
1

Relieving Both Storage and Recovery Burdens in
Big Data Clusters with R-STAIR Codes

Mingqiang Li, Runhui Li, and Patrick P. C. Lee

Abstract—Enterprise storage clusters increasingly adopt era-
sure coding to protect stored data against transient and perma-
nent failures. Existing erasure code designs not only introduce
extra parity information in a storage-inefficient manner, but
also consume substantial cross-rack recovery bandwidth. To
relieve both storage and recovery burdens of erasure coding,
we adapt our previously proposed STAIR codes into recovery-
oriented STAIR (R-STAIR) codes, which achieve storage efficiency,
recovery efficiency, and configuration generality against a mix of
node and rack failures. We evaluate R-STAIR codes via analysis
and Hadoop experiments. We show that by supporting mixed
fault tolerance, R-STAIR codes can significantly reduce both
storage and recovery burdens in storage clusters.

Index Terms—Erasure coding, recovery, storage clusters.

I. INTRODUCTION

A. Background and Motivation

Enterprise storage clusters are prone to failures [6], ranging
from transient failures where data is temporarily unavailable
(e.g., power loss, network disconnection, system upgrades,
reboots) to permanent failures where data is lost (e.g., disk
crashes, sector errors). Traditional storage clusters replicate
(by default, three) data copies for availability, but the storage
overhead of replication prohibits scalability due to the un-
precedented growth of data volume. Erasure coding provides
a redundancy alternative that provably achieves higher fault
tolerance than replication with much less redundancy [17]. It
is increasingly adopted in today’s enterprise storage clusters,
including those in Google [6], Azure [7], and Facebook [11],
[12], [14].

To construct an erasure code, we can configure two pa-
rameters N and K (where K < N ). Suppose that files are
stored in a storage cluster at the granularity of fixed-size
chunks. Then we can construct an (N,K) code that encodes
K uncoded chunks (called data chunks) to form additional
N −K equal-size coded chunks (called parity chunks), such
that any K out of the N data and parity chunks can reconstruct
the original data. Practical erasure code constructions often
satisfy two properties: (i) maximum distance separable (MDS),
meaning that the storage redundancy is minimum to achieve
the required fault tolerance, and (ii) systematic, meaning that
the K uncoded chunks are kept in storage. We call the
collection of the N data and parity chunks a stripe, which
will be distributed to N distinct nodes (e.g., storage servers).
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A storage cluster stores multiple stripes, which are encoded
identically and independently.

While erasure coding incurs less storage redundancy, the
recovery of erasure-coded data triggers substantial traffic, since
it needs to retrieve enough data and parity chunks for data
reconstruction. Nevertheless, extensive studies (e.g., [4], [7],
[10], [12], [14]) address how to improve recovery performance
in erasure-coded storage, while preserving storage efficiency.

Despite the wide adoption of erasure coding, we argue that
state-of-the-art erasure codes still cannot efficiently handle the
mixed failure nature of storage clusters, in which failures can
manifest at both node and rack levels. Most existing erasure
codes, including the recent recovery-optimized codes [4], [7],
[10], [12], [14], protect against only one level of failures.
To provide fault tolerance at both node and rack levels, a
commonly used approach is to place the data and parity
chunks across distinct nodes that reside in distinct racks [6],
[7], [9], [10], [12], [14]. However, such flat chunk placement
causes failure recovery to always retrieve data and parity
chunks across racks and hence consume significant cross-rack
bandwidth. In today’s storage clusters, cross-rack bandwidth is
often oversubscribed, meaning that the cross-rack bandwidth
available for each node in the worst case is only a fraction of
the inner-rack bandwidth (e.g., 5-20× lower) [1], [2], [16].

