% MLC 24 nm 1920 GB 7% 2.1 3.6 (±0.028) 0.021 (±0.0041) 0.50 (±0.25) 2.52%
C1 89.3% 20.6% 3D-TLC V1 1920 GB 7% 2.0 4.3 (±0.022) 0.064 (±0.0054) 10.1 (±0.74) 3.29%
C2 10.7% 2.5% 3D-TLC V1 960 GB 7% 1.4 2.0 (±0.062) 0.0049 (±0.0047) 0.67 (±0.37) 3.92%

Table 3: Summary of statistics of collected dataset. The population statistics include the percentage of drives in the same vendor (“Vendor%”)
and the percentage of drives in the whole drive population in the dataset (“Total%”). For the “Rated life used”, “Spare blocks used”, and “# bad
sectors” columns, each value in brackets denotes the 95% confidence interval.

3 Overview of Analysis Methodology
Our analysis studies the correlated failures of SSDs in our
dataset, and focuses on several dimensions.
Spatial and temporal properties. We study how SSD fail-
ures manifest within a scope, either a node or a rack, within
a certain time period. We consider both intra-node failures
and intra-rack failures to refer to the failures co-occurring
within a node and a rack, respectively. We also define the
intra-node (intra-rack) failure time interval as the time in-
terval between two consecutive failures that co-occur within
the same node (rack). We refer to a failure as an intra-node
(intra-rack) failure if its intra-node (intra-rack) failure time
interval with its preceding or following failure in the same
node (rack) is smaller than a pre-specified threshold. Here,
we set a default threshold as 30 minutes, assuming that this
is the minimum time for a failure to be detected before it is
repaired [12]. In other words, a node (rack) may contain more
than one active failure at a time under intra-node (intra-rack)
failures. We define the intra-node (intra-rack) failure group
as a sequence of intra-node (intra-rack) failures starting from
an intra-node (intra-rack) failure without a preceding one un-
til an intra-node (intra-rack) failure without a following one.
We also vary the thresholds of the intra-node and intra-rack
failure time interval in our analysis.
Correlation properties. We use the Spearman’s Rank Cor-
relation Coefficient (SRCC) [29] to measure the correlation
of two variables. For example, to measure the correlation
between an SSD failure and a SMART attribute using the
SRCC, we use an indicator variable to represent if an SSD is
failed (i.e., 1 means failed; or 0 otherwise), and a numerical
variable to represent the value of a SMART attribute. The
SRCC calculates the Pearson Correlation Coefficient [21]
between the rank values of two variables to measure their
monotonic relationships. The SRCC ranges from -1 (i.e., high
negative correlation) to +1 (i.e., high positive correlation); a
zero SRCC means that the two variables are independent.

4 Correlation Analysis
We analyze the correlated failures of SSDs in our dataset in
four aspects: (i) spatial and temporal correlations among fail-
ures (§4.1), (ii) the impacting factors on correlated failures,
including the drive models, lithography, age, and capacity
(§4.2), (iii) the impact of SMART attributes on correlated fail-
ures (§4.3), and (iv) the impact of applications on correlated
failures (§4.4). Finally, we discuss the implications of our
findings (§4.5).

4.1 Correlations among Failures
We first examine the severity of correlated failures by the
intra-node and intra-rack failure group sizes (i.e., by count-
ing the number of failures within a group). Figure 1 shows
the percentage of failures versus the intra-node or intra-rack
failure group sizes; note that for Figure 1(b), we omit the
plots for the intra-rack failure group sizes that exceed 60 (the
maximum is 89) due to the sparseness. We see that a non-
negligible fraction of SSD failures belong to intra-node and
intra-rack failures. In particular, 12.9% (18.3%) of failures
are intra-node (intra-rack) failures. Also, the intra-node and
intra-rack failure group size can exceed the tolerable limit
of some typical redundancy protection schemes (e.g., four
failures) (see §5 for details).

Finding 1. A non-negligible fraction of SSD failures be-
long to intra-node and intra-rack failures (12.9% and 18.3%
in our dataset, respectively). Also, the intra-node and intra-
rack failure group size can exceed the tolerable limit of some
typical redundancy protection schemes.

