
UniKV: Toward High-Performance and Scalable KV Storage
in Mixed Workloads via Unified Indexing

Qiang Zhang1, Yongkun Li1, Patrick P. C. Lee2, Yinlong Xu1, Qiu Cui3, Liu Tang3

1University of Science and Technology of China 2The Chinese University of Hong Kong 3PingCAP
zhgqiang@mail.ustc.edu.cn, {ykli, ylxu}@ustc.edu.cn, pclee@cse.cuhk.edu.hk, {cuiqiu, tl}@pingcap.com

Abstract—Persistent key-value (KV) stores are mainly designed
based on the Log-Structured Merge-tree (LSM-tree), which suffer
from large read and write amplifications, especially when KV
stores grow in size. Existing design optimizations for LSM-
tree-based KV stores often make certain trade-offs and fail to
simultaneously improve both the read and write performance on
large KV stores without sacrificing scan performance. We design
UniKV, which unifies the key design ideas of hash indexing and
the LSM-tree in a single system. Specifically, UniKV leverages da-
ta locality to differentiate the indexing management of KV pairs.
It also develops multiple techniques to tackle the issues caused by
unifying the indexing techniques, so as to simultaneously improve
the performance in reads, writes, and scans. Experiments show
that UniKV significantly outperforms several state-of-the-art KV
stores (e.g., LevelDB, RocksDB, HyperLevelDB, and PebblesDB)
in overall throughput under read-write mixed workloads.

I. INTRODUCTION

Persistent key-value (KV) storage organizes data in the form
of key-value pairs and forms a critical storage paradigm in
modern data-intensive applications, such as web search [1], [2],
e-commerce [3], social networking [4], [5], data deduplication
[6], [7], and photo stores [8]. Real-world KV workloads become
more diversified and are geared toward a mixed nature. For
example, four out of five Facebook’s Memcached workloads
are read-write mixed [9]; the read-write ratio of low-latency
workloads at Yahoo! has shifted from 8:2 to 1:1 in recent years
[10]; Baidu’s cloud workload also shows a read-write ratio
of 2.78:1 [11]. Such mixed workloads challenge the indexing
structure design of KV stores to achieve high read and write
performance, while supporting scalable storage.

The Log-Structured Merge-tree (LSM-tree) [12] is a popular
indexing design in modern persistent KV stores, including local
KV stores (e.g., LevelDB [2] and RocksDB [5]) and large-
scale distributed KV stores (e.g., BigTable [1], HBase [13], and
Cassandra [14]). The LSM-tree supports three main features
that are attractive for KV-store designs: (i) efficient writes, as
newly written KV pairs are batched and written sequentially
to persistent storage; (ii) efficient range queries (scans), as KV
pairs are organized in multiple levels in a tree-like structure
and sorted by keys in each level; and (iii) scalability, as KV
pairs are mainly stored in persistent storage and can also be
easily distributed across multiple nodes.

The LSM-tree, unfortunately, incurs high compaction and
multi-level access costs. As KV pairs are continuously written,
the LSM-tree flushes them to persistent storage from lower
levels to higher levels. To keep the KV pairs at each level sorted,

the LSM-tree performs regular compactions for different levels
by reading, sorting, and writing back the sorted KV pairs.
Such regular compactions incur I/O amplification (which can
reach a factor of 50× [15]), and hence severely hurt the I/O
performance and the endurance of storage systems backed by
solid-state drives (SSDs) [16]. Furthermore, as the LSM-tree
grows in size and expands to more levels, each lookup may
traverse multiple levels, thereby incurring high latency.

Many academic and industrial projects have improved the
LSM-tree usage for KV stores to address different performance
aspects and storage architectures (see §V). Examples include
new LSM-tree organizations (e.g., a trie-like structure in LSM-
trie [17] or a fragmented LSM-tree in PebblesDB [18]) and KV
separation [15], [19]. However, the indexing structure is still
largely based on the LSM-tree, and such solutions often make
delicate design trade-offs. For example, LSM-trie [17] trades
the scan support for improved read and write performance;
PebblesDB [18] relaxes the fully sorted requirement in each
level and sacrifices read performance; KV separation [15], [19]
keeps only keys and metadata in the LSM-tree and stores
values separately, but incurs extra lookup overhead to keys
and values in separate storage [19]. Thus, the full performance
potentials of KV stores are still constrained by the inherent
multi-level-based LSM-tree design.

Our insight is that hash indexing is a well-studied indexing
technique that supports a fast lookup of a specific KV pair.
However, combining hash indexing and the LSM-tree is
challenging, as each of them makes a different design trade-
off. For example, hash indexing supports high read and write
performance, but does not support efficient scans. Also, a
hash index is kept in memory for high performance, but the
extra memory usage poses scalability concerns when more KV
pairs are stored. On the other hand, the LSM-tree supports
both efficient writes and scans as well as high scalability, but
suffers from high compaction and multi-level access overheads.
Thus, we pose the following question: Can we unify both hash
indexing and the LSM-tree to simultaneously address reads,
writes, and scans in a high-performance and scalable fashion?