B. Contributions

Our primary objective is to construct erasure codes that
provide mixed fault tolerance for storage clusters, in which
failures can manifest at more than one level. Our previously
proposed STAIR codes [8] provide a starting point, by address-
ing fault tolerance against a mix of disk and sector failures in
monolithic disk arrays. STAIR codes only focus on storage
efficiency. We show that a simple extension to STAIR codes
can also achieve recovery efficiency in storage clusters. We
refer to our extended STAIR codes as recovery-oriented STAIR
(R-STAIR) codes, which achieve three specific design goals:
• Storage efficiency: R-STAIR codes reduce storage re-

dundancy by constructing parity chunks that specifically
tolerate a mix of node and rack failures;

• Recovery efficiency: R-STAIR codes improve recovery
performance by maintaining rack-local parity chunks, so
as to eliminate cross-rack traffic for commonly found
single-node recovery [7], [12], [14]; and

• Configuration generality: The parameters of R-STAIR
codes can be flexibly configured with a general construc-
tion as in STAIR codes [8], so as to address complex and
diverse failure patterns in practice.
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Fig. 1. Typical topology of a storage cluster.

The main contribution of this article is to demonstrate
how we adapt STAIR codes [8] into storage clusters. We
implement and deploy R-STAIR codes in a storage cluster
testbed. We also present evaluation results for the storage and
performance properties of R-STAIR codes using analysis and
Hadoop experiments. We hope that our work motivates future
research in providing mixed fault tolerance for data center
storage. The source code of our implementation of R-STAIR
codes is available online1.

II. SETTING

We consider a simplified two-tier topology of a storage
cluster as shown in Figure 1. The storage cluster is composed
of multiple racks, each of which contains multiple nodes for
storage. Nodes within the same rack are connected by a top-
of-rack (ToR) switch, and the ToR switches are connected
over a network core. In a storage cluster, inner-rack traffic
traverses only ToR switches, while cross-rack traffic traverses
both the ToR switches and the network core. Since cross-rack
bandwidth is often oversubscribed [1], [2], [16], we assume
that it is the performance bottleneck.

Failures (either transient or permanent) in a storage cluster
may occur at different levels, including sectors, disks, nodes,
and racks [6], [9]. This work targets two levels of failures:
nodes and racks. We use a node failure to collectively include
any failure of the underlying sectors or disks in a node.
We consider two extremes of failure scenarios: (i) the most
common single-node failure scenario [6], [7], [10]–[12], [14]
and (ii) the worst-case failure scenario with simultaneous
node and rack failures (i.e., the fault-tolerance limit beyond
which data loss happens). In the worst-case failure scenario,
we further define two rack-level failure types: (i) a partial-rack
failure, which refers to one node failure or a burst of node
failures [6] that occur in a rack, and (ii) a full-rack failure,
which means that an entire rack fails. We explore erasure
codes that not only tolerate a mix of partial-rack and full-rack
failures in the worst-case failure scenario, but also mitigate the
recovery overhead for the most common single-node failure
scenario.

1http://ansrlab.cse.cuhk.edu.hk/software/rstair

Recovery for a single-node failure is generally expensive in
erasure coding. For any (N,K) MDS code, the conventional
approach of recovering each chunk in the failed node is to
retrieve any K data or parity chunks of the same stripe from
other non-failed nodes. Thus, the amount of recovery traffic
(i.e., the data transferred for recovery) is K times the size
of recovered data. New erasure code constructions reduce the
amount of recovery traffic through different techniques, such
as sub-packetization (e.g., [4], [10], [12]) or local repairability
(e.g., [7], [14]). For example, minimum-storage regenerating
codes [4], [10] minimize the amount of recovery traffic by
allowing non-failed nodes to send linear combinations of sub-
packets, while ensuring the MDS property (i.e., the storage
redundancy is minimized). However, to provide fault tolerance
at both node and rack levels, existing erasure codes often place
chunks in a flat manner (see Section I-A), such that each rack
holds no more than one chunk of each stripe. As a result, their
single-node failure recovery schemes still consume substantial
cross-rack bandwidth.

III. R-STAIR CODES

R-STAIR codes achieve both storage and recovery efficien-
cies by taking into account a mix of node and rack failures in
code construction. To motivate, we compare R-STAIR codes
with the classical Reed-Solomon (RS) codes [13], which are
MDS codes (see Section I-A) and also assume flat chunk
placement. Consider an example in which we lay out data and
parity chunks, one chunk per node, over six racks with five
nodes each. Suppose that our objective is to tolerate the worst-
case mixed failure scenario in Figure 2(a), which contains
one full-rack failure and two additional partial-rack failures
with two and four failed nodes. The conventional approach
of deploying RS codes is to place the data and parity chunks
across different racks [6], [9]. As shown in Figure 2(b), we use
RS codes to encode three data chunks to three parity chunks
in each row, and distribute them across different racks. In
essence, we use three entire racks to store parity chunks.

