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Abstract—Erasure coding has been widely deployed in modern
large-scale storage systems for storage-efficient fault tolerance by
storing stripes of data and parity chunks. Recently, enterprises
explore the notion of wide stripes to suppress the fraction of
parity chunks in each stripe to achieve extreme storage savings.
However, how to efficiently generate wide stripes remains a
non-trivial issue. In particular, re-encoding the currently stored
stripes (termed narrow stripes) into wide stripes triggers sub-
stantial bandwidth overhead in relocating and regenerating the
chunks for wide stripes. We propose StripeMerge, a wide-stripe
generation mechanism that selects and merges narrow stripes
into wide stripes, with the primary objective of minimizing the
wide-stripe generation bandwidth. We prove the existence of an
optimal scheme that does not incur any data transfer for wide-
stripe generation, yet the optimal scheme is computationally
expensive. To this end, we propose two heuristics that can
be efficiently executed with only limited wide-stripe generation
bandwidth overhead. We prototype StripeMerge and show via
both simulations and Amazon EC2 experiments that the wide-
stripe generation time can be reduced by up to 87.8% over a
state-of-the-art storage scaling approach.

I. INTRODUCTION

Enterprises deploy large-scale clustered [11], [18], [33]
or geo-distributed [5], [7], [26] storage systems to manage
petabytes of data to cope with the tremendous growth of data
in the wild [20]. One major deployment challenge is that as
storage systems grow in scale, they become more susceptible
to transient and permanent failures [11]. To maintain data
durability, it is thus important to store data with redundancy.
Traditional storage systems adopt replication to provide fault
tolerance due to its simplicity. However, the storage overhead
of replication is significant and poses scalability concerns.

Erasure coding is now a widely adopted redundancy tech-
nique, as an alternative to replication, for achieving low-cost
durability guarantees in large-scale storage systems. Among
many erasure coding constructions, Reed-Solomon (RS) codes
[34] are the most popular erasure codes deployed in production
[11], [23], [26], [33], [40]. RS codes can be constructed by
two configurable integer parameters k and m. A (k,m) RS code
encodes k original fixed-size chunks, called data chunks, into
m coded chunks of the same size, called parity chunks, such
that any k out of the k+m data/parity chunks can reconstruct
the k data chunks (see Section II-A for details). A collection
of k+m data/parity chunks is called a stripe, in which the
k+m chunks are distributed across k+m storage nodes for
tolerating any m node failures. Large-scale storage systems
store data with multiple stripes, each of which is independently
encoded. We can readily observe that the redundancy overhead

of erasure coding (i.e., k+m
k ×) is much lower than that of

replication (i.e., (m+1)×) to tolerate any m node failures. For
example, to tolerate any four node failures, Facebook [26]
uses the (10,4) RS code with a redundancy of 1.4×, while
replication incurs a redundancy of 5× for tolerating the same
number of node failures. In general, erasure coding is proven to
incur significantly lower redundancy overhead than replication
with the same durability guarantees, measured in terms of
mean-time-to-data-loss [39].

Although erasure coding effectively mitigates storage redun-
dancy, storage practitioners are interested in further redundancy
reduction in erasure coding for extreme storage savings; even
a small fraction of redundancy reduction in erasure coding can
have significant cost benefits. For example, Azure reportedly
saves millions of dollars in production by moving from the
(6,3) RS code to the (14,4) RS code, or equivalently a
redundancy reduction of 14% [32].

To achieve extreme storage savings, we study wide stripes
in erasure coding [4], [16], which refer to the stripes that have
a very large k, while keeping a small m for fault tolerance
as in conventional erasure coding deployment. Wide stripes
are suitable for large-scale storage systems that have sufficient
nodes to support a very large k, while extensively suppressing
the redundancy to almost equal to one. For example, VAST [4]
considers (k,m) = (150,4), thereby making the redundancy to
only 1.027×. Given the ever-increasing storage demands in the
wild [20], wide stripes are particularly attractive for achieving
extreme storage savings in cold storage systems [1], [6], which
emphasize more on low-cost storage durability than high data
access performance.

Despite the promises of wide stripes, how to generate wide
stripes remains an unexplored yet non-trivial issue. We note
that when node failures happen, erasure coding requires that
any lost chunk in the failed nodes be reconstructed by retrieving
multiple available chunks from non-failed nodes, thereby
triggering substantial bandwidth costs in data transfers [9]. Such
reconstruction bandwidth costs are shown to increase with k [9],
and become prohibitive especially for wide stripes. To balance
the trade-off between storage efficiency and performance, we
argue that erasure coding should be parameterized differently
via a tiered approach with respect to the data age, based on
the observation that data chunks tend to be accessed more
frequently when they are newly written, but becomes less
frequently accessed as they age [26]. In the tiered approach, the
newly written data chunks are first encoded into the stripes with
a small k, referred to as narrow stripes, for high performance



as in conventional erasure coding deployment. As the data
chunks age, the narrow stripes are later re-encoded into wide
stripes for highly storage-efficient durability.

Clearly, re-encoding narrow stripes into wide stripes in-
evitably relocates data chunks and regenerates parity chunks,
leading to the substantial bandwidth overhead in data transfers.
Several studies have examined how to mitigate the bandwidth
overhead in a related problem called storage scaling [8], [19],
[42]–[45], [49], in which new nodes are added to a storage
system for capacity expansion and new stripes are re-computed
across the existing and newly added nodes. However, existing
storage scaling solutions still incur data transfers for relocating
chunks to new nodes (Section II-C).

Our key insight is that the generation of wide stripes often
occurs in large-scale storage systems that have already hosted
numerous nodes and stripes. Given the currently stored narrow
stripes across a large pool of nodes, it is highly likely that
we can select two narrow stripes that can be merged into a
new wide stripe, such that both data and parity chunks can
be locally generated, thereby incurring no data transfer in
wide-stripe generation.

To this end, we present StripeMerge, a wide-stripe generation
mechanism that aims to mitigate data transfers during wide-
stripe generation by carefully selecting and merging narrow
stripes in large-scale erasure-coded storage systems. Our
contributions include:
• We are the first to formally model the wide-stripe generation

problem. We prove the existence of an optimal scheme that
exploits the perfect merging property (defined in Section II-D)
of narrow stripes without incurring any data transfer for
wide-stripe generation. However, we also point out that the
algorithmic complexity of the optimal scheme is prohibitive.