We observe that data locality, which also commonly exists in
KV storage workloads [9], [20], [21], offers an opportunity to
address the above problem. To leverage data locality, we design
UniKV, which unifies hash indexing and the LSM-tree in a
single system. Specifically, UniKV adopts a layered architecture
to realize differentiated data indexing by building a light-weight
in-memory hash index for the recently written KV pairs that

2

…L0

…L1

…L2
…

…L6

Immutable
MemTable MemTable

memory

disk flush

compaction

Log
kv pairs

…

bloom filter

data index

Footer

SSTable

Lowest
level

Highest
level

<key, value>

Fig. 1: Architecture of an LSM-tree-based KV store (LevelDB).

are likely to be frequently accessed (i.e., hot), and keeping the
large amount of infrequently accessed (i.e., cold) KV pairs in a
fully sorted order with an LSM-tree-based design. To efficiently
unify hash indexing and the LSM-tree without incurring large
memory and I/O overhead, UniKV carefully designs three
techniques. First, UniKV develops light-weight two-level hash
indexing to keep the memory overhead small while accelerating
the access to hot KV pairs. Second, to reduce the I/O overhead
incurred by migrating the hot KV pairs to the cold KV pairs,
UniKV designs a partial KV separation strategy to optimize
the migration process. Third, to achieve high scalability and
efficient read and write performance in large KV stores, UniKV
does not allow multiple levels among the cold KV pairs as
in conventional LSM-tree-based design; instead, it employs a
scale-out approach that dynamically splits data into multiple
independent partitions via a dynamic range partitioning scheme.
Based on the unified indexing with multiple carefully designed
techniques, UniKV simultaneously achieves high read, write,
scan performance for large KV stores.

We implement a UniKV prototype atop LevelDB [2] and
evaluate its performance via both micro-benchmarks and
YCSB [22]. For micro-benchmarks, compared to LevelDB [2],
RocksDB [5], HyperLevelDB [23], and PebblesDB [18], UniKV
achieves up to 9.6×, 7.2×, 3.2×, and 1.7× load throughput,
respectively. It also achieves significant throughput gains in both
updates and reads. For the six core YCSB workloads except for
scan-dominated workload E (in which UniKV achieves slightly
better performance), UniKV achieves 4.2-7.3×, 2.5-4.7×, 3.2-
4.8×, and 1.8-2.7× overall throughput, respectively.

II. BACKGROUND AND MOTIVATION

A. Background: LSM-tree

To support large-scale storage, many KV stores are designed
based on the LSM-tree (e.g., [2], [5], [15], [18], [19]). Figure 1
depicts the design of an LSM-tree-based KV store, using Lev-
elDB as an example. Specifically, it keeps two sorted skiplists in
memory, namely MemTable and Immutable MemTable, multiple
SSTables on disk, and a manifest file that stores the metadata of
the SSTables. SSTables on disk are organized as a hierarchy of
multiple levels, each of which contains multiple sorted SSTables
and has fixed data capacity. The data capacity in each level
increases from lower to higher levels in the LSM-tree. The
main feature of the LSM-tree is that data flows only from
lower to higher levels and KV pairs in each level are sorted to
balance the trade-off between read and write performance.

50GB 100GB
0

100

200

300

400 LevelDB RocksDB PebblesDB

(a) Read amplification

50GB 100GB
0

10

20

30 LevelDB RocksDB PebblesDB

(b) Write amplification

Fig. 2: Read & write amplification of LSM-tree-based KV stores.

The insertion of a new KV pair works as follows. The new
KV pair is first appended to an on-disk log file to enable
recovery. It is then added to the MemTable, which is sorted by
keys. Once the MemTable becomes full, it is converted to the
Immutable MemTable that will be flushed to level L0 on disk.
Thus, SSTables in L0 could have overlaps. When Li becomes
full, the KV pairs at Li will be merged into Li+1 through
compaction, which first reads out data in the two adjacent levels
and then rewrites them back to Li+1 after merging. Clearly, this
process introduces extra I/Os and causes write amplification.

The lookup of a KV pair search multiple SSTables. Specifi-
cally, it searches all the SSTables at level L0, and one SSTable
from each of the other levels until the data is found. Although
Bloom filters [24] are adopted, due to their false positives and
limited memory for caching Bloom filters, multiple I/Os are
still needed for each read, thereby causing read amplification.

Limitations. The main limitations of LSM-tree-based KV
stores are the large write and read amplifications. Prior studies
show that the write amplification factor of LevelDB could reach
up to 50× [15]. For example, when merging a SSTable from Li
to Li+1, LevelDB may read up to 10 SSTables from Li+1 in the
worst case, and then write back these SSTables to Li+1 after
merging and sorting the KV pairs. Thus, some unique KV pairs
may be read and written many times when they are eventually
migrated from L0 to L6 through a series of compactions. This
degrades write throughput, especially for large KV stores.

The read amplification may be even worse due to two reasons.
First, there is no in-memory index for each KV pair, so a lookup
needs to search multiple SSTables from the lowest to highest
level. Second, checking an SSTable also needs to read multiple
index blocks and Bloom filter blocks within the SSTable. Thus,
the read amplification will be more serious when there are
more levels, and it may even reach over 300× [15].