On the other hand, R-STAIR codes construct and lay out
parity chunks in a different way as shown in Figure 2(c) (see
the construction method in Section III-C). We place parity
chunks in an entire rack to tolerate one full-rack failure, and
additionally place two and four parity chunks in two other
racks to tolerate any two partial-rack failures. Furthermore,
we place one parity chunk in each of the three remaining
racks. This parity layout gives R-STAIR codes two benefits.
First, to recover any single-node failure, R-STAIR codes can
retrieve the rack-local parity chunk and other non-failed data
chunks from within the same rack, thereby eliminating any
cross-rack traffic as opposed to RS codes. Second, while we
introduce an additional parity chunk per rack for rack-local
recovery, we offset the overhead by dedicating both nodes
and racks to tolerating a mix of node and rack failures.
In our example, RS codes incur a storage overhead of 2×
(see Figure 2(b)), while R-STAIR codes reduce the overhead
to 1.875× (see Figure 2(c)). Note that R-STAIR codes can
configure different parameters to further reduce the storage
overhead (see Section V-A).
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Fig. 2. Example of how RS and R-STAIR codes tolerate the worst-case failure scenario.

A. Configuration Parameters

R-STAIR codes are configured by the following six param-
eters, which specify how to construct and lay out a stripe of
data and parity chunks:
• n: number of racks;
• r: number of nodes per rack;
• m: number of tolerable full-rack failures;
• m′: number of tolerable partial-rack failures;
• e: a failure coverage vector (e0, e1, · · · , em′−1) that

specifies the numbers of tolerable node failures in the m′

tolerable partial-rack failures (where e0 ≤ e1 ≤ · · · ≤
em′−1); and

• l: number of node failures that can be locally recovered
within a rack.

As an example, the R-STAIR code in Figure 2(c) is specified
by n = 6, r = 5, m = 1, m′ = 2, e = (2, 4), and l = 1.

The parameters n, r, m, and m′ specify the trade-off
between fault tolerance and storage efficiency. In particular,
increasing n and r (for given m and m′) improves storage
efficiency, but degrades fault tolerance. The parameter e spec-
ifies how we tolerate node failure bursts in a partial-rack failure
[6]. For example, e = (2, 4) means that we can simultaneously
tolerate a burst of two-node failures and a burst of four-node
failures in any two partial-rack failures. In general, if we want
to tolerate a burst of b > 1 node failures in a rack, we may
set the largest element em′−1 = b. Note that we inherit the
above five parameters from STAIR codes [8]. Here, we map
the device and sector failures of STAIR codes to rack and node
failures of R-STAIR codes, respectively.

The parameter l, on the other hand, is new in R-STAIR
codes. It supports rack-local recovery by placing l parity
chunks in every rack. Since we assume local recovery for
single-node failures, we set l = 1, although our R-STAIR code
construction supports any value of l. If l = 0, then R-STAIR
codes reduce to the original STAIR codes.

B. Types of Parity Chunks

R-STAIR codes build on three types of parity chunks, where
the parity layout is shown in Figure 3. First, there are m racks
of horizontal parity chunks, each of which is encoded from
all other chunks in the same row. Second, there are l rows
of vertical parity chunks, each of which is encoded from all
other chunks in the same rack. Third, there are m′ racks that
respectively have e0 − l, e1 − l, · · · , em′−1 − l global parity

r
=

 5
 n

od
es

D0,0

D1,0

D2,0

D3,0

V4,0 V4,1 V4,2 V4,3 V4,4 X4,5

D0,1

D1,1

D2,1

D3,1

D0,2

D1,2

D2,2

D3,2

D0,3

D1,3

D2,3

G3,3

D0,4

G1,4

G2,4

G3,4

H0,5

H1,5

H2,5

H3,5

n = 6 racks

e = (2, 4)
m = 1 
rack

l = 1
row

Fig. 3. Layout of a stripe of a R-STAIR code, with n = 6, r = 5, m = 1,
m′ = 2, e = (2, 4), and l = 1.

