
Generalized Expanded-Blaum-Roth Codes and
Their Efficient Encoding/Decoding

You Wu†‡, Hanxu Hou‡?, Yunghsiang S. Han‡, Patrick P. C. Lee§ and Guojun Han†
† School of Information Engineering, Guangdong University of Technology

‡ School of Electrical Engineering & Intelligentization, Dongguan University of Technology
§ Department of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract— Expanded-Blaum-Roth (EBR) code encodes a (p−
1) × k information array into a p × p array such that any
bit in a column can be recovered within the column and any
k out of p columns can retrieve all (p − 1) × k information
bits, where p is a prime number. In this paper, we generalize
the construction of EBR code with a more flexible parameter,
i.e., the number of bits stored in a column in the proposed
construction can be not only a prime number but also an even
number. In addition, we present an efficient encoding/decoding
method for the proposed generalized EBR codes based on the LU
factorization of Vandermonde matrix. We show that the proposed
encoding/decoding method has less computational complexity
than the existing method. Moreover, we show that the minimum
symbol distance of generalized EBR codes is the same as that of
EBR code for some parameters.

Index Terms—Array codes, Expanded-Blaum-Roth codes, ef-
ficient decoding.

I. INTRODUCTION

Modern distributed storage systems employ erasure codes
to maintain data availability and reliability. Redundancy is
necessary to provide high data reliability, and two main
methods of introducing redundancy are replication and erasure
coding. Compared to replication technology, erasure coding
can deliver higher data reliability with much lower storage
overhead. With erasure coding, the data file is divided into
k information symbols of the same size, which are encoded
to obtain r parity symbols. Both k information symbols and
r parity symbols are stored in the storage system to achieve
high data reliability.

Array codes that consist of m× n arrays have been widely
used in storage systems such as Redundant Array of Indepen-
dent Disk (RAID) [1] to enhance data reliability. Consider a
binary array code of size m×n, in which each element stores
one bit in the array code. Among the n columns, the first k
columns store information bits to form k information columns,
and the remaining r = n−k columns store parity bits to form
r parity columns.

Maximum distance separable (MDS) array code is a special
class of array code, where any k out of the n columns can
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retrieve all m×k information bits stored in the k information
columns. There are many existing MDS array codes, and most
of them are designed to tolerate two or three failed columns.
For example, EVENODD [2], [3] and RDP [4] are two
important codes that can correct double disk failures. Star code
[5] and triple-fault-tolerance code [6] can correct three disk
failures. Generalized RDP codes [7], generalized EVENODD
codes [8], Blaum-Roth (BR) codes [9], codes [10] and Rabin-
like codes [11], [12] are array codes that can tolerate four or
more column failures. In addition to a column failure, i.e., all
m bits are failed in the failure column, another failure pattern
is that one bit of a column is failed. Recently, Expanded-
Blaum-Roth (EBR) [13] codes were proposed to efficiently
repair both column failures and one bit failure within any
column by adding a parity bit for each column of BR codes.
The extensions of BR codes and extended EVENODD codes
to be the corresponding codes that can recover one or more
bits within a column are given in [14].

EBR(p, r) codes can be represented by a p×p array, where
p is a prime number and 1 ≤ r < p. The p × p array is
obtained by encoding the (p − 1) × k information array. For
i = 0, 1, . . . , p − 1 and j = 0, 1, . . . , p − 1, denote by ai,j
the entry in row i and column j of the p × p array, where
the k(p − 1) information bits are the bits in the entries with
i = 0, 1, . . . , p − 2 and j = 0, 1, . . . , k − 1. Given the (p −
1)× k information array, the parity bit ap−1,j in the last row
of information column j, 0 ≤ j ≤ k − 1, are computed by
summing all p− 1 information bits in the same column, i.e.,

ap−1,j =

p−2∑
u=0

au,j . (1)

Furthermore, the p bits a0,j , a1,j , . . . , ap−1,j in column j are
represented as an information polynomial

aj(x) = a0,j + a1,jx+ . . .+ ap−1,jx
p−1

over F2[x]/(1 + xp). Similarly, the p bits in column j with
j = k, k + 1, . . . , p− 1 are also represented as a parity poly-
nomial aj(x) over F2[x]/(1 + xp). The relationship between
information polynomials and parity polynomials is given as

Hr×p ·
[
a0(x) a1(x) · · · ap−1(x)

]T
= 0T ,
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where 0T is the all-zero column of length r and Hr×p is the
r × p parity-check matrix

Hr×p =


1 1 1 · · · 1
1 x x2 · · · xp−1

...
...