• We design two practical heuristics for StripeMerge: (i) a
greedy heuristic that reduces the algorithmic complexity and
(ii) a parity-aligned heuristic that further enhances the greedy
heuristic by selectively merging narrow stripes based on the
placements of parity chunks.

• We prototype and evaluate StripeMerge via both simulations
and Amazon EC2 experiments. Evaluation results show that
StripeMerge significantly reduces data transfers for wide-
stripe generation by up to 87.8% compared to NCScale [49],
a state-of-the-art storage scaling scheme.
Our StripeMerge prototype is now open-sourced at:

https://github.com/yuchonghu/stripe-merge.

II. BACKGROUND AND MOTIVATION

We present the basics of erasure coding (Section II-A) and
describe the wide-stripe generation problem (Section II-B). We
show the limitations of existing storage scaling solutions in
addressing the problem (Section II-C). Finally, we motivate via
examples our main idea and state the challenges (Section II-D).

A. Erasure Coding

We elaborate the definitions and properties of erasure coding
from Section I. Many erasure codes have been proposed in
the literature (see surveys [10], [32] and Section VI), among

which Reed-Solomon (RS) codes [34] remain the most popular
erasure codes and are widely deployed in production [11],
[23], [26], [33], [40]. A (k,m) RS code encodes k fixed-size
data chunks, denoted by D1,D2, · · · ,Dk, into m coded parity
chunks of the same size, denoted by P1,P2, · · · ,Pm. Each set
of k+m data/parity chunks is called a stripe, and the k+m
chunks are stored in k+m nodes. In practice, large-scale storage
systems store multiple stripes that are independently encoded
and distributed different sets of k+m nodes. Also, each chunk
is often configured with a large size (e.g., 64 MiB [12] or
256 MiB [33]) to mitigate the I/O seek overhead.

RS codes are Maximum Distance Separable (MDS), in which
any k out of k+m data/parity chunks of a stripe can reconstruct
the original k data chunks; in other words, any m failed chunks
can be tolerated. The MDS property also implies storage
optimality, where the storage redundancy k+m

k is the minimum
(i.e., the redundancy of any (k,m) code is at least k+m

k to
tolerate any m failures). Furthermore, we consider systematic
RS codes, meaning that the k data chunks are kept in a stripe
after encoding for direct access.

Mathematically, each parity chunk Pi (1 ≤ i ≤ m) of RS
codes is formed by a linear combination of the k data
chunks D1,D2, · · · ,Dk of the same stripe over finite fields
(based on Galois Field arithmetic). In this work, we focus on
Vandermonde-based RS codes [30], in which each parity chunk
is linearly encoded by the data chunks as follows:

Pi =
k

∑
j=1

ji−1D j, for 1≤ i≤ m, (1)

where the encoding coefficient ji−1 (1≤ i≤ k and 1≤ j ≤ m)
is the (i, j)-th entry of the m× k Vandermonde matrix. Note
that systematic Vandermonde-based RS codes in general do
not exist for all parameters of k and m in small finite fields
[2], [21], [31]. Nevertheless, for small m, we can still find the
feasible constructions for a wide range of k [2].

B. Wide-Stripe Generation

Motivation of wide stripes: To achieve extreme storage
savings in erasure-coded storage, we store erasure-coded data
in wide stripes, defined as the stripes that have a very large k,
while m (i.e., the number of tolerable failures) remains small.
In this case, the redundancy k+m

k approaches one as k increases.
We assume that wide stripes are used for cold data that is

rarely accessed, such as backup and archival data [1], [6]
or binary large objects (BLOBs) whose access frequency
drops as they age. Note that wide stripes have high repair
penalty, as the repair bandwidth (i.e., the amount of data
transfers during repair) increases with k. We assume that repair-
efficient techniques are deployed for fast recovery, such as by
parallelizing repair operations [22], [25].
Wide-stripe generation problem: Recall from Section I that
the generation of wide stripes from narrow stripes incurs
substantial bandwidth overhead in data transfers. To show
how the data transfers are triggered, we consider a specific
wide-stripe generation process that converts two (k,m) narrow



stripes that are RS-coded into a new (2k,m) wide stripe that
is also RS-coded. Then the wide-stripe generation process
comprises the following steps:
• Step 1: Re-distributing the 2k data chunks of the two narrow

stripes, such that they are stored in 2k different nodes.
• Step 2: Migrating some of the data and parity chunks of the

two narrow stripes to some nodes that are responsible for
generating m new parity chunks of the wide stripe; the m
parity chunks are later distributed across m different nodes.
We see that there exist significant data transfers due to the

re-distribution of data chunks and the generation of parity
chunks from narrow stripes. Thus, our primary objective is
to minimize the wide-stripe generation bandwidth (i.e., the
amount of data transfers during wide-stripe generation).

The general problem of wide-stripe generation is difficult to
solve due to the numerous possible combinations of parameters.
Here, we focus on the following problem based on the above
specific case: Given a set of (k,m) narrow stripes in a storage
system, how do we generate (2k,m) wide stripes, such that the
wide-stripe generation bandwidth is minimized?

We use an example to describe the wide-stripe generation
problem. Consider two (2,2) narrow stripes, denoted by
{a,b,P1,P2} and {c,d,P′1,P′2}, where a, b, c, and d are data
chunks, and P1 = a+b, P2 = a+2b, P′1 = c+d, and P′2 = c+2d
are the corresponding parity chunks. We merge the narrow
stripes into a new (4,2) wide stripe {a,b,c,d,Q1,Q2}, where
Q1 = a+ b+ c+ d and Q2 = a+ 2b+ 22c+ 23d are parity
chunks. Note that all parity chunks are formed by the linear
combination of all data chunks in the same stripe based on
Vandermonde-based RS codes, and the ‘+’ operator denotes
the bitwise-XOR operation. Our goal is to minimize the wide-
stripe generation bandwidth by merging the above two narrow
stripes to the new wide stripe.

C. Storage Scaling

Existing storage scaling approaches for erasure-coded stor-
age [8], [19], [42]–[45], [49] provide efficient, yet sub-optimal,
solutions to the wide-stripe generation problem. They consider
a scenario of adding s new nodes to a storage system for
capacity expansion. To re-distribute the erasure-coded chunks
across the existing and newly added nodes, they study how to
convert (k,m) stripes into (k+ s,m) stripes, with the objective
of minimizing the scaling bandwidth (i.e., the amount of data
transfers during scaling). We can apply storage scaling to
wide-stripe generation, by setting s = k.