We evaluate various LSM-tree-based KV stores, including
LevelDB, RocksDB, and PebblesDB, to show the read and write
amplifications (see Figure 2). We test the read and write ampli-
fications for two different database sizes, 50 GB and 100 GB
(the KV pair size is 1 KB). For each KV store, we use the
default parameters, and do not use extra SSTable_File_Level
Bloom filters for PebblesDB. We see that the read and write
amplifications increase to up to 292× and 19×, respectively,
as the database size increases to 100 GB. Thus, the read and
write performance degrades significantly in large KV stores.

B. Motivation

In-memory hash indexing. Given the high write and read
amplifications in LSM-tree-based KV stores, we can leverage

5GB 20GB 40GB 60GB
0

10

30

50 SkimpyStash
 LevelDB

(a) Write throughput

5GB 20GB 40GB 60GB
0

20

40

60

80 SkimpyStash
 LevelDB

(b) Read throughput

Fig. 3: Performance comparison of hash-index-based and LSM-tree-
based KV stores (SkimpyStash [7] and LevelDB [2]).

in-memory hash indexing for efficient KV pair lookups. Hash
indexing has been widely studied in KV stores [6], [7], [25].
For each KV pair, a key tag is computed from the key via
certain hash functions and is mapped to a pointer that points
to the KV pair on disk. Both the key tag and the pointer serve
as the index for an KV pair and stored in a bucket of an in-
memory hash index for fast lookup. Note that multiple keys
can be hashed to the same bucket, in which case a hash chain
can be used to resolve hash collisions. Thus, hash indexing
allows both single-key write (i.e., PUT) and read (i.e., GET)
operations to be efficiently issued.

Design tradeoffs. However, hash indexing and the LSM-tree
make different trade-offs in read performance, write perfor-
mance and scalability. Hash indexing, while being efficient in
PUT and GET operations, has the following limitations. First,
it is not scalable. For large KV stores, both the read and write
performance may significantly drop due to hash collisions and
limited memory, and become even worse than the LSM-tree.
To illustrate, we compare the read and write performance of
SkimpyStash [7], an open-source KV store using hash indexing,
and LeveLDB, using the default settings and evaluation setup
in §IV. Figure 3 shows that the read and write throughputs of
SkimpyStash drop by 98.9% and 82.5% when the KV store size
increases from 5 GB to 40 GB, respectively; its performance
is worse than LevelDB. Also, hash indexing maps keys to
different buckets, so it cannot efficiently support scans (i.e.,
reading a range of keys in a single request).

On the other hand, the LSM-tree supports large data stores
without extra in-memory indexing overhead and outperforms
hash indexing in large KV stores. However, it suffers from
serious read and write amplifications (see §II-A). Some efforts
are made to optimize the LSM-tree, but unavoidably make a
trade-off between read and write performance. For example,
PebblesDB [18] improves the write performance by relaxing
the fully sorted feature in each level of the LSM-tree, but
sacrifices the read performance (see Figure 2).

Workload characteristics. Our insight is that the above
challenges can be addressed by leveraging workload locality.
Real-world workloads of KV stores are not only read-write
mixed [9]–[11] (see §I), but also have high data access skewness
[9], [20], [21], in which a small percentage of keys may receive
most of the requests. This workload skewness is also validated
by our experiments with LevelDB as shown in Figure 4,
which shows the access frequency of each SSTable. The x-axis
represents the identities of SSTables numbered sequentially
from the lowest level to the highest level, while the y-axis

1 10 100 1000
SSTable ID

1

101

102

103

104

105

106

zipfian 0.99 zipfian 1.10 uniform

Fig. 4: Access frequency of SSTables in LevelDB.

shows the number of accesses to each SSTable. On average,
the SSTables in lower levels with smaller IDs that are recently
flushed from memory have much higher access frequency than
those in higher levels. For example, the last level contains about
70% of SSTables, but they only receive 9% of requests.

Main idea. Based on the design trade-offs of hash indexing
and the LSM-tree, as well as the presence of workload locality,
our idea is to unify hash indexing into an LSM-tree-based
KV store to address their fundamental limitations. Specifically,
we use hash indexing to accelerate single-key access on a
small fraction of frequently accessed (i.e., hot) KV pairs;
meanwhile, for the large fraction of infrequently accessed (i.e.,
cold) KV pairs, we still follow the original LSM-tree-based
design to provide high scan performance. Also, to support very
large KV stores so as to provide good scalability, we propose
dynamic range partitioning to expand KV stores in a scale-out
manner. By unifying hash indexing and the LSM-tree in a
single system with dynamic range partitioning, we can achieve
high performance in reads, writes, and scans in large KV stores.