...
. . .

...
1 xr−1 x2(r−1) · · · x(r−1)(p−1)

 .
In solving the above linear equations, the requirement in (1)
should also be satisfied for all j = k, k + 1, . . . , p− 1.

In this paper, we give a more general construction of E-
BR codes, called Generalized Expanded-Blaum-Roth (GEBR)
codes, that can support much more parameters compared to
the construction of EBR codes in [13]. Particularly, the EBR
codes can be viewed as special cases of the proposed GEBR
codes. In addition, we present an efficient decoding method
for the proposed GEBR code based on the LU factorization of
Vandermonde matrix and show that the encoding complexity
of GEBR codes with the LU decoding method is less than
that of the existing methods [13], [14]. Moreover, we show
that GERB codes have the same minimum symbol distance as
that of EBR codes for some parameters.

II. GENERALIZED EXPANDED-BLAUM-ROTH CODES

A. Construction

The proposed GEBR code is an array of size pτ × (k + r)
by encoding k(p− 1)τ information bits, where τ is a positive
integer and p is an odd prime number. Denote by si,j the bit
in row i and column j in this array, where i = 0, 1, . . . , pτ−1,
j = 0, 1, . . . , k+ r− 1. Given k(p− 1)τ information bits si,j
with i = 0, 1, . . . , (p − 1)τ − 1 and j = 0, 1, . . . , k − 1, we
compute τ parity bits s(p−1)τ,j , s(p−1)τ+1,j , . . . , spτ−1,j for
column j as

s(p−1)τ+µ,j =

p−2∑
`=0

s`τ+µ,j , (2)

where µ = 0, 1, . . . , τ − 1. We represent pτ bits
s0,j , s1,j , . . . , spτ−1,j in column j as the polynomial

sj(x) = s0,j + s1,jx+ s2,jx
2 + . . .+ spτ−1,jx

pτ−1,

over F2[x]/(1+x
pτ ), where j = 0, 1, . . . , k+r−1. Thus, we

obtain k information polynomials s0(x), s1(x), . . . , sk−1(x)
and r parity polynomials sk(x), sk+1(x), . . . , sk+r−1(x). We
can compute the r parity polynomials by solving the following
linear equations

Hr×(k+r) ·
[
s0(x) s1(x) · · · sk+r−1(x)

]T
= 0T (3)

over the quotient ring F2[x]/(1+x
pτ ), where Hr×(k+r) is the

r × (k + r) parity-check matrix

Hr×(k+r) =


1 1 1 · · · 1
1 x x2 · · · xk+r−1

...
...

...
. . .

...
1 xr−1 x2(r−1) · · · x(r−1)(k+r−1)

 .
(4)

Note that we have more than one solution of
sk(x), sk+1(x), . . . , sk+r−1(x) in the above equations,

we need to choose one solution such that the condition in (2)
is satisfied for j = k, k + 1, . . . , k + r − 1. We denote the
generalized Expanded-Blaum-Roth codes defined in (3) as
GEBR(p, k, r, τ). Note that the EBR code proposed in [13]
is a special case as GEBR(p, k, r = p− k, τ = 1).

Let Rpτ be the quotient ring F2[x]/(1+x
pτ ). A polynomial

in Rpτ is a polynomial of degree less than pτ with coefficients
in F2. The ring Rpτ has been discussed in [6], [15], [16]
and has been used to design regenerating codes [17], [18] for
computational complexity reduction.

Let Cpτ be a subset of Rpτ with polynomials being a
multiple of 1 + xτ , and

Cpτ = {a(x)(1 + xτ ) mod (1 + xpτ )|a(x) ∈ Rpτ}.

The next lemma shows the necessary and sufficient condition
of sj(x) ∈ Cpτ .

Lemma 1. [16, Theorem 1] The polynomial sj(x) is in Cpτ
if and only if the coefficients of polynomial sj(x) satisfy (2).

By Lemma 2 in [16], we have that the ring Rpτ is iso-
morphic to the direct sum of two rings F2[x]/(1 + xτ ) and
F2[x]/Mpτ (x), where

Mpτ (x) = 1 + xτ + . . .+ x(p−1)τ .