However, existing storage scaling solutions cannot com-
pletely eliminate wide-stripe generation bandwidth. To justify,
we consider a state-of-the-art storage scaling solution NCScale
[49], which applies the idea of network coding in storage
scaling. It shows via information-theoretic analysis that the
scaling bandwidth is minimized. Its idea is to allow local
computations of parity chunks. For example, Figure 1(a) shows
how NCScale can be applied in wide-stripe generation. The
parity chunk of the wide stripe Q1 = a+b+ c+d in node N3
can be locally computed by the parity chunk P1 = a+b and the
data chunks c and d, all of which all reside in N3 (note that in
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Fig. 1: The generation of a (4,2) wide stripe from the (2,2) narrow
stripes over nodes N1,N2,N3,N4, N5, and N6.

this example, the data chunks c and d may belong to different
narrow stripes before wide-stripe generation). Also, the other
parity chunk of the wide stripe Q2 = a+ 2b+ 22c+ 23d in
node N4 can be computed by the local parity chunk P2 = a+2b
and a delta chunk Q2−P2 = 22c+23d from N3. NCScale still
needs to relocate the data chunks to N5 and N6, respectively,
leading to non-zero wide-stripe generation bandwidth.

Storage scaling generally triggers non-zero data transfers
as it relocates data chunks (e.g., c and d in Figure 1(a)).
However, wide-stripe generation is different from storage
scaling, as it does not assume the addition of new nodes.
Such a subtle difference motivates us to design an optimal
solution specifically for wide-stripe generation.

D. Our Idea

Perfect merging: We observe that practical large-scale storage
systems often store numerous stripes that are distributed across
numerous nodes. To solve our problem of converting (k,m)
narrow stripes into (2k,m) wide stripes, our main idea is to
select two suitable (k,m) narrow stripes from the currently
stored numerous narrow stripes, such that the two selected
stripes can be merged into a new (2k,m) wide stripe without
any wide-stripe generation bandwidth. We motivate this idea
via an example in Figure 1(b), in which the two (2,2) narrow
stripes {a,b,P1,P2} and {c,d,P′1,P′2} can be merged into a new
(4,2) wide stripe {a,b,c,d,Q1,Q2}, without any data transfer.

The two narrow stripes in Figure 1(b) have two properties,
which we collectively call perfect merging, such that the wide-
stripe generation bandwidth can be completely eliminated: (i)
both of their data chunks reside in different nodes; and (ii)
both of their parity chunks have identical encoding coefficients
and reside in the same nodes.

Note that perfect merging leverages the critical feature of
Vandermonde-based RS codes (Section II-A), in which the new
parity chunks can be locally computed from the existing parity
chunks. Specifically, based on Equation (1), we have[

P1
P2

]
=

[
1 1
1 2

][
a
b

]
,

[
P′1
P′2

]
=

[
1 1
1 2

][
c
d

]
, (2)

and [
Q1
Q2

]
=

[
1 1 12 13

1 2 22 23

]a
b
c
d

 . (3)



N1 N2 N3 N4 N5 N6

① a b P1 P2① a b P1 P2

② b P1 P2a② b P1 P2a

N1 N2 N3 N4 N5 N6

① a b P1 P2

② b P1 P2a

(a) Two stripes with the same chunk placement

N1 N2 N3 N4 N5 N6

① a b P1 P2① a b P1 P2

② c P2 P1d② c P2 P1d

③ f P2P1e③ f P2P1e

... y P1P2z

...

...

...

...

...

...

(b) Complete chunk placement set

Fig. 2: Examples of the same chunk placement (figure (a)) and a
complete chunk placement set (figure (b)) in wide-stripe generation.

Based on Equations (2) and (3), we have[
Q1
Q2

]
=

[
P1
P2

]
+

[
12 ·P′1
22 ·P′2

]
. (4)

In general, if the m parity chunks of two (k,m) narrow
stripes have identical encoding coefficients, we can use them
directly as input to compute m new parity chunks of a (2k,m)
wide stripe, according to Equation (4). Also, if the m parity
chunks of the two narrow stripes reside in the same m nodes,
we can locally compute the m parity chunks of the wide stripe
without any data transfer.
Challenges: While perfect merging can effectively generate
a single wide stripe without any data transfer, how to sys-
tematically apply perfect merging to generate multiple wide
stripes for large-scale storage systems remains non-trivial. In
particular, the selection of the pairs of narrow stripes that
satisfy perfect merging depends on how all narrow stripes are
currently placed in the underlying storage system. The search
of all narrow stripes for large-scale storage systems can be a
time-consuming procedure.

III. ANALYSIS

We first formulate our wide-stripe generation problem as
a bipartite graph model (Section III-A). We show that there
always exists an optimal scheme that can generate all wide
stripes without any wide-stripe generation bandwidth given a
sufficiently large number of narrow stripes (Section III-B).

A. Bipartite Graph Model

We first formulate the wide-stripe generation problem for
a general large-scale storage system as follows. Consider a
large-scale storage system with N nodes that store a sufficiently
large number of (k,m) narrow stripes. Our goal is to select all
pairs of narrow stripes that satisfy perfect merging and merge
each of the pairs into a (2k,m) wide stripe, such that there is
no wide-stripe generation bandwidth across the N nodes.

Each (k,m) narrow stripe is randomly placed in any k+m
out of N nodes. If we treat the data and parity chunks differently

in each chunk placement, then there are a total of N!
(N−k−m)!

possible chunk placements of all stripes. In this calculation,
different orders of data chunks and parity chunks in a stripe
implies different chunk placements. However, in our wide-
stripe generation problem, the order of data chunks does not
matter when we select narrow stripes for merging into a wide
stripe; instead, only the order of parity chunks matters for
the computation of new parity chunks in the wide stripe. For
example, as shown in Figure 2(a), the two (2,2) stripes are
considered to have the same chunk placement, since their data
chunks appear in the same set of nodes (despite in different
orders) and the parity chunks P1 and P2 are in the exactly same
nodes. Thus, we only consider the chunk placement of a narrow
stripe across N nodes subject to the order of parity chunks,
and there are a total of N!