We further check whether the likelihood of an SSD failure
depends on the already existing SSD failures among the intra-
node and intra-rack failures. Borrowing the idea by Mesa et
al. [16], we compute the conditional probability of having
an additional SSD failure per intra-node (intra-rack) failure
group given the existing intra-node (intra-rack) failures, by
dividing the number of intra-node (intra-rack) failure groups
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Figure 1: Finding 1. Percentages of failures for different intra-node
and intra-rack failure group sizes.
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Figure 2: Finding 2. Conditional probabilities of having an addi-
tional SSD failure for different failure group sizes per intra-node or
intra-rack failure group.

with a failure group size of x+1 by the number of intra-node
(intra-rack) failure groups with a failure group size of x or
x+1.

Figure 2 shows that the conditional probability of an ad-
ditional SSD failure depends on the already existing SSD
failures among the intra-node and intra-rack failures. The
conditional probability of having an additional SSD failure
in an intra-node (intra-rack) failure group ranges from 26.3%
to 64.3% as x ranges from 2 to 11 (from 27.3% to 58.7% as
x ranges from 2 to 88); note that we omit the plots for the
intra-rack failure group size that exceeds 16 in Figure 2(b)
due to the sparseness. If there is no correlation among intra-
node (intra-rack) failures and the SSD failures are uniformly
distributed on nodes (racks), the conditional probability of
having an additional SSD failure given the existing intra-node
(intra-rack) failures is similar to the AFR [16].

Finding 2. The likelihood of having an additional intra-
node (intra-rack) failure in an intra-node (intra-rack) failure
group depends on the already existing intra-node (intra-rack)
failures.

We examine how the percentages of intra-node and intra-
rack failures are affected by various thresholds of the intra-
node and intra-rack failure time intervals, respectively. Fig-
ure 3 shows that a non-negligible fraction of intra-node and
intra-rack failures occur within a short period of time. The
intra-node (intra-rack) failures with one month as the thresh-
old of the failure time interval account for 29.2% (63.0%).
When the threshold of the failure time interval falls in one
minute, the intra-node (intra-rack) failures still account for
10.0% (14.4%).

Finding 3. A non-negligible fraction of intra-node and
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failure time intervals.

intra-rack failures occur within a short period of time, even
within one minute.

4.2 Impacting Factors on Correlated Failures
We next study how various factors affect the spatial and tem-
poral correlations of failures.

4.2.1 Drive Models

We analyze the impact of drive models on correlated fail-
ures. Figure 4 shows that the relative percentages of failures
(over all SSD failures of the same drive model) for differ-
ent sets of intra-node and intra-rack failure group sizes vary
highly across the drive models. In particular, the relative per-
centages of intra-node (intra-rack) failures range from 0% to
33.4% (from 2.8% to 39.4%). Interestingly, A2 has only 3.7%
of intra-node failures, but has 39.4% of intra-rack failures,
among which 26.4% reside in the intra-rack failure groups of
sizes larger than 30.

We next examine the reason of high percentages of intra-
node and intra-rack failures of some drive models, by ex-
amining the average numbers of SSDs per node or rack for
different drive models. Figure 5 shows the distribution of the
average number of SSDs per node and rack (each error bar
shows the 95% confidence interval). In general, putting more
SSDs from the same drive model in the same nodes (racks)
leads to a higher percentage of intra-node (intra-rack) failures.

However, we observe some exceptions. A3 and A6 have
the same average number of SSDs per node (i.e., 12.0), but the
relative percentage of intra-node failures for A3 is higher than
that for A6 by 14.8%. One possible reason is that the AFR of
A3 (2.36%) is 5× that of A6 (0.49%). Note that the AFR is not
always the root cause of leading to high relative percentages of
intra-node and intra-rack failures. For example, one exception
is that C1 has more average number of SSDs per node (rack)
than B3 by 1.8 (20.7), but the relative percentage of intra-node
(intra-rack) failures for C1 is lower than that for B3 by 13.7%
(18.9%). Similar exceptions include the intra-rack failures
for A2 and A3. However, the AFR of B3 (A2) is lower than
that of C1 (A3) by 0.77% (1.9%). We further examine the
machine rooms where intra-rack failures reside for A2 and B3.
We observe that the relative percentages of intra-rack failures
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Figure 5: Finding 4. Average numbers of SSDs per node or rack for
the drive models (with 95% confidence intervals as error bars).

from two machine rooms account for 29.6% and 15.3% for
A2 and B3, respectively, and the intra-rack failure group sizes
are larger than 20 and 30 for A2 and B3, respectively. Thus,
the high relative percentages of intra-rack failures may also
be attributed to the machine rooms (e.g., high temperature in
a machine room can lead to more SSD failures [30]).