Therefore, the ring Cpτ is isomorphic to F2[x]/Mpτ (x), where
the isomorphism θ : Cpτ → F2[x]/Mpτ (x) is defined as
θ(f(x)) = f(x) modMpτ (x) and the inverse function is
φ(f(x)) = f(x)(1 +Mpτ ) mod (1 + xpτ ).

By (3) and (4), we have
1 1 · · · 1
1 x · · · xk−1

...
...

. . .
...

1 xr−1 · · · x(r−1)(k−1)



s0(x)
s1(x)

...
sk−1(x)



=


1 1 · · · 1
xk xk+1 · · · xk+r−1

...
...

. . .
...

x(r−1)k x(r−1)(k+1) · · · x(r−1)(k+r−1)




sk(x)
sk+1(x)

...
sk+r−1(x)


(5)

For j = 0, 1, . . . , k − 1, the coefficients of the information
polynomial sj(x) satisfy (2) and, according to Lemma 1,
sj(x) ∈ Cpτ . We can compute the r parity polynomials
sk(x), sk+1(x), . . . , sk+r−1(x) by solving (5) over Rpτ if the
determinant of the r × r matrix on the right-hand side of (5)
is invertible over F2[x]/Mpτ (x). More generally, we present
the condition of solving the k information polynomials from
any k out of k + r polynomials in next theorem.

Theorem 2. If two polynomials 1 + xi and Mpτ (x) are
relatively prime over F2[x], where i = 1, 2, . . . , k + r − 1,
then we can compute the other r polynomials from any k out
of k + r polynomials s0(x), s1(x), . . . , sk+r−1(x).

Proof. It is sufficient to show that the determinant of any
r × r sub-matrix of Hr×(k+r) in (4) is invertible over
F2[x]/Mpτ (x). Since any r × r sub-matrix of Hr×(k+r)



is a Vandermonde matrix, the determinant can be written
as the multiplication of r(r − 1)/2 factors 1 + xi, where
i ∈ {1, 2, . . . , k + r − 1}. In other words, the determinant
can be viewed as a polynomial in F2[x]/Mpτ (x) after modulo
Mpτ (x), and is invertible over the ring F2[x]/Mpτ (x). There-
fore, we can compute the other r polynomials from any k out
of k+r polynomials, if 1+xi is invertible over F2[x]/Mpτ (x)
for all i = 1, 2, . . . , k + r − 1.

If τ is a power of 2, we have

Mpτ (x) = 1 + xτ + . . .+ x(p−1)τ = (1 + x+ . . .+ xp−1)τ .

Note that the polynomial 1 + x + . . . + xp−1 is irreducible
polynomial over F2[x] if 2 is a primitive element in Zp [17].
Therefore, a(x) is invertible in the ring F2[x]/Mpτ (x) if and
only if a(x) and 1 + x + . . . + xp−1 are relatively prime in
F2[x], when τ is a power of 2. If 2 is a primitive element in Zp
and τ is a power of p, then Mpτ (x) is irreducible over F2[x]
[19]. Therefore, GEBR(p, k, r, τ) is MDS for k+r ≤ (p−1)τ ,
if 2 is a primitive element in Zp and τ is a power of p.

By Theorem 2, we can compute the r parity polynomials
that are in Cpτ if 1 + xi is relatively prime to Mpτ (x) over
F2[x] for all i = 1, 2, . . . , k+ r− 1. For j = 0, 1, . . . , k+ r−
1, the obtained polynomial si(x) ∈ Cpτ and the coefficients
of sj(x) satisfy (2) according to Lemma 1. Therefore, the
proposed GEBR(p, k, r, τ) can recover any one bit in a column
by reading other p−1 bits in the same column according to (2).
In addition, GEBR(p, k, r, τ) can recover up to τ consecutive
bits in a column by only reading other bits in the same column.
Moreover, GEBR(p, k, r, τ) can recover any r column failures.

B. Vandermonde Matrix over Rpτ
Since the ring Cpτ is isomorphic to F2[x]/Mpτ (x), we can

compute the r parity polynomials over Rpτ by first solving
the r× r Vandermonde linear system over F2[x]/Mpτ (x) and
then applying the inverse function φ.