chunks, each of which is generated from all data chunks of the
stripe. Without loss of generality, we arrange the parity chunks
in a “stair” layout as shown in Figure 3. Let D∗,∗, H∗,∗, V∗,∗,
and G∗,∗ denote a data chunk, a horizontal parity chunk, a
vertical parity chunk, and a global parity chunk, respectively,
where the two subscripts represent the row and rack indices
from 0 to r − 1 and from 0 to n − 1, respectively. Also, let
X∗,∗ denote a chunk that can serve as either a horizontal parity
chunk or a vertical parity chunk.

The three types of parity chunks serve different purposes.
The horizontal parity chunks protect against m rack failures
as in classical RS codes [13]. The vertical parity chunks
provide rack-local recovery for any l-node failure in the same
rack. In addition, the vertical parity chunks, together with the
global parity chunks, protect against partial-rack failures. For
example, referring to Figure 3, the chunks G1,4, G2,4, G3,4

and V4,4 protect a burst of four-node failures in any partial-
rack failure.

C. Code Construction

We now describe the construction of R-STAIR codes. R-
STAIR codes extend STAIR codes [8] to achieve rack-local
recovery. Here, we only highlight the key steps of the construc-
tion of R-STAIR codes. We refer readers to [8] for detailed
analysis and correctness proof.

R-STAIR codes operate on a canonical stripe, formed
by augmenting a regular stripe with virtual parity chunks.
Figure 4 illustrates how we form the canonical stripe from the
regular stripe in Figure 3. The idea is to add em′−1 − l rows
of virtual vertical parity chunks to the bottom, and add m′
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Fig. 4. Canonical stripe augmented from the regular stripe of the R-STAIR
code depicted in Figure 3.

columns of virtual horizontal parity chunks to the right. Note
that we create these virtual parity chunks only temporarily for
encoding and decoding operations, and will discard them after
the operations are completed.

R-STAIR codes perform encoding using two (N,K) MDS
codes, denoted by Crow and Ccol, which construct parity
chunks (including virtual ones) in the row and column direc-
tions, respectively. We configure Crow as an (n+m′, n−m)
code and Ccol as an (r+ em′−1− l, r− l) code. For example,
referring to Figure 4, Crow is an (8, 5) code, and Ccol is an
(8, 4) code. We can implement Crow and Ccol with any (N,K)
MDS codes, such as RS codes [13].

Note that the em′−1 × (m + m′) parity chunks at the
bottom right corner of a canonical stripe (i.e., chunks X∗,∗’s in
Figure 4) can be encoded by either Crow in the row direction
or Ccol in the column direction, due to the homomorphic
property [8]. Also, we construct the global parity chunks by
setting the same number and layout of virtual parity chunks
at the bottom right corner as zero values (e.g., see Figure 4).

Encoding: R-STAIR encoding works in an upstairs manner,
in which we alternately encode rows of parity chunks from
bottom to top via Crow, and columns of parity chunks from
left to right via Ccol. The idea is that for an (N,K) MDS
code, as long as there are K available chunks (either data
or parity chunks) of a stripe, we can generate the remaining
N −K chunks of the stripe. Figure 5 illustrates the sequence
of steps of R-STAIR encoding based on the canonical stripe in
Figure 4. We also have a similar downstairs encoding approach
[8], which constructs parity chunks from top to bottom and
right to left, and the details are omitted here.

Decoding: R-STAIR decoding treats any failed chunks as
parity chunks and reconstructs them as in upstairs encoding.
Specifically, we first logically re-arrange the rack identities so
that the failed racks are mapped to the right columns (with
the full-rack failures on the rightmost columns, followed by
the partial-rack failures), and also re-arrange the row identities
so that all failed nodes are mapped to the bottom rows. We
then follow the sequence of steps of upstairs encoding to
reconstruct all failed chunks. In practice, we often have much
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Fig. 5. The sequence of steps in R-STAIR encoding, which alternately encode
rows from bottom to up, and columns from left to right, in an upstairs manner.

fewer failed nodes than the worst case. For a single-node
failure recovery, we can locally recover the failed chunk using
the vertical parity chunk located in the same rack.