(N−k−m)!k! possible chunk placements
of all stripes, which we call a complete chunk placement set,
as shown in Figure 2(b).

We model the wide-stripe generation problem via a bipartite
graph G with two disjoint sets of vertices, denoted by X and Y ,
as well as a set of edges, denoted by E , that connect the vertices
in X and Y . Both X and Y are identical (i.e., X =Y), and each
vertex in X and Y corresponds to one of all N!

(N−k−m)!k! possible
chunk placements of all stripes (i.e., |X |= |Y|= N!

(N−k−m)!k! ).
We add an edge in E between a vertex x ∈ X and a vertex
y ∈ Y if any pair of stripes in the chunk placements x and y
satisfies perfect merging.

B. Existence

Consider a large-scale storage system that store a sufficiently
large number of stripes, such that in each of the N!

(N−k−m)!k!
possible chunk placements, there always exist (k,m) narrow
stripes. We now show that we can always pair two different
chunk placements, such that we can merge the (k,m) narrow
stripes in the paired chunk placements to form (2k,m) wide
stripes without any wide-stripe generation bandwidth.

In the following, we first show the properties of the bipartite
graph G modeled from our wide-stripe generation problem
(Lemmas 1 and 2). We then show the feasibility of incurring
zero bandwidth in wide-stripe generation.

Lemma 1. G is a
(N−m−k

k

)
-regular bipartite graph (i.e., each

vertex has a degree
(N−m−k

k

)
).

Proof: For each vertex x∈X , any (k,m) narrow stripe (denoted
by s1) in the chunk placement x occupies k +m out of N
nodes. It can pair with another (k,m) narrow stripe (denoted
by s2) to satisfy perfect merging if (i) the k data chunks of
s2 reside in any k of the remaining non-occupied N− k−m
nodes, and (ii) the m parity chunks of s2 reside in the same
nodes (in the same order) as those of s1. There are a total of(N−m−k

k

)
chunk placements in which s2 can reside for perfect

merging to hold. Thus, we can add edges from x to a total
of
(N−m−k

k

)
vertices in Y (which correspond to the satisfying

chunk placements). Similarly, we can add edges from each
vertex in Y to a total of

(N−m−k
k

)
vertices in Y given that

X = Y . The lemma follows.



Lemma 2. G has a perfect matching.

Proof: By Lemma 1, for any subset Sx ∈ X , there are a total
of K|Sx| edges from Sx to some subset Sy ∈ Y , where K =( N

N−m−k

)
. Since G is regular, Sy has a total of K|Sy| edges. This

implies that K|Sx|= K|Sy|, and hence |Sx|= |Sy|. By Hall’s
theorem [29], there exists a matching of size |X | in G. Since
|X |= |Y|, G has a perfect matching.

Theorem 1. We can always pair and merge the (k,m) narrow
stripes in two chunk placements to form (2k,m) wide stripes,
without any wide-stripe generation bandwidth.

Proof: By modeling the chunk placements as a bipartite graph
G as shown above, each chunk placement can always be paired
with another chunk placement by Lemma 2, such that the
stripes in the paired chunk placements satisfy perfect merging.
Merging those stripes into wide stripes incurs no wide-stripe
generation bandwidth. The theorem follows.

IV. STRIPEMERGE

StripeMerge is a wide-stripe generation mechanism that
selects and merges narrow stripes, with a primary objective
of minimizing the wide-stripe generation bandwidth. While
we can design the optimal scheme for StripeMerge without
any wide-stripe generation bandwidth based on the analysis
in Section III-B, we show that the optimal scheme incurs a
high algorithmic complexity (Section IV-A). To this end, we
present two variants of StripeMerge that trade the wide-stripe
generation bandwidth for algorithmic efficiency: the greedy
heuristic StripeMerge-G (Section IV-B), and the parity-aligned
heuristic StripeMerge-P (Section IV-C).

A. Limitations of Optimal Scheme

From Theorem 1 (Section III-B), we show the existence of
finding narrow stripes that satisfy perfect merging for wide-
stripe generation via bipartite graph modeling, so as to eliminate
all wide-stripe generation bandwidth. Thus, we can design the
optimal scheme based on this property by solving a classical
maximum matching problem on a bipartite graph. One subtlety
is that there may be more than one (k,m) narrow stripe in a
chunk placement at the beginning. We address this issue by
iteratively applying the maximum matching problem.

The optimal scheme works as follows. Consider a storage
system that stores (k,m) narrow stripes across N nodes.
Suppose that each chunk placement has the same number
of narrow stripes (we address this assumption later at the end).
We partition the narrow stripes into multiple complete chunk
placement sets, such that in each set, each chunk placement
has one narrow stripe. For each complete chunk placement
set, we form a bipartite graph G as in Section III-A. We then
find the maximum matching of G, which is also a perfect
matching (Lemma 2), using a maximum matching algorithm
(e.g., the Hopcroft-Karp algorithm [15]). Finally, we merge
every matched pair of narrow stripes into a wide stripe, without
any wide-stripe generation bandwidth (Theorem 1). We repeat
the above processing for all complete chunk placement sets.
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Fig. 3: Two stripes {a,b,a+b,a+2b} and {c,d,c+d,c+2d} satisfy
perfect merging, after three chunks are moved (merging cost = 3).

The optimal scheme poses two practical concerns. First,
its algorithmic complexity is prohibitively high in large-scale
storage systems. The time complexity of the maximum match-
ing algorithm, say the Hopcroft-Karp algorithm, is O(n2.5)
[15], where n is the number of vertices in a bipartite graph.
Even though the algorithm has a polynomial time complexity,
its running time overhead can be substantial. For example,
consider a scenario where (8,4) narrow stripes are distributed
over 40 nodes. Then there are a total of N!

(N−k−m)!k! ≈ 6.6×1013

possible chunk placements. Forming a bipartite graph for such
a large number of chunk placements is expensive both in space
and time. Second, in practice, each chunk placement may
have a varying number of narrow stripes. It is thus difficult
to guarantee that the complete chunk placement set can be
formed, making the optimal scheme infeasible.