III. UNIKV DESIGN

A. Architectural Overview

UniKV adopts a two-layer architecture as shown in Figure 5.
The first layer is called the UnsortedStore, which keeps the
SSTables1 that are recently flushed from memory in an unsorted
manner. The second layer is called the SortedStore, which stores
the SSTables merged from the UnsortedStore in a fully sorted
order. Our insight is to exploit data locality (see §II-B) that the
recently written KV pairs are hot and account for only a small
fraction of all KV pairs, so we keep them in the UnsortedStore
(without sorting) and index them directly with in-memory hash
indexing for fast reads and writes. Meanwhile, we keep the
remaining large amount of cold KV pairs in the SortedStore in
a fully sorted order for efficient scans and scalability. UniKV
realizes the idea via the following techniques.
• Differentiated indexing. UniKV unifies hash indexing and

the LSM-tree to differentiate the indexing of KV pairs in the
UnsortedStore and the SortedStore, respectively. Also, UniKV
designs light-weight two-level hash indexing to balance
memory usage and hash collisions (see §III-B).

• Partial KV separation. To efficiently merge KV pairs from
the UnsortedStore to the SortedStore, UniKV proposes a
partial KV separation scheme that stores keys and values
separately for the data in the SortedStore to avoid frequent
movement of values during the merge process (see §III-C).

1As in LevelDB, we organize data in memory as Memtables, and refer to
them as SSTables when they are flushed from memory to disk.

10

Memory

Disk

Bucket KeyTag SSTableID

0

…

Hash indexing for UnsortedStore

N-1

SSTable (KV pairs)

Partition P0

K0 ≤ Keys < K1

UnsortedStore

…

SortedStore

…

Partition P1

K1 ≤ Keys < K2

Partition Pn

Kn ≤ Keys

Merge and KV separation

…

SSTable (keys and pointers)

Value log files

…

<key,pointer>
…

<key,value>
…

Immutable
MemTableMemTable

<key, value>

WAL

…

…

value

On-disk

Log

2-Byte 2-Byte

1

2 3

4

Fig. 5: UniKV architecture.

• Dynamic range partitioning. To achieve high read and write
performance in large KV stores, UniKV proposes a range
partitioning scheme that dynamically splits KV pairs into
multiple partitions that are independently managed according
to the key ranges, so as to expand a KV store in a scale-out
manner (see §III-D).

• Scan optimizations and consistency. UniKV optimizes its
implementation for high scan performance (see §III-F). It
also supports crash recovery for consistency (see §III-G).

B. Differentiated Indexing

Data management. Recall from §III-A that UniKV adopts
a layered architecture with two index structures. To elaborate,
the first layer stores SSTables in an append-only way without
sorting across SSTables, and relies on in-memory hash indexing
for fast key lookups. The second layer organizes SSTables in
an LSM-tree with keys being fully sorted. It also employs KV
separation by storing values in separate log files, while keeping
keys and value locations in SSTables. For data organization
within each SSTable, UniKV is based on the current LSM-
tree design, in which each SSTable has a fixed size limit and
contains a certain amount of KV pairs.

However, we remove Bloom filters from all SSTables to save
memory space and reduce computation overhead. The rationale
is as follows. For a KV pair in the UnsortedStore, we can obtain
its location via in-memory hash indexing; for a KV pair in the
SortedStore, we can also efficiently locate the SSTable that may
contain the KV pair via binary search which compares the key
with boundary keys of SSTables that are kept in memory, as all
keys in the SortedStore are fully sorted across SSTables. Even
for looking up a non-existing key, UniKV only needs to check
one SSTable in the SortedStore. This incurs only one extra I/O
to read the unnecessary data from the SSTable to confirm the
non-existence of the key, because we can directly decide which
data block (usually 4 KB) within the SSTable needs to be read
out by using the metadata in the index block, which is usually
cached in memory. In contrast, existing LSM-tree-based KV
stores may need up to 7.6 inspections to SSTables and incur
2.3 I/Os on average for a key lookup due to false positives of
Bloom filters as well as multi-level searching [26].

14

higher 2-Byte of h(n+1)(Key)

2

Bucket KeyTag SSTableID

0

1

…

h(Key)%N

Hash indexing

N-1

2

…

UnsortedStore (append only)

300…1211 600…2120 50…120 202…989 2…200SSTables …

Memory

Disk

Cuckoo hash
(h1,h2,…,hn) …

Overflow entry

SSTableID 0 1 2 … 65 66

…

66

2-Byte 2-Byte 2-Byte 2-Byte

Fig. 6: Structure of the UnsortedStore and in-memory hash indexing.

For data management in memory, UniKV uses similar ways
as in conventional LSM-tree-based KV stores and ensures data
durability via write-ahead logging (WAL). That is, KV pairs
are first appended to a log on disk for crash recovery, and then
inserted into the Memtable that is organized as a skip list in
memory. When the MemTable is full, it is converted to the
Immutable Memtable and flushed to the UnsortedStore on disk
in an append-only way by a background process.

Hash indexing. SSTables in the UnsortedStore are written
in an append-only way and indexed with an in-memory hash
index. To reduce memory usage, we build a light-weight hash
index with two-level hashing that combines cuckoo hashing and
linked hashing to solve hash collisions. As shown in Figure 6,
the hash index contains N buckets. Each bucket stores the
index entries of KV pairs with cuckoo hashing [27], so it may
append one or several overflowed index entries due to hash
collisions. When we build an index entry for a KV pair, we
search the buckets according to the hash results computed by
n hash functions (from the general hash function library [28]),
i.e., (h1,h2, · · · ,hn)(key)%N, until we find an empty one. Note
that we use at most n hash functions in this cuckoo hashing
scheme. If we cannot find an empty bucket in the n buckets,
we generate an overflowed index entry and append it to the
bucket located by hn(key)%N.