IV. IMPLEMENTATION

We implement R-STAIR codes on Facebook’s Hadoop2,
which realizes both HDFS [15] and MapReduce [3]. Face-
book’s Hadoop also supports erasure-coded storage based on
HDFS-RAID3.

A. Overview

We first overview HDFS, MapReduce, and HDFS-RAID.
HDFS stores file data as fixed-size chunks. It is composed
of a single NameNode and multiple DataNodes, in which
the NameNode manages the locations and other metadata of
all chunks and the DataNodes store the physical chunks. By
default, HDFS replicates each chunk three times.

MapReduce [3] performs data-intensive computations on
HDFS chunks. It is composed of a single JobTracker and
multiple TaskTrackers, in which the JobTracker schedules
computations as jobs with multiple tasks, and each task is
scheduled to run on a TaskTracker. There are two types of

2https://github.com/facebookarchive/hadoop-20
3http://wiki.apache.org/hadoop/HDFS-RAID
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tasks: map tasks, which read and process HDFS chunks, and
reduce tasks, which collect and process outputs from map
tasks.

HDFS-RAID augments HDFS with erasure coding. It adds
a new RaidNode to manage erasure-coded data. The RaidNode
launches a MapReduce job to encode replicated data chunks
via erasure coding in a distributed manner. MapReduce pro-
cesses erasure-coded chunks in the same way as replicated
chunks on HDFS, except that when a chunk is unavailable, a
map task issues degraded reads to retrieve other non-failed
chunks of the same stripe and reconstruct the unavailable
chunk. To improve degraded read performance, HDFS-RAID
deploys a parallel reader to download multiple non-failed
chunks simultaneously.

B. Integration of R-STAIR Codes

We implement a C library of R-STAIR codes in the Erasure-
Code module of HDFS-RAID, which currently implements
Reed-Solomon codes. We embed the library into HDFS-RAID
(written in Java) via Java Native Interface. Our experience is
that the encoding/decoding operations of R-STAIR can achieve
several hundred of megabytes per second, and their overheads
are limited compared to network transfers.

Facebook’s Hadoop currently does not support rack-local
recovery. As a proof of concept, we implement a rack-
local, single-node failure recovery mechanism for MapReduce.
Specifically, in the original MapReduce implementation, when
the JobTracker initializes a MapReduce job, it acquires the
locations of all data chunks to be processed. We modify the
JobTracker such that if a map task is to process an unavailable
chunk on a failed DataNode, we ensure that the map task
is scheduled to run on a non-failed DataNode co-located in
the same rack as the failed DataNode. Thus, when the map
task issues a degraded read to the unavailable chunk, it only
needs to retrieve chunks of the same stripe from the same rack,
without triggering cross-rack traffic.

V. EVALUATION

We compare R-STAIR codes with state-of-the-art codes in
terms of storage and performance.

A. Storage Efficiency

We demonstrate the storage efficiency of R-STAIR codes.
Suppose that our goal is to tolerate m = 1 full-rack failure
and m′ ≥ 1 partial-rack failures across n racks. We measure
the storage overhead as the total storage size normalized over
the original data size. We compare R-STAIR codes with RS
codes and two types of locality-aware codes that trade storage
efficiency for recovery efficiency.

(i) R-STAIR codes: Recall that R-STAIR codes are param-
eterized by n, r, m, m′, e = (e0, e1, · · · , em′−1), and l.
We set l = 1 for rack-local single-node failure recovery.
We also fix

∑m′−1
i=0 ei = r·m′

2 to tolerate the failures of
at most a half of the nodes in the m′ partial-rack fail-
ures. Note that the distribution of elements of e does not
affect the storage overhead. Thus, the storage overhead is

r·n
r·n−[r+ r·m′

2 +(n−1−m′)]
. A future work is to study how to

choose the most appropriate configuration parameters subject
to the fault tolerance requirements.