Let Vr×r(a) be an r × r Vandermonde matrix,

Vr×r(a) =


1 xa1 · · · x(r−1)a1

1 xa2 · · · x(r−1)a2

...
...

. . .
...

1 xar · · · x(r−1)ar

 ,
where a = [a1, . . . , ar] and a1, . . . , ar are distinct integers
that range from 1 to k+ r− 1. Let u = (u1(x), . . . , ur(x)) ∈
Rrpτ and v = (v1(x), . . . , vr(x)) ∈ Crpτ . Consider the linear
equations

uVr×r(a) = v mod (1 + xpτ ). (6)

In the next theorem, we show that there are many vectors u
satisfying (6) given Vr×r(a) and v.

Theorem 3. Let a1, a2, . . . , ar be r integers such that the
polynomial xai1 +xai2 is invertible in the ring F2[x]/Mpτ (x)
for all 1 ≤ i1 < i2 ≤ r. All vectors u that satisfy (6) are
congruent to each other modulo Mpτ (x).

Proof. By Lemma 2 in [16], we have an isomorphic

θ(f(x)) = (f(x) mod (1 + xτ ), f(x) modMpτ (x)),

where f(x) ∈ Rpτ . Because 1+xτ and Mpτ (x) are relatively
prime polynomials over F2[x], by the Chinese remainder
theorem, the inverse function θ−1 of θ is

θ−1(a(x), b(x))

=a(x) ·Mpτ (x) + b(x) · (1 +Mpτ (x)) mod (1 + xpτ ).

Therefore, it is sufficient to solve u by considering the
following two equations

uVr×r(a) = v mod (1 + xτ ), and (7)
uVr×r(a) = v modMpτ (x). (8)

Note that (7) can be rewritten as

u mod (1+xτ ) ·(Vr×r(a) mod (1+xτ )) = v mod (1+xτ ).

Recall that vi(x) ∈ Cpτ for i = 1, 2, . . . , r, we have v mod
(1 + xτ ) = 0. Therefore, there are many solutions u′ and
u′ = 0 is one of the solutions.

For (8), the determinant of Vr×r(a) is

det(Vr×r(a)) =
∏
i1<i2

(xai1 + xai2 ),

which is invertible in the ring F2[x]/Mpτ (x) by the assump-
tion. Therefore, we can solve (8) to obtain the unique solution
u′′. After obtaining the solutions u′i(x) ∈ F2[x]/(1 + xτ ) and
u′′i (x) ∈ F2[x]/Mpτ to (7) and (8), respectively, for all i, we
can obtain the solution to (6) by

θ−1(u′i(x), u
′′
i (x))

=Mpτ (x)u
′
i(x) + (1 +Mpτ (x))u

′′
i (x) mod (1 + xpτ ).

Therefore, there are many solutions to (6) and are congruent
to each other modulo Mpτ (x).

From Theorem 3, there are many solutions of u in (6) and
one of the solutions satisfies that u ∈ Crpτ . In the next section,
we will present an efficient method to solve u in (6) with all
the entries of u being in Cpτ based on the LU factorization of
the Vandermonde matrix. Note that the result in Theorem 1 in
[20] can be viewed as a special case of the result in Theorem 3
with τ = 1.

III. EFFICIENT DECODING

In this section, we present an efficient decoding method for
solving the Vandermonde linear system over Rpτ based on LU
factorization of the Vandermonde matrix.

A. Efficient Division by 1 + xb over Rpτ
We need to first review an efficient decoding algorithm in

[16] for dividing by 1 + xb over Rpτ before showing the
efficient LU decoding method, where b is a positive integer
such that 1 + xb and Mpτ (x) are relatively prime. Given the
integer b and the polynomial f(x) ∈ Cpτ , we want to solve
g(x) ∈ Cpτ from the equation

(1 + xb)g(x) = f(x) mod (1 + xpτ ). (9)

The next lemma shows an efficient decoding algorithm for
solving g(x) ∈ Cpτ from (9).



Lemma 4. [16, Lemma 4] Let b be an integer with 1 ≤ b <
pτ and the greatest common divisor (GCD) of b and p is
gcd(b, p) = 1, and let gcd(b, τ) = a. We can first compute
the coefficients gj of the polynomial g(x) in (9) with j =
0, 1, . . . , a− 1 by

gj =

2τ
a −1∑
i= τ

a

f(j−ib) mod pτ +

4τ
a −1∑
i= 3τ

a

f(j−ib) mod pτ +

· · ·+

(p−1)τ
a −1∑

i=
(p−2)τ
a

f(j−ib) mod pτ (10)

and the other coefficients of g(x) iteratively by

gb`+j = fb`+j + gb(`−1)+j (11)

with the index ` running from 1 to pτ/a − 1 and j =
0, 1, . . . , a− 1.