After locating a bucket, we record the keyTag and SSTable
ID of the KV pair into the selected index entry. Each index entry
contains three attributes: 〈keyTag, SSTableID, pointer〉.
The keyTag stores the higher 2-Byte of the hash value of the
key computed with a different hash function, i.e., hn+1(key),
and is used to quickly filter out index entries during key lookup
(see below). The SSTableID uses 2 bytes to store an SSTable
ID, and we can index 128 GB of SSTables of size 2 MB each
in the UnsortedStore. The pointer uses 4 bytes to point to
the next index entry in the same bucket.

Key lookup. The key lookup process works as follows. First,
we compute the keyTag using hn+1(key). Then we search the
candidate buckets from hn(key)% N to h1(key)% N, until we
find the KV pair. For each candidate bucket, since the newest
overflow entry is appended to the tail. Thus, we compare
keyTag with the index entries belonging to this bucket from
the tail of overflow entries. Once we find a matched keyTag,
we retrieve the metadata of this SSTable with the SSTableID
and read out the KV pair. Note that the queried KV pair may
not exist in this SSTable due to hash collisions on hn+1(key)

(i.e., different keys have the same keyTag). Then we continue
searching the candidate buckets. Finally, if the KV pair is not
found in the UnsortedStore, we search the key in the SortedStore
via binary search as all keys are fully sorted.

Memory overhead. We now analyze the memory overhead
of hash indexing. Each KV pair in the UnsortedStore costs one
index entry, and each index entry costs 8 bytes in memory. Thus,
for every 1 GB data in the UnsortedStore with 1 KB KV pair
size, it has around 1 million index entries, which take around
10 MB memory given that the utilization of buckets is about
80% in our experiments. This memory usage is less than 1% of
the data size in the UnsortedStore. Note that for very small KV
pairs, hash indexing may incur large memory overhead. One
solution is to differentiate the management for KV pairs of
different sizes; for example, we use the conventional LSM-tree
to manage small KV pairs and use UniKV to manage large
KV pairs. We pose this optimization as future work.

Our hash indexing scheme makes a design trade-off. On one
hand, hash collisions may exist when we allocate buckets for
KV pairs, i.e., different keys have the same hash value h(key)
and are allocated to the same bucket. Thus, we need to store the
information of keys in index entries to differentiate keys during
lookup. On the other hand, storing the complete key wastes
memory. To balance memory usage and read performance,
UniKV uses two hashes and keeps only 2 bytes of the hash
value as a keyTag. This significantly reduces the probability
of hash collision (e.g., less than 0.001% [29]), as also shown
in our experiments. Even if hash collisions happen, we can
still resolve them by comparing the keys stored on disk.

C. Partial KV separation

Recall that KV pairs in the UnsortedStore are indexed with
an in-memory hash index, which incurs extra memory usage.
Also, the key ranges of SSTables in the UnsortedStore are also
overlapped with each other due to the append-only write policy
without sorting, so every SSTable in the UnsortedStore needs
to be examined when performing a scan operation. To limit
the memory overhead and guarantee scan performance, UniKV
limits the size of the UnsortedStore. When the size reaches a
predefined threshold UnsortedLimit, UniKV triggers a merge
operation to merge KV pairs from the UnsortedStore into
the SortedStore. Note that the parameter UnsortedLimit is
configurable according to the available memory.

Merging KV pairs from the UnsortedStore into the Sorted-
Store may incur large I/O overhead, as existing KV pairs in
the SortedStore are also required to be read out and written
back after merging and sorting. Thus, how to reduce the merge
overhead is a critical but challenging issue in UniKV. Here,
UniKV proposes a partial KV separation strategy, which keeps
KV pairs without KV separation in the UnsortedStore but
separates keys from values in the SortedStore. The rationale
is as follows. The KV pairs in the UnsortedStore are flushed
from memory recently, so they are likely to be hot due to
data locality. Thus, we keep keys and values in KV pairs for
efficient access. However, the KV pairs in the SortedStore are
likely to be cold, and the amount of data is very large that

21

UnsortedStore…

SortedStore

Batch merge keys

Value log files

…

…

…

Values are stored in log files

Append as a new
log file

Fig 1. Partial KV separation

<key,value>
…

…<key,pointer>
…

value

Fig. 7: Partial KV separation.

causes high merge overhead. Thus, we adopt KV separation for
the data in the SortedStore so as to reduce the merge overhead.

Figure 7 depicts the partial KV separation design. When
merging KV pairs from UnsortedStore to SortedStore, UniKV
merges keys in batches, while keeping the values in a newly
created log file in an append-only manner. It also records
the value locations with pointers that are kept together with
the corresponding keys. Note that each pointer entry contains
four attributes: 〈partition,logNumber,offset,length〉,
representing the partition number, the log file ID, the value
location and length, respectively.