Finding 4. The relative percentages of intra-node and intra-
rack failures vary across drive models. Putting too many SSDs
from the same drive model in the same nodes (racks) leads to
a high percentage of intra-node (intra-rack) failures. Also, the
AFR and environmental factors (e.g., temperature) affect the
relative percentages of intra-node and intra-rack failures.

We vary the thresholds of the intra-node and intra-rack fail-
ure time intervals, broken down by the drive models. Figure 6
shows that the intra-node and intra-rack failures with a short
failure time interval account for non-negligible percentages
for most drive models. In particular, the relative percentages
of intra-node (intra-rack) failures with a threshold of one day
range from 4.4 to 34.3% (from 11.8 to 44.2%), except for A4
and C2 due to their limited numbers of SSDs per node or rack.
The relative percentages of intra-node (intra-rack) failures
with a threshold of one minute still account for 3.5-33.4%
(7.8-37.1%) except for A4 and C2 (C2).

Finding 5. There exist non-negligible fractions of intra-
node and intra-rack failures with a short failure time interval
for most drive models (e.g., up to 33.4% and 37.1% with
a failure time interval of within one minute in our dataset,
respectively) .
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Figure 6: Finding 5. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the drive models.

4.2.2 Lithography

We analyze the impact of lithography on correlated failures.
For MLC SSDs, a smaller lithography implies that the SSDs
have a higher density. Also, 3D-TLC SSDs (C1 and C2) have
higher densities than those of the MLC SSDs. Figure 7 shows
that the SSDs of a smaller lithography (i.e., a higher density)
generally have lower relative percentages of intra-node and
intra-rack failures (over all SSD failures of the same lithogra-
phy). In particular, for MLC SSDs, the relative percentages of
intra-node (intra-rack) failures decrease from 23.5% to 5.0%
(from 32.3% to 10.1%) from 24 nm to 16 nm. An exception
is 21 nm SSDs, due to its limited number of failures. For 3D-
TLC SSDs, the relative percentages of both intra-node and
intra-rack failures are close to 19 nm MLC SSDs.

We also vary the thresholds of the intra-node and intra-
rack failure time intervals, broken down by the lithography.
Figure 8 shows that the relative percentages of intra-node and
intra-rack failures for different thresholds decrease generally
with a smaller lithography for MLC SSDs. In particular, the
relative percentages of intra-node (intra-rack) failures with a
threshold of one minute increase from 20.6% to 4.3% (28.0%
to 9.3%) from 24 nm to 16 nm except for 21 nm SSDs due
to few failures. The intra-rack failures with a threshold of
one minute for 20 nm and 24 nm SSDs account for higher
percentages than other MLC SSDs by 18.7-22.4%, since they
include the intra-rack failures from A2 and B3, respectively
(Figure 4(b)).

Finding 6. MLC SSDs with higher densities generally have
lower relative percentages of intra-node and intra-rack fail-
ures.

4.2.3 Age

We analyze the impact of the age of a failed SSD (e.g., the
power-on years until the failure occurs) on correlated failures.
Figure 9 shows that the relative percentages of intra-node
(intra-rack) failures (over all SSD failures of the same age
group) for different sets of intra-node (intra-rack) group sizes
increase with age in general. In particular, the relative per-
centages of intra-node (intra-rack) failures of each age group
increase from 6.8% to 33.2% (from 11.0% to 37.6%) from
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Figure 7: Finding 6. Relative percentages of failures for different
sets of intra-node or intra-rack failure group sizes across the lithog-
raphy.

Failure time interval
[0, 1 minute] (1 minute, 30 minutes]

(30 minutes, 1 day] (1 day, 1 month]

0

10

20

30

40

50

24nm
21nm

20nm
19nm

16nm
V1

Lithography

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f 
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

24nm
21nm

20nm
19nm

16nm
V1

Lithography

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f 
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 8: Finding 6. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the lithography.

zero to six years old. Also, the relative percentage of intra-
node (intra-rack) failures for 1-2 years old is slightly higher
than that for 2-3 years old by 2.4% (3.2%). One possible
reason is that the infant mortality of SSD failures can last for
more than a year [15].