B. Greedy Heuristic: StripeMerge-G

The optimal scheme requires all wide stripes to be generated
via perfect merging, which leads to a prohibitive algorithmic
complexity and the infeasibility to address incomplete chunk
placement sets. A natural remedy is to apply the perfect merging
of existing narrow stripes to generate as many wide stripes as
possible, while for the remaining narrow stripes, we transfer
a number of chunks to make them satisfy perfect merging to
generate the remaining wide stripes. We call the number of
transferred chunks as the merging cost. Figure 3 shows how
to transfer chunks for two narrow stripes to become perfect
merging. First, we check the placement of data chunks (in
O(k) time), and find that data chunks b and c are both stored
in N2, so we choose to transfer chunk c to N6 (i.e., Step 1 in
Figure 3). Second, we ensure that all parity chunks with same
encoding coefficients are in same nodes (in O(m) time). We
gather parity chunks a+b and c+d to the same node, so as
to generate the new parity chunk a+b+ c+d (i.e., Step 2 in
Figure 3). Third, we move the data chunk d from N3 to an
available node N5 (i.e., Step 3 in Figure 3). Thus, the merging
cost in Figure 3 is 3. Note that the computation of the merging
cost can be done in O(k+m) time, while k+m is a relatively
small constant compared to the total number of stripes.

We design a greedy heuristic, called StripeMerge-G, to merge
the narrow stripes in ascending order of the merging costs.
Its goal is to first merge the narrow stripe that satisfy perfect
merging (i.e., with zero merging costs) if they exist, followed by
merging the remaining narrow stripes that incur the immediate
and minimal merging costs. Algorithm 1 shows the algorithmic
details of StripeMerge-G. Given a set of narrow stripes that



Algorithm 1 StripeMerge-G
Input: T , a set of narrow stripes: {s1,s2, . . .}
Output: T ′, a set of pairs of narrow stripes to be merged
1: C = /0
2: for i = 1 to |T |−1 do
3: for j = i+1 to |T | do
4: c = Merging cost of si and s j
5: C = C+(c,si,s j)
6: end for
7: end for
8: Sort all tuples of C based on c in ascending order
9: while C 6= /0 do

10: Select the first tuple (c,si∗,s j∗) of C
11: T ′ = T ′+(si∗,s j∗)
12: Remove all the tuples that include si∗ and s j∗ in C
13: end while
14: return T ′

are currently stored, StripeMerge-G first computes the merging
costs of any pair of narrow stripes and constructs a set that
contains all pairs of narrow stripes and their merging costs
(lines 1-7). It sorts all the pairs of narrow stripes with respect
to the merging costs in ascending order (line 8); note that each
merging cost must be an integer ranging from 0 to k+m, so we
can use counting sort to sort all merging costs in O(n2) time,
where n is the number of narrow stripes and n(n−1)/2 is the
number of all pairs of narrow stripes. It then selects the first
pair of narrow stripes with the currently smallest merging cost,
such that the pair of narrow stripes will be merged to form a
wide stripe. It also removes all the elements that include any of
the two narrow stripes that have just been merged (lines 9-13).

We analyze the running time performance of StripeMerge-G.
Algorithm 1 needs to compute the merging costs of all pairs
of narrow stripes. Thus, its time complexity is O((k+m)n2),
where O(k+m) is the computation complexity of the merging
cost of a pair of narrow stripes (see above). The algorithm does
not significantly decrease the complexity of the optimal scheme
(i.e., from O(n2.5)), so it would still be time-consuming for
a large number of stripes of the large-scale storage systems.
Nevertheless, we leverage Algorithm 1 as a building block to
design the parity-aligned heuristic (Section IV-C).

C. Parity-aligned Heuristic: StripeMerge-P

To reduce the computation complexity of Algorithm 1, our
idea is based on the following observation: for a pair of narrow
stripes that satisfy perfect merging, a necessary condition is
that all their parity chunks have identical encoding coefficients
and reside in identical nodes; we call this property fully parity-
aligned. Based on the observation, we aim to identify the fully
parity-aligned pairs of narrow stripes, so as to quickly obtain
the pairs of narrow stripes that satisfy perfect merging. We
argue that this approach significantly reduces the number of
stripes as input in Algorithm 1.

Furthermore, we identify the partially parity-aligned pairs
of narrow stripes in which some, but not all, parity chunks are
aligned. Such pairs of narrow stripes satisfy perfect merging
after we transfer a small number of parity chunks. To specify

Algorithm 2 StripeMerge-P
Input: T , a set of (k,m) narrow stripes: {s1,s2, . . .}, and m

sets of i-partial parity-aligned pairs: P1,P2, . . . ,Pm.
Output: T ′, a set of pairs of narrow stripes to be merged
1: for i = m to 1 do
2: for j = 1 to |T | do
3: Ttemp = a set of pairs in Pi that contains s j
4: Find the pair in Ttemp that has minimum merging cost c
5: if c≤ m then
6: T ′ = T ′ + this pair
7: T = T − the stripes of this pair
8: end if
9: end for

10: end for
11: T ′ = T ′ + Algorithm 1 (T )
12: return T ′

the partially parity-aligned pairs, we define a i-partial parity-
aligned pair, where 1≤ i≤ m, as the pair of narrows stripes
have i parity chunks that are aligned. We denote a set of
i-partial parity-aligned pairs by Pi.

To construct Pi, StripeMerge-P stores the metadata of parity
chunk placements in a hash table when generating parity chunks.
The hash table stores key-value items, where each key refers to
a certain placement of any i parity chunks (1≤ i≤m) across N
nodes, and its value is a list of indices of the stripes that have
the corresponding parity chunk placement. In this way, we
can use the hash table to find the stripes that have i identical
parity chunk placement to form Pi in O(1) time. Note that for
any (k,m) stripe with its parity chunks placed in m nodes, it
can generate 2m− 1 different keys for all its i parity chunk
placements (1 ≤ i ≤ m). For example, suppose that we have
two stripes as in Figure 3: the first stripe (with index `) has
two parity chunks in nodes N3 and N4 and generates three
key-value items as [|3|4|, `], [|3| ∗ |, `], and [| ∗ |4|, `], while the
second stripe (with index `′) has two parity chunks in nodes
N1 and N4 and generates three key-value items as [|1|4|, `′],
[|1| ∗ |, `′], and [| ∗ |4|, `′]. Note that the second stripe has one
item [| ∗ |4|, `′] that has the same key as the item [| ∗ |4|, `] of
the first stripe, so they are stored as one combined item in the
hash table as [| ∗ |4|,{`,`′}]. Thus, P1 = {(`,`′)} and P2 = /0,
meaning that the two stripes in Figure 3 is 1-partial-parity-
aligned as they have one parity chunk in N4. Note that the
hash table incurs additional memory overhead, yet we show
that the memory overhead is limited (Section V-A).