By Lemma 4, there are

a(
p− 1

τ
· τ
a
− 1) + (pτ − a) = 3pτ − τ − 4a

2

XORs involved in solving g(x) from (9).

B. LU Decoding Method

We first review the LU factorization of a Vandermonde
matrix in [21], and then show the LU decoding algorithm for
solving u from the Vandermonde linear system in (6).

Theorem 5. [21] For a positive integer r, the r × r Vander-
monde matrix Vr×r(a) can be factorized into

Vr×r(a) = L(1)
r L(2)

r . . .L(r−1)
r U(r−1)

r U(r−2)
r . . .U(1)

r

where U
(`)
r is the upper triangular matrix

U(`)
r =



Ir−l−1 0

0

1 xa1 0 · · · 0 0
0 1 xa2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 xal

0 0 0 · · · 0 1



and L
(`)
r is the lower triangular matrix



It−1 0

0

1 0 · · · 0 0
1 xat+1 + xat · · · 0 0
...

...
. . .

...
...

0 0 · · · xar−1 + xat 0
0 0 · · · 1 xar + xat



for ` = 1, 2, . . . , r − 1, where t = r − `.

When r = 3, the 3 × 3 Vandermonde matrix
Vr×r(x

a1 , xa2 , xa3) can be factorized as

L
(1)
3 L

(2)
3 U

(2)
3 U

(1)
3

=

1 0 0
0 1 0
0 1 xa3 + xa2

 ·
1 0 0
1 xa2 + xa1 0
0 1 xa3 + xa1

 ·
1 xa1 0
0 1 xa2

0 0 1

 ·
1 0 0
0 1 xa1

0 0 1

 .
With the LU factorization of Vandermonde matrix in The-

orem 5, we can solve the Vandermonde linear system in (6)
by solving the following linear equations

uL(1)
r L(2)

r · · ·L(r−1)
r U(r−1)

r U(r−2)
r · · ·U(1)

r = v.

Algorithm 1 Solving a Vandermonde Linear System
Input: positive integer r, prime number p, integers

a1, a2, . . . , ar, and v = (v1(x), v2(x), . . . , vr(x)) ∈ Crpτ .
Output: u = (u1(x), u2(x), . . . , ur(x)) ∈ Cpτ that satisfies

uVr×r(a) = v mod (1 + xpτ ).
Require: xai1 + xai2 is relatively prime to Mpτ (x) over

F2[x] for all 1 ≤ i1 ≤ i2 ≤ r.
1: u← v
2: for i from 1 to r − 1 do
3: for j from r − i+ 1 to r do
4: uj(x)← uj(x) + uj−1(x)x

ai+j−r

5: for i from r − 1 down to 1 do
6: Solve g(x) from (xar + xai+j−r )g(x) = ur(x) by

Lemma 4
7: ur(x)← g(x)
8: for j from r − 1 down to r − i+ 1 do
9: Solve g(x) from (xaj + xar−i)g(x) = (uj(x) +

uj+1(x)) by Lemma 4
10: uj(x)← g(x)
11: ur−i(x)← ur−i(x) + ur−i+1(x)
12: return u = (u1(x), ..., ur(x))

The decoding algorithm of solving the Vandermonde linear
system based on the LU factorization of Vandermonde matrix
is given in Algorithm 1. In Algorithm 1, steps 2-4 require
r(r− 1)/2 additions and r(r− 1)/2 multiplications and steps
5-9 require r(r − 1)/2 additions and r(r − 1)/2 divisions by
factors of the form xaj + xar−i .

Consider an example of GEBR(p = 3, k = 3, r = 3, τ = 2).
We have three information polynomials

s0(x) = 1 + x+ x4 + x5,

s1(x) = x+ x2 + x3 + x4,

s2(x) = x+ x5,

where each polynomial is in C3·2. By (4), the parity-check
matrix H3×6 is

H3×6 =

1 1 1 1 1 1
1 x x2 x3 x4 x5

1 x2 x4 x6 x8 x10

 .