(ii) Reed-Solomon (RS) codes: RS codes dedicate a rack
of parity chunks to protect against a partial-rack failure. The
storage overhead is n

n−1−m′ . Note that Facebook’s recently
proposed Hitchhiker codes [12] build on the construction of
RS codes, and have the same storage overhead.

(iii) Flat local recovery (FLR) codes: FLR codes associate
local parity chunks with different subsets of nodes, and global
parity chunks with all nodes in a stripe. Thus, in single-node
failure recovery, FLR codes can retrieve chunks from a smaller
subset of nodes. We consider Azure’s implementation of FLR
codes [7], and the same idea is also applicable for Facebook’s
one [14]. To calculate the storage overhead of FLR codes, we
augment RS codes by dividing all data chunks of each stripe
into two local-recovery groups and replacing one data chunk
of each group with a local parity chunk. Thus, the storage
overhead is n

n−1−m′−2 .
(iv) Hierarchical local recovery (HLR) codes: HLR codes

(e.g., [5]) arrange data and parity chunks in a two-dimensional
array. They place local parity chunks in each rack to allow
rack locality, and place cross-rack parity chunks to tolerate
rack failures. We consider HLR codes with an r × n ar-
ray of chunk placement as R-STAIR codes, and augment
RS codes by adding one parity chunk per rack for rack-
local single-node failure recovery. The storage overhead is

r·n
r·n−[r·(1+m′)+(n−1−m′)] .

Results: We consider various configurations with default
parameters n = 14, r = 8, m = 1, and m′ = 3. Note that the
default configuration corresponds to (14, 10) RS codes used
by Facebook [11], [12], [14]. Figure 6 shows the results of
storage overheads. In most cases, R-STAIR codes incur the
lowest storage overhead by providing mixed fault tolerance.
For instance, when n = 14, r = 8, and m′ = 3, the
storage overhead of R-STAIR codes is 1.37×, while those of
RS/Hitchhiker, FLR, and HLR codes are 1.40×, 1.75×, and
1.60×, respectively (or 2-28% more). To summarize, R-STAIR
codes achieve higher storage savings when: (i) r increases
(see Figure 6(a)), as the redundancy for rack-local recovery
decreases; (ii) n decreases (see Figure 6(b)), as the redundancy
saving is more dominant in a smaller stripe; and (iii) m′

increases (see Figure 6(c)), as the saving due to mixed fault
tolerance becomes more dominant.

B. Testbed Experiments
We conduct testbed experiments on Hadoop to demonstrate

the recovery efficiency of R-STAIR codes. We set up a Hadoop
cluster with 21 machines: one machine hosts the NameNode,
RaidNode, and JobTracker, while each of the remaining 20
machines hosts a DataNode and a TaskTracker. Each machine
runs Linux Ubuntu 12.04, and is equipped a 3.1GHz Intel
Core i5-2400 CPU, 8GB RAM, and a Seagate ST31000524AS
SATA harddisk. All machines are interconnected by a 1Gb/s
Ethernet switch.

We mimic a multi-rack topology using the Linux command
tc [1]. Specifically, to simulate the over-subscription of cross-
rack bandwidth, we limit the aggregate outgoing cross-rack
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Fig. 6. Storage overheads of R-STAIR codes and existing codes.
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Fig. 7. Read performance of R-STAIR codes and RS codes in our Hadoop
testbed cluster.

bandwidth of each node using tc, while keeping its outgoing
bandwidth to each node in the same rack as 1Gb/s. For
example, an over-subscription ratio 10 : 1 means that the
aggregate outgoing cross-rack bandwidth of each node is
limited to 100Mb/s. Our experiments logically divide the
cluster into five racks with four DataNodes each.

We compare R-STAIR codes and RS codes, where the latter
is included in Facebook’s Hadoop. We configure R-STAIR
codes with n = 5, r = 4, m = 1, m′ = 1, e = (2), and l = 1,
and configure RS codes with (5, 3).