Garbage collection (GC) in SortedStore. First of all, we
point out that GC in UniKV implies to reclaim the storage
space which is occupied by invalid values in log files. Note
that invalid keys in SSTables are deleted during the compaction
process, which is independent with GC. In UniKV, GC operates
in units of log files, and is triggered when the total size of
a partition is above a predefined threshold. Specifically, the
GC process first identifies and reads out all valid values from
log files in the partition, then writes back all valid values to a
new log file, and generates new pointers to record the latest
locations of values, and finally deletes invalid pointers and
obsolete files after GC. We need to address two key issues:
(i) Which partition should be selected for GC? (ii) How to
quickly identify and read out valid values from log files?

Unlike the previous KV separation scheme (e.g., [15]) that
performs GC in a strict sequential order, UniKV can flexibly
choose any partition to perform GC as KV pairs are mapped
to different partitions according to their key ranges and the
operations between partitions are independent. We adopt a
greedy approach which selects the partition with the largest
amount of KV pairs to perform GC. Also, to check the validity
of values in log files of the selected partition, UniKV only
needs to query the keys and pointers in the SortedStore that
always maintains the valid keys and latest locations of valid
values. Thus, for each GC operation, UniKV just needs to
scan all keys and pointers in the SortedStore to get all valid
values, and the time cost only depends on the total size of
SSTables in the SortedStore. Note that GC and compaction
operations are performed sequentially in UniKV as they both
modify SSTables in the SortedStore, so GC operations also
occur along the way of data loading and the GC cost is also
counted in measuring write performance.

D. Dynamic Range Partitioning

As the SortedStore grows in size, if we simply add more
levels for large-scale storage as in most existing LSM-tree-based

19

SortedStore

B
ef

o
re

 S
p

li
t

Memory

New SSTables: store <key,pointer>

Merge keys

keys>=Kkeys<K

1

UnsortedStore

A
ft

er
 S

p
li

t

Flush

P0

P1 (keys<K) P2 (keys>=K)

… …

Value log files (split while
GC by a background thread)

2

UnsortedStore

…

…

Value log files

…

<key,pointer>
…

<key,value>
…

…

…

…

…

…

…

…values

…

<key,value>
…

<key,pointer>
…

…<key,pointer>
…

UnsortedStore

K (boundary key)

Fig. 8: Dynamic range partitioning.

KV stores, it will incur frequent merge operations that move data
from lower to higher levels during writes and also trigger multi-
level accesses during reads. Also, each GC needs to read out all
values from log files by querying the LSM-tree and write valid
values back to disk, so the GC overhead becomes substantial
as the number of levels increases. Thus, UniKV proposes a
dynamic range partitioning scheme to expand storage in a
scale-out manner. This scheme maps KV pairs of different key
ranges into different partitions that are managed independently,
and each partition has its own UnsortedStore and SortedStore.

The dynamic range partitioning scheme works as follows
(see Figure 8). Initially, UniKV writes KV pairs in one partition
(e.g., P0). Once its size exceeds the predefined threshold
partitionSizeLimit (which is configurable), UniKV splits
the partition into two partitions with equal size according to
the key range and manages them independently (e.g., P0 is
split to P1 and P2). With range partitioning, the key feature is
that the two new partitions should have no overlaps in keys.
To achieve this, KV pairs in both the UnsortedStore and the
SortedStore need to be split.

To split the keys in both the UnsortedStore and the Sorted-
Store, UniKV first locks them and stalls write requests. Note
that the lock granularity is a partition, i.e., UniKV locks the
whole partition and stalls all writes to this partition during
splitting. Then it sorts all the keys to avoid overlaps between
partitions. It first flushes all in-memory KV pairs into the
UnsortedStore, and reads out all SSTables in the UnsortedStore
and SortedStore to perform merge sort as in LSM-tree-based KV
stores. It then divides the sorted keys into two parts of equal size
and records the boundary key K between the two parts. Note
that this boundary key K serves as the splitting point. That is, the
KV pairs with keys smaller than the key K form one partition
P1, while others form another partition P2. With the splitting
point, UniKV divides the valid values in the UnsortedStore into
two parts and writes them to the corresponding partitions by
appending them to the newly created log file of each partition.
Finally, UniKV stores the value locations in the pointers which
are kept together with the corresponding keys, and writes all
keys and pointers back to the SortedStore in the corresponding
partitions. Note that UniKV releases the locks and resumes to

handle write requests after splitting keys.
Second, to split the values in the SortedStore (which are

stored in multiple log files separately), UniKV adopts a lazy
split scheme which splits values in log files during GC with a
background thread. It works as follows. The GC thread in P1
first scans all SSTables in the SortedStore of P1. It then reads
out valid values from old log files that are shared by P1 and
P2, and writes them back to a newly created log file belonging
to P1. Finally, it generates new pointers that are stored with
corresponding keys to record the latest locations of values.
The GC thread in P2 performs the same procedure as in P1.
The main benefit of the lazy split design is to reduce the split
overhead significantly by integrating it with GC operations to
avoid large I/O overhead. Note that with range partitioning, the
smallest key in P2 must be larger than all keys in P1. This range
partitioning process repeats once a partition reaches its size
limit. We emphasize that each split operation can be considered
to have one compaction operation plus one GC operation, but
they must be performed sequentially. Thus, splitting keys in a
partition introduces extra I/Os. After splitting, each partition
has its own UnsortedStore, SortedStore, and log files.