Therefore, we can obtain

[
s3(x) s4(x) s5(x)

] 1 x3 x6

1 x4 x8

1 x5 x10


=

 s0(x) + s1(x) + s2(x)
s0(x) + xs1(x) + x2s2(x)
s0(x) + x2s1(x) + x4s2(x)

T =

1 + x+ x2 + x3

1 + x2

x+ x5

T

According to Theorem 5, the above Vandermonde matrix can
be factorized as1 0 0

0 1 0
0 1 x4 + x5

 ·
1 0 0
1 x3 + x4 0
0 1 x3 + x5

 ·
1 x3 0
0 1 x4

0 0 1

 ·
1 0 0
0 1 x3

0 0 1

 .
By Algorithm 1, we can solve the three parity polynomials

as follows. First, we solve the following linear system

[
s′′′3 (x) s′′′4 (x) s′′′5 (x)

] 1 0 0
0 1 x3

0 0 1

 =

1 + x+ x2 + x3

1 + x2

x+ x5

T

to obtain

(s′′′3 (x), s′′′4 (x), s′′′5 (x)) = (1 + x+ x2 + x3, 1 + x2, x+ x3).

Then, we solve the following linear system

[
s′′3(x) s′′4(x) s′′5(x)

] 1 x3 0
0 1 x4

0 0 1

 =

1 + x+ x2 + x3

1 + x2

x+ x3

T

to obtain

(s′′3(x), s
′′
4(x), s

′′
5(x))

=(1 + x+ x2 + x3, x2 + x3 + x4 + x5, 1 + x2).

Next, we solve the following linear system

[
s′3(x) s′4(x) s′5(x)

] 1 0 0
1 x3 + x4 0
0 1 x3 + x5


=

 1 + x+ x2 + x3

x2 + x3 + x4 + x5

1 + x2

T

to obtain

(s′3(x), s
′
4(x), s

′
5(x)) = (x+ x5, 1 + x4, x+ x2 + x3 + x4).

Finally, we solve the following linear system

[
s3(x) s4(x) s5(x)

] 1 0 0
0 1 0
0 1 x4 + x5


=

 x+ x5

1 + x4

x+ x2 + x3 + x4

T

to obtain

(s3(x), s4(x), s5(x))

=(1 + x3 + x4 + x5, x3 + x5, x+ x2 + x3 + x4).

As the decoding method can be viewed as a special case of
encoding method, we only evaluate the encoding complexity.
We define the normalized encoding complexity as the ratio of
the total number of XORs involved in the encoding procedure
to the number of information bits. In the encoding procedure
of GEBR codes, we first compute τ parity bits for the
first k columns by (2) that takes kτ(p − 2) bits. Then, we
compute the multiplication of k polynomials and the r × k
Vandermonde matrix that requires (k − 1)rpτ XORs, and
solve the Vandermonde linear system. In solving the r × r
Vandermonde linear system, there are r(r − 1) additions that
require r(r − 1)pτ XORs, r(r − 1)/2 divisions that require
(r(r − 1)/2) · ((3pτ − τ − 4a)/2) XORs. Therefore, the
normalized encoding complexity of GEBR codes is

1
4r(r − 1)(7pτ − τ − 4a) + (k − 1)rpτ + kτ(p− 2)

k(p− 1)τ
,

where a = gcd(b, τ) which is defined in Lemma 4.
The encoding/decoding method of EBR is given in [13],

[14], and the normalized encoding complexity is

( 12r
2 − 5

2r + 2r + rk − 1)p+ 1
4r(r − 1)(3p− 5) + k(p− 2)

k(p− 1)
,

where k = p − r. We give the comparison of EBR and our
proposed codes about the encoding complexity in Table I. The
results of Table I show that the proposed LU decoding method
has less encoding complexity compared with the decoding
methods in [13], [14].

TABLE I
COMPARISON OF ENCODING ALGORITHMS.

p τ r k = p− r EBR GEBR Improvment%
5 1 2 3 3.67 3.67 0
5 1 3 2 8.88 8.25 7.0
7 1 4 3 13.22 11.28 14.7

11 1 5 6 14.42 11.48 20.4
17 1 7 10 25.63 15.11 41.0
19 1 8 11 38.69 17.67 54.3
23 1 10 13 100.72 22.88 77.3

IV. MINIMUM SYMBOL DISTANCE

In the following, we consider the symbol distance that is
the number of symbols in which two codewords differ.