Figure 10 shows a noticeable trend that the intra-node and
intra-rack failures at an older age are more likely to occur
within a short time. In particular, the relative percentages of
intra-node (intra-rack) failures with a threshold of one minute
increase from 3.1% to 32.5% (from 5.2% to 36.9%) from zero
to six years old. We also examine the average rated life used
for intra-node and intra-rack failures at different ages (not
shown in plots). The rated life used for intra-node (intra-rack)
failures (with the default threshold of 30 minutes) increases
from 1.6% (1.4%) for 0-1 year old to 67.5% (68.4%) for 5-6
years old on average, showing that a longer rated life used
increases the likelihood of intra-node and intra-rack failures.

Finding 7. The relative percentages of intra-node and intra-
rack failures increase with age. The intra-node and intra-rack
failures at an older age are more likely to occur within a short
time due to the increasing rated life used.

4.2.4 Capacity

We examine the impact of the capacity on correlated failures.
Figure 11 shows that the relative percentages of intra-node
(intra-rack) failures (over all SSD failures of the same capac-
ity) for different sets of intra-node (intra-rack) failure group
sizes vary significantly across the capacity. Specifically, the
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Figure 9: Finding 7. Relative percentages of failures for different
sets of intra-node or intra-rack failure group sizes across the age.
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Figure 10: Finding 7. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the age.

relative percentages of intra-node (intra-rack) failures for each
capacity range from 0% to 25.2% (from 2.9% to 35.4%). As
the SSDs with capacities of 480 GB, 800 GB, and 1920 GB
cover more failures (Table 3), they have higher relative per-
centages of intra-node and intra-rack failures.

We next vary the thresholds of the intra-node and intra-rack
failure time intervals, broken down by the capacity. Figure 12
shows no clear trend between the relative percentages of intra-
node or intra-rack failures and the capacity. In particular, the
480 GB SSDs have the highest relative percentage of intra-
node failures with a threshold of one minute, since they cover
A3 with 34.4% of intra-node failures (Figure 6(a)), while the
800 GB SSDs have the highest relative percentage of intra-
rack failures with a threshold of one minute, since they cover
A2 with 36.6% of intra-rack failures (Figure 6(b)).

Finding 8. The relative percentages of intra-node and intra-
rack failures vary significantly across the capacity. There is
no clear trend between the relative percentages of intra-node
(or intra-rack) failures for different thresholds of failure time
intervals and the capacity.

4.3 Impact of SMART Attributes
We analyze how SMART attributes are correlated with intra-
node and intra-rack failures. We use the SRCC [29] (§3) to
examine which SMART attributes are correlated with intra-
node and intra-rack failures. Figure 13 shows that the SMART
attributes have limited correlations with intra-node or intra-
rack failures, and the differences of the absolute values of
SRCC between intra-node and intra-rack failures are very
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Figure 11: Finding 8. Relative percentages of failures for different
sets of intra-node or intra-rack failure group sizes across the capacity.
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Figure 12: Finding 8. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the capacity.

small. In particular, the SMART attributes related to internal
errors (e.g., S187) are more correlated with intra-node and
intra-rack failures, yet the highest SRCC values are only 0.23
for both intra-node and intra-rack failures. This implies that
SMART attributes are not good indicators for detecting the
existence of intra-node and intra-rack failures. Furthermore,
the differences of the absolute values of SRCC between intra-
node and intra-rack failures are very small and less than 0.02.

Finding 9. The SMART attributes have limited correla-
tions with intra-node and intra-rack failures, and the highest
SRCC values (from S187) are only 0.23 for both intra-node
and intra-rack failures. Thus, SMART attributes are not good
indicators for detecting the existence of intra-node and intra-
rack failures. Also, intra-node and intra-rack failures have no
significant difference of the absolute values of SRCC for each
SMART attribute.

4.4 Impact of Applications
We analyze the relationships between the failure patterns and
workload distributions of the eight applications (Table 2), and
study the impact of applications on correlated failures.