Degraded read performance: We first examine the de-
graded read performance in a single-node failure scenario.
Specifically, we write a stripe into HDFS, remove one data
chunk in the stripe to simulate an unavailable chunk caused
by a single-node failure, and finally perform a degraded read
to the unavailable chunk. We define the degraded read speed
as the ratio of the chunk size to the degraded read time. We
obtain the average results over 10 runs.

Figure 7 presents the degraded read speed results of R-
STAIR codes and RS codes versus the over-subscription ratio.
We also plot the normal cross-rack read speed for reference.
R-STAIR codes achieve faster degraded reads than RS codes
in general. As the over-subscription ratio increases, the de-
graded read speed of RS codes decreases from 21.79MB/s
to 5.48MB/s, mainly because RS codes consume substantial
cross-rack bandwidth when retrieving chunks from non-failed
DataNodes in other racks, while that of R-STAIR codes is
always kept around 24MB/s (up to 4.3× over that of RS
codes). Note that when the over-subscription ratio becomes
20 : 1, the degraded read speed of RS codes is close to the
speed of a normal cross-rack read, due to the parallel read
feature of HDFS-RAID (see Section IV).

MapReduce job runtime: We now investigate how de-
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Fig. 8. Runtime results of MapReduce jobs and their map tasks in our Hadoop
testbed cluster.

graded reads of both R-STAIR codes and RS codes affect
the runtime of a MapReduce job in a single-node failure. We
consider two standard MapReduce jobs: Grep and WordCount.
A Grep job extracts lines with a given pattern (which we
use “stair”) from an input file. Each map task scans a chunk
of the input file and emits all matched lines to the reduce
tasks, which output the matched lines. A WordCount job
counts the occurrence of each word in an input file. Each
map task tokenizes words in a chunk of the input file and
emits each word and its occurrence count to the reduce tasks,
which output the total occurrence count of each word. Both
MapReduce jobs run on a 330-chunk (about 21GB) input plain
text file obtained from the Gutenberg website4.

In our evaluation, we first write an input file into HDFS, and
encode the file into erasure-coded stripes with either R-STAIR
codes or RS codes. We then remove all chunks stored in one
DataNode to simulate a single-node failure. Finally, we run
a MapReduce job to process the file data in degraded mode.
We fix the over-subscription ratio of our testbed as 10 : 1. We
measure the average MapReduce job runtime over five runs.

Figure 8(a) presents the runtime results of both Grep and

4http://www.gutenberg.org
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WordCount jobs in a single-node failure, as well as the runtime
with no failure (in normal mode) for reference. We note that
WordCount generally has higher runtime than Grep, as it gen-
erates more data from map tasks to reduce tasks. In a single-
node failure, R-STAIR codes increase the runtime in normal
mode by only 4.0% for Grep and 10.9% for WordCount, while
RS codes increase the runtime in normal mode by 33.0% for
Grep and 21.9% for WordCount. Compared to RS codes, R-
STAIR codes save the runtime by 21.7% for Grep and 9.0%
for WordCount.

R-STAIR codes are useful for the map tasks that issue de-
graded reads. To demonstrate, we further analyze the runtime
of each map task in a MapReduce job. We divide map tasks
into two types: (i) normal task, which issues a normal read
to an available chunk, and (ii) degraded task, which issues a
degraded read to an unavailable chunk due to a single-node
failure.

Figure 8(b) presents the average runtime results of the
two types of map tasks. We now observe a more significant
difference between the map task runtimes of R-STAIR codes
and RS codes. For R-STAIR codes, the runtime of a degraded
task is comparable to that of a normal task; but for RS codes,
the runtime a degraded task is 8.5× and 1.6× over that of a
normal task for Grep and WordCount, respectively.

VI. CONCLUSIONS

Recovery-oriented STAIR (R-STAIR) codes extend our pre-
viously proposed STAIR codes to provide mixed fault toler-
ance for storage clusters with three goals in mind: recovery
efficiency, storage efficiency, and configuration generality.
The idea of R-STAIR codes is to construct parity chunks
that not only tolerate a mix of node and rack failures in a
storage-efficient manner, but also achieve rack-local recovery
for single-node failures. Evaluation results based on analysis
and Hadoop experiments demonstrate the effectiveness of R-
STAIR codes.
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