Theorem 6. The minimum symbol distance of
GEBR(p, k, r, τ) is larger than or equal to 2(r + 1).

Proof. Since the code is MDS, there are at least r+1 non-zero
columns. Together with the result that each non-zero column
has a weight of at least 2, we can obtain the result.

Next, we show that the minimum symbol distance of
GEBR(p, k, r, τ) is 2(r + 1) when r = 2, 3 and τ is small
enough.



Theorem 7. When r = 2 and τ ≤ bk+1
2 c, the minimum

symbol distance of GEBR(p, k, r, τ) is 2(r + 1) = 6. When
r = 3 and τ ≤ bk+2

3 c, the minimum symbol distance of
GEBR(p, k, r, τ) is 2(r + 1) = 8.

Proof. By Theorem 6, if we can find a codeword composed of
r+1 non-zero polynomials each with weight 2 and k−1 zero
polynomials, then the minimum symbol distance is 2(r + 1).

When r = 2, by Theorem 6, each non-zero codeword
contains at least three non-zero polynomials. Without loss of
generality, suppose that the three non-zero polynomials are
sα(x), sβ(x), sγ(x) and the other k− 1 polynomials are zero,
where 0 ≤ α < β < γ ≤ k + 1. Suppose that the weight of
sα(x) is 2. According to (4), we obtain that[

sα(x)
xαsα(x)

]
=

[
1 1
xβ xγ

]
·
[
sβ(x)
sγ(x)

]
.

Therefore, we can compute that sγ(x) = sα(x)
xα+xβ

xβ+xγ
and

sβ(x) = sα(x)
xα+xγ

xβ+xγ
. Recall that bk+1

2 c ≥ τ , we have k +
1 ≥ 2τ . Let (α, β, γ) = (0, τ, 2τ) and s0(x) = 1 + xτ , then
sτ (x) = xτ+xpτ−τ and s2τ (x) = 1+xpτ−τ . When the weight
of sα(x) is larger than 2, the total weight of the codeword is at
least 7 since every non-zero column has a weight of at least 2.
Therefore, the minimum symbol distance of GEBR(p, k, r =
2, bk+1

2 c ≥ τ) is 2(r + 1) = 6.
When r = 3, by Theorem 6, we have at least four non-zero

polynomials. Without loss of generality, suppose that the four
non-zero polynomials are sα(x), sβ(x), sγ(x), sη(x) and the
other k − 1 polynomials are zero, where 0 ≤ α < β < γ <
η ≤ k + 2. We assume that the weight of sα(x) is 2. By (4),
we have sα(x)

xαsα(x)
x2αsα(x)

 =

 1 1 1
xβ xγ xη

x2β x2γ x2η

 ·
sβ(x)sγ(x)
sη(x)

 .
Since bk+2

3 c ≥ τ , we have k + 2 ≥ 3τ . Let (α, β, γ, η) =
(0, τ, 2τ, 3τ) and s0(x) = 1+xτ , then we can solve s3τ (x) =
xpτ−3+xpτ−2, s2τ (x) = 1+xpτ−3 and sτ (x) = xτ +xpτ−2

all with weights 2. When the weight of sα(x) is larger than
2, the total weight of the codeword is at least 9 due to the
fact that every non-zero column has a weight of at least 2.
Therefore, the minimum symbol distance is 2(r + 1) = 8
when bk+2

3 c ≥ τ and r = 3.

When τ = 1 and r = 1, 2, 3, the minimum symbol distance
is discussed in Lemma 30 in [14]. By Lemma 7, we have that
the minimum symbol distance with τ is small enough is equal
to that of EBR codes when r = 2, 3. The minimum symbol
distance of r = 2, τ > bk+1

2 c and r = 3, τ > bk+1
3 c is an

open problem. For r ≥ 4, the minimum symbol distance is an
open problem and is one of our future work.

V. CONCLUSION

In this paper, we propose GEBR codes that generalize the
construction of EBR codes with more flexible parameters. We
propose an efficient LU decoding method for GEBR codes
based on the LU factorization of Vandermonde matrix. We

also show that GEBR codes have the same minimum symbol
distance as that of EBR codes for some parameters.
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