We first examine the relationships between the AFRs and
workload distributions of the eight applications. In particular,
we use the raw values of SMART attributes S241 and S242
to calculate the percentage of writes among the total work-
loads of reads and writes, and determine if each SSD is read-
dominant (i.e., more reads than writes) or write-dominant
(i.e., more writes than reads). Figure 14(a) shows the average
percentages of writes per SSD for the eight applications (each
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Figure 14: Finding 10. Average percentages of writes per SSD
(with 95% confidence intervals as error bars) and AFRs for the
applications.

error bar shows the 95% confidence interval). Reads are dom-
inant for WPS, SS, and DB, while writes are dominant for the
remaining five applications. Figure 14(b) shows the AFRs for
the applications. The AFRs of write-dominant applications in
general are higher than those of read-dominant applications.
This implies that write-dominant workloads lead to more SSD
failures overall, conforming to prior findings [18].

However, write-dominant workloads are not the only im-
pacting factor on the AFRs. We see that DAE has the highest
AFR (i.e., 4.9%), and it is mainly hosted on the drive model
C1, which has a high AFR (3.29% in Table 3). Also, WPS
has a higher AFR than SS and DB by 0.29%, although it has
a lower percentage of writes than SS and DB. The reason is
that C1 is mainly used in WPS, while A1, which has a low
AFR (0.16% in Table 3), is the drive model mainly used in
SS and DB.

Finding 10. Write-dominant workloads lead to more SSD
failures overall, but are not the only impacting factor on the
AFRs. Other factors (e.g., drive models) can affect the AFRs.

We analyze the impact of applications on correlated failures.
Figure 15 shows that the relative percentages of intra-node
(intra-rack) failures (over all SSD failures of the same ap-
plication) for different sets of intra-node (intra-rack) failure
group sizes vary across the applications. In particular, the
relative percentages of intra-node (intra-rack) failures for the
applications range from 2.1% to 33.6% (from 2.8% to 40.5%).
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Figure 15: Finding 11. Relative percentages of failures for differ-
ent sets of intra-node or intra-rack failure group sizes across the
applications.
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Figure 16: Finding 11. Average numbers of SSDs per node or rack
for the applications (with 95% confidence intervals as error bars).

To explain these differences across the applications, we
examine the average number of SSDs per node or rack for
each application. Figure 16 shows that attaching more SSDs
on nodes and racks for applications tends to have a high
percentage of intra-node (intra-rack) failures. However, there
are some exceptions. The average number of SSDs per node
for WSM (4.6) is close to that of WPS (5.0), yet the relative
percentage of intra-node failures for WSM is higher than that
of WPS by 5.0%. The reason is that WPS has read-dominant
workloads, while WSM has write-dominant workloads that
lead to more failures (Figure 14(a)). Similar observations also
hold for intra-rack failures. The average number of SSDs per
rack for DAE (10.7) is much less than that for WPS (21.0),
yet the relative percentage of intra-rack failures of DAE is
higher than that of WPS by 17.9%.

Finding 11. The applications with more SSDs per node
(rack) and write-dominant workloads tend to have a high
percentage of intra-node (intra-rack) failures.

We further examine the impact of applications on correlated
failures by varying the thresholds of the intra-node and intra-
rack failure time intervals. Figure 17 shows that the relative
percentages of intra-node and intra-rack failures for different
thresholds of the failure time intervals vary across the appli-
cations. In particular, the relative percentages of intra-node
(intra-rack) failures with a threshold of one minute account
for 1.9-22.0% (2.6-31.8%).

To explain these differences among the applications, we
examine the average ages of intra-node and intra-rack failures
for the applications (not shown in plots). The average ages of
intra-node (intra-rack) failures with a threshold of one minute
for RM, SS, DB, and WS range from 3.2 to 3.9 years old
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Figure 17: Finding 12. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the applications.

(from 3.2 to 4.1 years old), which are older than those of the
remaining applications, i.e., from 1.3 to 2.5 years old (from
1.2 to 2.2 years old). This conforms to Finding 7. However,
there are two exceptions: (i) The average ages of intra-node
and intra-rack failures for WS are younger than those for SS
and DB by 0.48-0.65 years, while the relative percentage of
intra-node (intra-rack) failures with a threshold of one minute
for WS is higher than those for SS and DB by 2.3-4.5% (1.0-
7.4%). (ii) The average age of intra-node (intra-rack) failures
for NAS is younger than that for WPS by 1.0 (0.79) years,
while the relative percentage of intra-node (intra-rack) failures
with a threshold of one minute for NAS is higher than that
for WPS by 19.9% (29.1%). The reasons for these exceptions
are due to more write-dominant workloads for WS and NAS
(Figure 14(a)).