For large KV stores, the initial partition may be split multiple
times and thus generates multiple partitions. To efficiently
locate a certain partition when performing read and write
operations, we record the partition number and the boundary
keys of each partition in memory, which serves as the partition
index. We also persistently store the partition index in the
manifest file on disk. In addition, different partitions have no
overlap in keys, so each key can only exist in one partition.
Thus, key lookup can be performed by first locating a partition,
which can be done efficiently by checking the boundary keys,
followed by querying the KV pairs within only one partition. In
short, the dynamic range partitioning scheme expands storage
in a scale-out manner by splitting KV pairs into multiple
independent partitions. Thus, the scheme can guarantee high
read and write performance, as well as efficient scans, even
for large KV stores so as to enable good scalability.

E. I/O Cost Analysis

To understand the performance trade-offs of LSM-tree-based
KV stores and UniKV, we analyze their worst-case I/O costs
for both writes and reads. Suppose that we have N KV pairs
in total and P KV pairs in a memory component. Let T be the
ratio of capacities between two adjacent levels.

LSM-tree-based KV stores. If an LSM-tree contains L
levels, then level i (i≥ 0) contains at most T i+1 ·P KV pairs,
and the largest level contains approximately N · T

T+1 KV pairs.
Thus, the number of levels for N KV pairs can be approximated
as L = dlogT (

N
P ·

T
T+1)e. Note that the write cost measures the

overall I/O cost for KV pairs being merged into the highest
level. Thus, the write cost for each KV pair is O(T ·L). For
the read I/O cost, suppose that Bloom filters allocate M bits
for each key. Then the false positive rate of a Bloom filter is
e−M·ln(2)2

[30], and it can be simply represented as 0.6185M

[26]. Thus, the I/O cost of each read is O(L ·0.6185M), and
the worst-case lookup incurs O(L) I/Os by accessing all levels.

UniKV. Suppose that a partition contains R KV pairs, and
there are Q partitions after splitting and key size occupies 1

K
of KV pair size. Then the number of partitions for N KV pairs
is Q = dN

R e, where Q < L. A component at the SortedStore
will be merged T −1 times until it triggers a split operation.
Note that the values are not read and written during merge, and
they are only moved during GC. Suppose that GC is triggered
when the amount of written KV pairs is equal to 1

H of partition
size, so the values will be merged H−1 times before splitting
and H < T

2 . Also, each split operation consists of a merge
operation and a GC operation. Thus, the write cost for each
KV pair is O(T · Q

K +Q ·H). Finally, reads are very efficient
for UniKV since a KV pair is either in the UnsortedStore or in
the SortedStore. Each read operation incurs 1 I/O only if the
KV pair exists in the UnsortedStore through querying the hash
index, or 2 I/Os for accessing the key and the value from the
SortedStore due to KV separation. Thus, the worst-case lookup
incurs 3 I/Os, including 1 I/O in the UnsortedStore when hash
collisions occur and 2 I/Os in the SortedStore.

F. Scan Optimization

UniKV aims to support efficient scans as in LSM-tree-based
KV stores. Scans are efficiently supported by the LSM-tree
as the KV pairs are stored in a sorted manner. However, for
UniKV, keys and values are stored separately for KV pairs
in the SortedStore. This makes scan operations issue random
reads of values. Also, all SSTables in the UnsortedStore of a
partition are directly flushed from memory in an append-only
manner, so they may overlap with each other. Thus, scans
may read every SSTable while performing seek() or next()
operations, thereby incurring additional random reads.

To optimize scans, UniKV first locates the corresponding
partitions quickly by querying the boundary keys of partitions
according to the scanned key range, which can significantly
reduce the amount of data to be scanned. Also, UniKV employs
multiple strategies to optimize scans. For the UnsortedStore, to
avoid many random reads caused by checking every SSTable
during scans, UniKV proposes a size-based merge strategy. The
main idea is to merge all SSTables in the UnsortedStore into a
big one which keeps all KV pairs fully sorted with a background
thread during scans when the number of SSTables in the Un-
sortedStore exceeds the predefined threshold scanMergeLimit.
Note that even though this operation causes extra I/O overhead,
the overhead is small if the size of UnsortedStore is limited.
This improves scans significantly due to efficient sequential
reads, especially under a large amount of scans.

For the SortedStore, UniKV leverages I/O parallelism of
SSDs by fetching values from log files concurrently with
multiple threads during scans. Also, UniKV leverages the
read-ahead mechanism to prefetch values into the page cache.
The read-ahead mechanism works as follows. Initially, UniKV
obtains keys and pointers within the scan range from SSTables
in the SortedStore one by one. It then issues a read-ahead
request to the log files starting with the value of the first key
(via posix_fadvise). Finally, it reads the values according to
the pointers and returns the KV pairs. On the other hand, we

point out that UniKV does not perform in-memory merging
and sorting with the scan results from the UnsortedStore and
SortedStore. This is because a scan operation is implemented
with the following three steps: (i) seek(), which locates the
beginning key from each of the SSTables that need to check in
both the UnsortedStore and the SortedStore, and return the KV
pair of the beginning key once it is found; (ii) next(), which
finds the next smallest key that is bigger than the last returned
one from each of the SSTables that need to check, and return
the minimum key with its value; (iii) repeat step (ii) until the
number of returned KV pairs equals the scan length. With
the above optimizations, our experiments show that UniKV
achieves similar scan performance as LevelDB, which always
keeps keys fully sorted in each level.