We now design StripeMerge-P, using StripeMerge-G (Sec-
tion IV-B) as a building block. Algorithm 2 shows the algo-
rithmic details of StripeMerge-P. Given a set of narrow stripes
and the sets of i-partial parity-aligned pairs, the algorithm first
selects each i-partial parity-aligned set (line 1), and examines
each narrow stripe (line 2). Note that we start from i = m to
check the fully parity-aligned pairs first. With the hash table,
we can quickly find the stripes that are i-partial parity-aligned
with the examined stripe (line 3). We then find a pair that has
the minimum merging cost in the set (line 4). If this pair is
close to perfect merging (i.e., having low merging costs no
larger than m (line 5)), then we merge them first (line 6) as



N1N1 N2N2 N3N3 N4N4 N5N5 N6N6

① a b P1 P2① a b P1 P2

② c P1 P2 d② c P1 P2 d

③ e f P2 P1③ e f P2 P1

④ P1 P2 g h④ P1 P2 g h

⑤ i j P1 P2⑤ i j P1 P2

⑥ k P1 P2 l⑥ k P1 P2 l
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① a b P1 P2

② c P1 P2 d

③ e f P2 P1

④ P1 P2 g h

⑤ i j P1 P2

⑥ k P1 P2 l

Pairs Cost

(①, ⑤) 0

(②, ③) 1

(④, ⑥) 2

Pairs Cost

(①, ⑤) 0

(②, ③) 1

(④, ⑥) 2

Step 1. Input stripes

Step 2.
Build table

Step 3.Call StripeMerge-P
 Ƭ = { ①, ②, ③, ④, ⑤, ⑥ }

Step 3.Call StripeMerge-P
 Ƭ = { ①, ②, ③, ④, ⑤, ⑥ }

Aligned Num = 2
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④: none
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⑥: none
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②: match ③ in |*|4|. (cost = 1)

④: none
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⑥: none

Step 5.
Output scheme
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Get pair (④, ⑥). (cost = 2)

 Ƭ = { ④, ⑥ }

Step 4.Call StripeMerge-G 
with remnants  Ƭ = { ④, ⑥ }

Step 4.Call StripeMerge-G 
with remnants

Get pair (④, ⑥). (cost = 2)

 Ƭ = { ④, ⑥ }

Step 4.Call StripeMerge-G 
with remnants

Fig. 4: Example of the operations in StripeMerge-P.

they can reduce a lot of stripes as input in Algorithm 1 (line 7).
Finally, we call Algorithm 1 with a reduced input (line 11).

Note that the complexity of lines 1-10 in Algorithm 2 is
O((k+m)mn), where n is the number of narrow stripes, m is
the number of parity chunks of a narrow stripe, and O(k+m) is
the complexity of the merging cost computation (Section IV-B).
Note that m is generally a very small number compared to n.
Thus, if line 11 can reduce a large number of stripes that will
be the input of Algorithm 1, then the overall complexity can
be lowered. We show via simulations that Algorithm 2 can
reduce the running time significantly (Section V).

Figure 4 depicts an example on how Algorithm 2 works. In
this example, there are six (2,2) stripes across six nodes as
input (Step 1 in Figure 4). Suppose that before the algorithm
is called, we pre-process the stripes and build the hash table
when the narrow stripes are first created (Step 2 in Figure 4).
Then we obtain a hash table with 13 keys, nine of which are
mapped to a single stripe. We call Algorithm 2 to search for
the pairs from the fully parity-aligned ones to the partially
parity-aligned ones (Step 3 in Figure 4). The search will be
skipped if no stripe is i-partial parity-aligned with the current
stripe or it has been matched previously. We see that Stripe 1©
and Stripe 5© are fully parity-aligned, while Stripe 2© and
Stripe 3© are partially parity-aligned with a merging cost equal
to one. After the pairs ( 1©, 5©) and ( 2©, 3©) are selected, we call
Algorithm 1 to handle remaining stripes to obtain a complete
scheme (Step 4 in Figure 4), and select the pair ( 4©, 6©) with
a merging cost equal to two. Finally, we obtain a scheme with
a total merging cost three.
Discussion: The main idea of StripeMerge-P is to find parity-
aligned narrow stripes, so as to reduce the cost of merging the

narrow stripes. However, even though two narrow stripes are
fully or partially parity-aligned, their data chunks may happen
to reside in the same nodes. Such “bad” data chunk layouts lead
to the relocation of data chunks into different nodes in wide-
stripe generation, so the resulting merging cost may increase.
We study this impact via simulations (Section V-A).

V. PERFORMANCE EVALUATION

We evaluate StripeMerge using both simulations and Amazon
EC2 experiments. We compare StripeMerge with NCScale
[49], a state-of-the-art storage scaling scheme built on network
coding (Section II-C). We address two questions: (i) How
much wide-stripe generation bandwidth can StripeMerge save
via perfect merging compared to compared to NCScale? (ii)
How much running time can StripeMerge-P reduce via parity
alignment compared to StripeMerge-G?

A. Simulations

We implement a simulator for StripeMerge in C++ with about
950 SLoC. We deploy the simulator on a server equipped with
an Intel Xeon Silver 4110 2.10 GHz CPU, 256 GiB RAM, and
a Seagate ST1000DM003 7200 RPM 1 TiB SATA hard disk.
The server runs on Ubuntu 16.04. We also implement NCScale
in the simulator under the same settings for fair comparisons.
Note that the simulator does not implement coding operations
and data transfers, which are left to be done in Amazon EC2
experiments (Section V-B).

We configure our simulator with different parameter choices,
including (k,m) (i.e., the coding parameters for narrow stripes)
and N (i.e., the total number of nodes). Here, we set N as
a multiple of 2k +m, since the case of N = 2k +m is the
minimum number of nodes for a pair of (k,m) narrow stripes
to satisfy perfect merging (i.e., the data chunks are stored in
2k different nodes, while the parity chunks are stored in the
same m nodes). We report the average results over five runs.
Experiment A.1 (Wide-stripe generation bandwidth): We
measure the average wide-stripe generation bandwidth, in terms
of the number of transferred chunks in the generation of a
single wide stripe. Here, we randomly distribute the 10,000
stripes across N nodes. We evaluate different combinations of
N and (k,m).