Finding 12. Among individual applications, the intra-node
and intra-rack failures at an older age and with more write-
dominant workloads tend to occur in a short time.

4.5 Discussion
We highlight the findings in the correlation analysis:

• Intra-node and intra-rack failures commonly exist in SSD
failures. Even worse, a non-negligible fraction of intra-node
and intra-rack failures occur within a short time. In the
presence of intra-node and intra-rack failures, it is critical
to deploy the redundancy protection schemes with high
fault tolerance to cope with such correlated failures.

• We analyze the effects of the four impacting factors, namely
drive models, lithography, age, and capacity, on intra-node
and intra-rack failures. We find that drive models and age
have larger impacts on correlated failures than lithography
and capacity. Also, intra-node (intra-rack) failures tend to
occur with many SSDs from the same drive model on the
same node (rack), and the intra-node and intra-rack failures
of aged SSDs are more likely to occur within a short time.
System operators should avoid putting such SSDs in the
same scope to limit the occurrences of correlated failures.

• Intra-node and intra-rack failures have limited correlations
with the SMART attributes and have no significant differ-



ences of correlations with each SMART attribute. Thus, the
SMART attributes are not good indicators for detecting the
existence of intra-node and intra-rack failures in practice.
Other data sources, such as system logs, may be useful to
detect any potential correlated failures.

• In addition to SSD characteristics, applications also play
a role in the behavior of correlated failures. Intra-node
and intra-rack failures are more likely to occur in write-
dominant applications than read-dominant ones. Thus, high
fault-tolerance protection schemes are more essential for
write-dominant applications.

5 Case Study: Redundancy Protection
In this section, we present a trace-driven simulation analysis
on how redundancy schemes affect the storage reliability in
the face of correlated failures using our dataset.

5.1 Simulation Methodology
Redundancy schemes. Replication and erasure coding are
two widely adopted redundancy approaches to provide fault
tolerance in modern data centers. Our analysis considers three
redundancy schemes:

• r-way replication (Rep(r)): For each data chunk, it makes
r > 1 exact chunk copies to tolerate any r−1 chunk failures.
We consider Rep(2) and Rep(3), where Rep(3) is used by
traditional distributed file systems [6, 9].

• Reed-Solomon coding [23] (RS(k,m)): For every coding
group of k data chunks, it encodes them into m parity
chunks, such that any k out of k+m data/parity chunks (i.e.,
any m chunk failures can be tolerated). We consider RS(6,3)
(used by Google Colossus [7] and Quantcast File Sys-
tem [20]), RS(10,4) (used by Facebook [17]), and RS(12,4)
(the same redundancy as in Azure [12]).

• Local Reconstruction Coding [12] (LRC(k, l,g)): For every
coding group of k data chunks, it encodes each subgroup
of k/l data chunks into a local parity chunk, and encodes
all k data chunks into g global parity chunks. Thus, each
single chunk failure can be reconstructed from any k/l non-
failed chunks, while tolerating any g+1 chunk failures. We
consider LRC(12,2,2), as used by Azure [12]. Note that it
has the same redundancy as RS(12,4), but can only tolerate
any three chunk failures and some of the four chunk failures
(but not all four chunk failures as in RS(12,4)).

Replication is simple to implement, but incurs high storage
overhead. Reed-Solomon coding incurs much lower storage
overhead than replication, but incurs high repair bandwidth
since any lost chunk needs to be reconstructed by accessing k
non-failed chunks. Local Reconstruction Coding mitigates the
repair bandwidth as any lost chunk can now be reconstructed
by k/l non-failed chunks.

To mitigate repair bandwidth, we also consider lazy re-
covery [28], which triggers a repair operation only when

more than one chunk fails (in Reed-Solomon coding, all data
chunks remain available if no more than m chunks fail). This
is in contrast to eager recovery, which triggers a repair opera-
tion immediately when there exists any failed chunk.

Simulator. We extend the C++ discrete-event simulator
SIMEDC [31] to support the reliability evaluation on our
dataset. Our simulator runs multiple iterations. In each itera-
tion, it initializes the data center topology, redundancy scheme,
and chunk placement. It issues the failure events based on
the chronological failure patterns in our dataset. It also gen-
erates the repair events, whose repair durations depend on
the amount of repair bandwidth and the available data center
capacity; for lazy recovery, the repair events are triggered only
when a threshold number of failures occurs. Each iteration
runs over a mission time. To generate randomness across iter-
ations, we configure random chunk placements (see details
below). We report the averaged results over all iterations.