Figure 5 shows the wide-stripe generation bandwidth (per
wide stripe) for StripeMerge-P, StripeMerge-G, and NCScale
for 4 ≤ k ≤ 64, 2 ≤ m ≤ 4, as well as N = 2(2k +m) and
N = 4(2k+m). Overall, StripeMerge significantly reduces the
wide-stripe generation bandwidth of NCScale in all cases. For
example, for k = 64,m = 2 and N = 4(2k+m), the reduction of
wide-stripe generation bandwidth can be up to 96%. In addition,
StripeMerge’s wide-stripe generation bandwidth increases with
k and m. The reason is that a larger k or m makes perfect
merging more difficult to satisfy, as perfect merging requires
two narrow stripes to have data chunks in different nodes and
parity chunks in the same nodes.

Furthermore, StripeMerge’s wide-stripe generation band-
width mostly increases with N when k is large, while sometimes
decreases with N when k is small. For example, Figures 5(a) and
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Fig. 5: Experiment A.1: Average wide-stripe generation bandwidth cost per wide stripe (in number of chunks) for different N, k, and m.

5(d) show that when N increases from 2(2k+m) to 4(2k+m),
the wide-stripe generation bandwidth per wide stripe only
increases from 0.1 to 0.2 for k = 4, while it mostly decreases
for k > 4. The reason is that if N increases, it will be more
likely for the data chunks of a pair of narrow stripes to reside
in different nodes, which helps perfect merging (a positive
effect); on the other hand, it will be less likely for parity
chunks to reside in identical nodes, which hinders perfect
merging (a negative effect). Thus, when k is not large, the
negative effect dominates as the number of parity chunks (i.e.,
m) is comparable to k, so the wide-stripe generation bandwidth
increases with N. On the other hand, when k becomes much
larger than m, the positive effect dominates and the wide-
stripe generation bandwidth decreases with N. In summary,
StripeMerge can benefit more from stripes of a wider size (i.e.,
a larger k) and a system of a larger scale (i.e., a larger N).

Finally, StripeMerge-P has nearly the same performance as
StripeMerge-G. This implies that the parity-aligned property of
StripeMerge-P does not influence the effectiveness in reducing
the wide-stripe generation bandwidth.
Experiment A.2 (Running time versus (k,m)): We measure
the running times of StripeMerge-G and StripeMerge-P (i.e.,
Algorithms 1 and 2, respectively) for different combinations of
(k,m). As in Experiment A.1, we randomly distribute 10,000
stripes across N nodes, where we fix N = 2(2k+m).

Figure 6 compares the running times per wide stripe
of StripeMerge-G and StripeMerge-P for different (k,m).
StripeMerge-P is always faster than StripeMerge-G for the same
(k,m), implying that the parity-aligned property of StripeMerge-
P effectively speeds up the algorithm. In particular, for small
values of k (e.g., 4, 8, and 16), StripeMerge-P has almost zero
running time per wide stripe.

The relative reduction of the running time of StripeMerge-
P over StripeMerge-G is lower for a larger k. For example,
Figure 6(a) shows that for k = 16 the reduction is 86.5% ,
while for k = 32 the reduction is 18.9%. The reason is that
more pairs of narrow stripes now have bad data chunk layouts
for a larger k (Section IV-C), so StripeMerge-P cannot exploit
the parity-aligned property to speed up the algorithm.
Experiment A.3 (Running time versus the number of nar-
row stripes): We measure the running times of StripeMerge-
G and StripeMerge-P versus the number of narrow stripes
(denoted by n). We fix (k,m) = (16,4) and N = 2(2k+m) = 72.

Figure 7 compares the total running times of processing
all stripes of StripeMerge-G and StripeMerge-P, where the
number of narrow stripes varies from 1,000 to 100,000. The
running time of StripeMerge-G increases dramatically with the
number of narrow stripes, while that of StripeMerge-P increases
linearly. The results are consistent with their time complexities
O((k +m)n2) and O((k +m)mn), respectively (Section IV).
Thus, StripeMerge-P is more practical than StripeMerge-G for
large-scale storage systems with numerous narrow stripes.
Experiment A.4 (Memory consumption of StripeMerge-
P): We measure the memory consumption of StripeMerge-P,
including the total memory usage and the memory usage of
the hash table that stores parity-aligned metadata (Section
IV-C) for different n. Here, we fix (k,m) = (16,4) and
N = 2(2k+m) = 72.

Figure 8 shows that the memory overhead of the hash table
is limited compared to the total memory overhead. For example,
processing 100,000 narrow stripes incurs 4.85 GiB of memory,
while the hash table itself only incurs 72.5 MiB of memory.
Thus, the additional memory overhead incurred by StripeMerge-
P for tracking parity-aligned metadata is acceptable.
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Fig. 6: Experiment A.2: Running times of StripeMerge-G and StripeMerge-P per wide stripe versus (k,m) (in units of milliseconds) for
different k and m.
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Fig. 7: Experiment A.3: Total running times of StripeMerge-G
and StripeMerge-P of processing all stripes (in seconds) versus n.

1

10

100

1000

1K 10K 20K 40K 60K 80K 100K
Number of Narrow Stripes

M
em

or
y 

O
ve

rh
ea

d 
(M

iB
) Hashtable Total

Fig. 8: Experiment A.4: Memory consumption of StripeMerge-P
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B. Amazon EC2 Experiments

We further implement a StripeMerge prototype by extending
our simulator (Section V-A) with the coding and data transfer
functionalities (in about 1,000 SLoC), so that StripeMerge
actually performs coding operations on the data chunks
and transfers coded chunks among the nodes in wide-stripe
generation. We deploy the StripeMerge prototype on Amazon
EC2 instances in the US East (North Virginia) region. We
implement the coding operations of Reed-Solomon codes
based on two Intel ISA-L APIs [3]: ec_init_tables, which
specifies coding coefficients, and ec_encode_data, which
specifies encoding/decoding operations. We configure our
prototype with different coding parameters (k,m) for narrow
stripes. We allocate N = 2(2k+m) m5.xlarge instances that
serve as storage nodes. To evaluate the impact of network
bandwidth, we also configure a dedicated instance that acts as
a gateway, such that any transferred chunk originating from
an instance must traverse the gateway before reaching another
instance. We use the Linux traffic control command tc to
control the outgoing bandwidth of the gateway.