Metrics. We measure the reliability with the following met-
rics over the mission time:

• Probability of data loss (PDL). It measures the likelihood
that (unrecoverable) data loss occurs in a data center (i.e.,
the number of chunk failures in a coding group exceeds the
tolerable limit).

• Normalized magnitude of data loss (NOMDL) [10]. It mea-
sures the amount of (unrecoverable) data loss (in bytes)
normalized to the storage capacity.

Simulator setup. We configure the chunks in a coding group
to be stored on different racks (one chunk per rack), so as to
provide both node-level and rack-level fault tolerance. How-
ever, in our dataset, the number of racks varies highly across
the clusters. Thus, we focus on the clusters that have at least
16 racks to support all redundancy schemes that we consider
(the maximum number of chunks in a coding group is 16,
for RS(12,4) and LRC(12,2,2)). To this end, we select 128
clusters from our dataset for evaluation. Due to the varying
SSD capacity in our dataset, we fix the capacities of all SSDs
as 512 GiB for simplicity. We set the chunk size as 256 MiB,
the default chunk size in Facebook [24]. We also fix the same
percentage of used storage capacity for data chunks as 50%
for each redundancy scheme setting. We set the network link
capacity for repair as 1 Gb/s, the parameter used for measur-
ing the repair performance in erasure-coded storage [12, 24].
Furthermore, we set the mission time as ten years and run a
sufficient number of iterations for each cluster until the rela-
tive error of PDL is less than 20% [31]. As our dataset spans
only two years, we replay the dataset from beginning to end
repeatedly in each iteration.

5.2 Simulation Results
We first evaluate the reliability of different redundancy
schemes based on the SSD failure patterns in our dataset.
Figure 18 shows that erasure coding achieves lower PDL and
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Figure 18: Finding 13. Comparison of the redundancy schemes.

NOMDL (i.e., higher reliability) than replication. In particu-
lar, Rep(2) has the highest PDL (59.9%), indicating that two
chunk copies are insufficient to tolerate failures. Also, Rep(3)
is not good enough with a PDL of 10.1%. In contrast, RS(10,4)
has the lowest PDL and NOMDL among all RS codes, since
it tolerates more failures than RS(6,3) and has less repair
bandwidth than RS(12,4). LRC(12,2,2) has slightly higher
PDL and NOMDL than RS(12,4), since it cannot tolerate four
chunks at any time.

Finding 13. Erasure coding shows higher reliability than
replication based on the failure patterns in our dataset.

We claim that the redundancy schemes that are sufficient
for tolerating independent failures may be insufficient for
correlated failures. To justify this claim, we examine the re-
liability under only independent failures (generated from a
mathematical failure model) and under the failure patterns in
our dataset (including both independent and correlated ones).
Specifically, we generate independent SSD failures following
an exponential distribution with the mean time between fail-
ures (i.e., the number of hours in a year over the overall AFR
in §2.2) in our dataset as the rate parameter, i.e., 8760

1.16% .
Figure 19 shows the results of the PDL and NOMDL for

eager recovery under only independent failures and the failure
patterns in our dataset. The PDL and NOMDL under only
independent failures for Rep(3), RS(6,3), RS(10,4), RS(12,4),
and LRC(12,2,2) are zero. However, the reliability of these
redundancy schemes degrades under the failure patterns in
our dataset. The reason is that some correlated failures occur
within a short time period (Finding 3) and additional failures
are likely to occur in a short time with the existing correlated
failures on the same node or rack (Finding 2), leading to the
competition for network bandwidth resources and a slowdown
of the repair process. This increases the likelihood of data
loss. In addition, the PDL under only independent failures for
Rep(2) is higher than that under the failures in our dataset by
13.8%. The reason is that the number of failures generated by
the mathematical failure model may be more than that in our
dataset for some clusters, leading to more failed chunks that
exceed the tolerable limit of Rep(2). This implies that Rep(2)
is still insufficient under only independent failures.

Finding 14. Redundancy schemes that are sufficient for tol-
erating independent failures may be insufficient for tolerating
the correlated failures as shown in our dataset.