In our experiments, we vary the gateway bandwidth from
1 Gb/s to 8 Gb/s. We also consider different chunk sizes. Before
running each experiment, we randomly distribute 10,000 narrow
stripes across the nodes. We report the average results of each
experiment over five runs. We also provide the generation time
variance due to fluctuating cloud network bandwidth.
Experiment B.1 (Time breakdown): We measure the break-
down of the wide-stripe generation time and identify the
bottleneck step. We decompose the generation into three steps:
(i) the running time of the algorithm, which refers to the

Method Running Time Transfer Time Compute Time

StripeMerge-G 38.97 2,313.75 4.94
StripeMerge-P 1.58 2,323.35 4.95

TABLE I: Experiment B.1: Total time breakdown of StripeMerge-G
and StripeMerge-P for processing 10,000 narrow stripes (in seconds).

selection of pairs of narrow stripes to be merged, (ii) the transfer
time, which refers to the transfers of chunks for merging, and
(iii) the compute time, which refers to the local computation
of merging parity chunks of narrow stripes into new parity
chunks of wide stripes.

Table I shows the breakdown of the total times of
StripeMerge-G and StripeMerge-P for processing 10,000 nar-
row stripes, with (k,m) = (16,4), N = 2(2k+m) = 72, a fixed
chunk size of 64 MiB, and a fixed gateway bandwidth of 8 Gb/s.
We see that the transfer time dominates, thereby justifying our
goal of minimizing the wide-stripe generation bandwidth to
improve the overall performance. Also, while StripeMerge-G’s
running time incurs 1.65% of the overall time for 10,000 stripes,
this percentage will increase dramatically with the number of
stripes (Experiment A.3). Thus, for large-scale storage systems
that have numerous stripes, StripeMerge-G’s running time will
degrade the overall performance. In contrast, StripeMerge-P’s
running time incurs only 0.068% of the overall time for 10,000
stripes, while this percentage only increases linearly with the
number of stripes (Experiment A.3).
Experiment B.2 (Wide-stripe generation time versus
(k,m)): We measure the wide-stripe generation time per
wide stripe for different (k,m). Figure 9 compares the wide-
stripe generation times (per wide stripe) for StripeMerge-
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Fig. 9: Experiment B.2: The wide-stripe generation time (per wide stripe), in seconds, under different k and m.
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Fig. 11: Experiment B.4: The wide-stripe generation time (per
wide stripe), in seconds, versus chunk size.

G, StripeMerge-P, and NCScale, where we fix the gateway
bandwidth as 8 Gb/s and the chunk size as 64 MiB [12]. Similar
to our simulation results (see Figures 5(a)-(c)), our empirical
results also show that StripeMerge significantly reduces the
overall wide-stripe generation time of NCScale under the same
parameters of (k,m). For example, for (k,m) = (16,2), the
reduction is up to 87.8%. Note that StripeMerge’s wide-stripe
generation time also increases with both k and m, similar to
our simulations for the same reasons.
Experiment B.3 (Impact of gateway bandwidth): We mea-
sure the wide-stripe generation time per wide stripe for different
settings of gateway bandwidth, from 1 Gb/s to 8 Gb/s. Figure 10
shows the results for (k,m) = (16,4), N = 2(2k+m) = 72, and
a fixed chunk size of 64 MiB. The wide-stripe generation times
of StripeMerge and NCScale decrease linearly with the gateway
bandwidth, and StripeMerge maintains its performance gains
over NCScale.
Experiment B.4 (Impact of chunk size): We measure the
wide-stripe generation time per wide stripe for different chunk
sizes, from 8 MiB to 64 MiB. Figure 11 shows the results for
(k,m) = (16,4), N = 2(2k+m) = 72, and a gateway bandwidth
of 8 Gb/s. The wide-stripe generation times of StripeMerge
and NCScale increase linearly with the chunk size, and again
StripeMerge maintains its performance gains over NCScale.

VI. RELATED WORK

There has been a rich body of studies on erasure-coded
storage in the literature, including how to minimize the
bandwidth in both repair and scaling problems. For the
repair problem, some studies propose new constructions of
regenerating codes [9], [17], [27], [37] that minimize the repair
bandwidth, and locally repairable codes [18], [28], [35] that

mitigate repair I/Os with extra storage. Some studies propose
new repair-efficient techniques, such as lazy recovery that
reduces the repair traffic by carefully delaying immediate repair
operations [36], parallelizing and pipelining repair operations
that reduce the repair time [22], [25], and adapting to dynamic
workload changes by scheduling repair tasks in free timeslots
[38]. For the scaling problem, some studies focus on designing
scaling approaches that minimize the bandwidth under RAID-
0 (i.e., no fault tolerance) [46], [50], RAID-5 (i.e., single
fault tolerance) [14], [41], [47], [48], or RS codes [19], [43],
[44], [49]. Maturana and Rashmi [24] study a scaling-related
problem called code conversion, and propose convertible code
constructions that minimize the I/Os in code conversion. Unlike
the repair and scaling problems, StripeMerge studies how
to minimize the bandwidth and mitigate the computational
overhead in the wide-stripe generation problem.

Some studies also address the wide-stripe problem from
different perspectives. VAST [4] employs locally decodable
codes to improve repair performance of wide stripes. Haddock
et al. [13] use general-purpose GPUs to improve decoding
efficiency for wide stripes. A recent work ECWide [16] presents
combined locality, the first mechanism that systematically
addresses the wide-stripe repair problem and proposes efficient
encoding and update schemes. In contrast, StripeMerge focuses
on how to generate wide stripes efficiently and examines an
inherently different problem from [16].

VII. CONCLUSIONS

We propose a novel mechanism, called StripeMerge, that
merges narrow stripes to efficiently generate wide stripes for
large-scale erasure-coded storage. We prove, via bipartite graph
modeling, the existence of an optimal scheme for wide-stripe



generation. We further build StripeMerge with two heuristics,
which realize efficient wide-stripe generation with only limited
wide-stripe generation bandwidth overhead. Both simulations
and Amazon EC2 experiments demonstrate the wide-stripe
generation efficiency of StripeMerge over state-of-the-arts.
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