We next evaluate the reliability of lazy recovery under only
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Figure 19: Finding 14. Comparison of the PDL and NOMDL of
eager recovery under independent failures (“Independent”) and the
failure patterns in our dataset (“Correlated”).
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Figure 20: Finding 15. Comparison of the PDL and NOMDL for
the threshold number of chunk failures for recovery under only in-
dependent failures (“Independent”) and the failure patterns in our
dataset (“Correlated”).

independent failures derived from the mathematical failure
model and under the failure patterns in our dataset. For lazy
recovery, we vary the threshold of triggering recovery from
one to four failed chunks (note that four is the tolerable limit
for RS(10,4) and RS(12,4)); a threshold of one implies eager
recovery.

Figure 20 shows that RS(10,4) and RS(12,4) achieve a
high reliability under only independent failures, but their re-
liability degrades under the failure patterns in our dataset as
the threshold increases. In particular, under only independent
failures, RS(10,4) and RS(12,4) can achieve a high reliabil-
ity without data loss with a threshold of one to three failed
chunks, conforming to the prior work [18]. They have a small
PDL (0.14-0.56%) with a threshold of four failed chunks
since having any additional failed chunk will lead to data
loss. However, under the failure patterns in our dataset, the
PDL values for RS(10,4) and RS(12,4) increase by 0.98-1.5%
when the threshold increases from one to two failed chunks,
and continue to increase by more than 10% from two to four
failed chunks. The reason of the reliability degradation of
lazy recovery under the failures in our dataset is that when the
number of failed chunks reaches a larger threshold of chunk
failures, additional correlated failures are also more likely
to occur in a short time (Findings 2 and 3). Thus, the most
proper threshold number of chunk failures is one, i.e., eager
recovery, under the failure patterns in our dataset.

Finding 15. Lazy recovery is less suitable than eager re-
covery for tolerating correlated failures in our dataset.



6 Related Work
SSD measurement. Field studies have analyzed the reliabil-
ity of SSDs and characterized the correlations between SSD
failures and their symptoms [2,15,16,18,27,30]. For example,
some studies [16, 18, 27] analyze the symptoms (e.g., uncor-
rectable errors) reported by proprietary customized attributes
and SMART attributes in SSD failures. Xu et al. [30] inves-
tigate the effects of system-level symptoms on SSD failures.
Alter et al. [2] exploit the failure patterns from the symptoms
to predict future SSD failures. Maneas et al. [15] analyze how
SSD replacements and other factors affect the replacement
rates within a RAID system. Although some studies [15, 16]
report the existence of correlated failures in SSD-based stor-
age systems, they do not cover the location details of SSD
failures due to the limited information in their datasets. In
general, the above studies mainly focus on how SSD failures
are correlated with different factors, while our work focuses
on the correlations among the SSD failures. In particular, we
characterize the correlated failures within a node or a rack.
We study the impact of different factors on correlated failures,
and the implications on storage reliability under correlated
failures in SSD-based data centers.

HDD measurement. Field studies have analyzed the reliabil-
ity of hard disk drives (HDDs) in production environments.
Pinheiro et al. [22] analyze different factors that are corre-
lated with HDD failures based on SMART logs at Google.
Schroeder et al. [26] characterize the HDD replacement rates
statistically. Also, prior studies present the patterns of latent
sector errors [4, 25] and data corruptions [3] at NetApp. In
the literature, Lu et al. [14] leverage the locations of HDDs
to predict HDD failures. Instead, our work uses the locations
to study correlated failures of SSDs.

Correlated failures. Prior studies have characterized the cor-
related failures on various storage scopes. Chun et al. [5] and
Nath et al. [19] investigate the correlated failures that threaten
the durability and availability of storage systems. Schroeder et
al. [25, 26] provide a statistical analysis on correlated failures
of hard disks and the bursts of latent sector errors in disks.
Ford et al. [8] characterize the statistical behavior of corre-
lated node failures. In contrast, we focus on characterizing
the correlated failures in SSD-based data centers in a more
comprehensive manner.

7 Conclusion
We present an in-depth analysis on correlated failures of SSDs
based on the large-scale dataset at Alibaba. Our analysis in-
cludes spatial and temporal correlations of SSD failures and
the impact of different factors on correlated failures. We also
evaluate the reliability of various redundancy schemes under
correlated failures via trace-driven simulation. We report 15
findings, and release our dataset and source code for public
validation.
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