G. Crash Consistency

Crashes may occur during writes. UniKV addresses crash
consistency in three aspects: (i) buffered KV pairs in MemTa-
bles; (ii) in-memory hash indexing; and (iii) GC operations in
the SortedStore. For the KV pairs in MemTables, SSTables, and
metadata (manifest files), UniKV adopts write-ahead logging
(WAL) for crash recovery. WAL is also used in LevelDB. Also,
UniKV adds the specific metadata (e.g., boundary keys and
partition number) to the manifest file.

For the in-memory hash index, UniKV uses the checkpointing
technique. It saves the hash index in a disk file when flushing
every half of the UnsortedLimit SSTables from memory to
the UnsortedStore. Thus, rebuilding the hash index can be
done by reading the latest saved copy from the disk file and
replaying the newly written SSTables since the last backup.

Crash consistency in GC operations is different, as they may
overwrite existing valid KV pairs. To protect existing valid KV
pairs against crashes during GC, UniKV performs the following
steps: (i) identifying all valid KV pairs according to the keys
and pointers in the SortedStore; (ii) reading all valid values
from the log files and writing them back to a new log file;
(iii) writing all new pointers that point to the new log file with
the corresponding keys into new SSTables in the SortedStore;
(iv) marking new SSTables as valid and old log files with a
GC_done tag to allow them to be deleted. If system crashes
during GC, then we can redo GC with the above steps (i)-(iv).

We have implemented the above mechanisms in UniKV
to provide crash consistency guarantees, and our experiments
show that UniKV can recover inserted data, hash indexing, and
GC-related state correctly and the recovery overhead is small.

H. Implementation Issues

We implement a UniKV prototype on Linux based on
LevelDB v1.20 [2] in C++, by adding or modifying around 8K
lines of code. Most changes are to introduce hash indexing,
dynamic range partitioning, partial KV separation, and GC
operations. Since the UnsortedStore and the SortedStore build
on SSTables, UniKV can leverage the mature, well-tested codes
for SSTable management in LevelDB.

For scans, UniKV leverages multi-threading to fetch values
concurrently. However, the number of threads is limited by the

memory space of a process, and using too many threads can
trigger frequent context switches. UniKV maintains a thread
pool of 32 threads and allocates threads for fetching values from
the pool in parallel. During scans, UniKV inserts a fixed number
of value addresses to the worker queue, and then wakes up all
the sleeping threads to read values from log files in parallel.

IV. EVALUATION

We present evaluation results on UniKV. We compare via
testbed experiments UniKV with several state-of-the-art KV
stores: LevelDB v1.20 [2], RocksDB v6.0 [5], HyperLevelDB
[23], and PebblesDB [18]. For fair comparisons, we enable
write-ahead logging to guarantee crash consistency for all KV
stores. We also issue writes in asynchronous mode, in which
all written KV pairs are first buffered in the page cache of
kernel and flushed when the cache is full. We further disable
compression of all systems to remove the impact of compression
overhead. We address the following questions:
• What is the load/read/update/scan performance of UniKV un-

der single-threaded environment and the overall performance
under read-write mixed workloads? (Experiments 1-2)

• What is the performance of UniKV under six core workloads
of YCSB and large KV stores? (Experiments 3-4)

• What is the performance impact of different configurations
(e.g., KV pair size, UnsortedStore size, partition size, multi-
threading on scans, and direct I/O)? (Experiments 5-9)

• What are the memory usage of hash indexing and the crash
recovery overhead? (Experiments 10-11)

A. Experimental Setup

We run all experiments on a machine with a 12-core Intel
Xeon E5-2650v4 2.20 GHz CPU, 16 GB RAM, and a 500 GB
Samsung 860 EVO SSD. The machine runs Ubuntu 16.04 LTS,
with the 64-bit Linux 4.15 kernel and the ext4 file system.

The performance of KV stores is mainly affected by
four parameters: (i) memtable_size, (ii) bloom_bits, (iii)
open_files and (iv) block_cache_size. We use the same
setting for all stores. Specifically, we set memtable_size as
64 MB (same as RocksDB by default), bloom_bits as 10 bits,
open_files as 1,000. For block_cache_size, UniKV sets
it as 8 MB by default, while other KV stores set it as 170 MB
to match the size of UniKV’s hash index for fair comparisons.
The remaining memory is used as page cache of the kernel. For
the other parameters of different KV stores, we use their default
values. Also, we set the number of buckets of the hash index
for each partition as 4 M and use four cuckoo hash functions
to ensure that the utilization of buckets exceeds 80%.

Recall that UniKV allocates the MemTable in memory for
each partition. To make all systems use the same amount
of memory for buffering KV pairs, we set the parameter
write_buffer_number of RocksDB as the same number of
MemTables in UniKV. We also modify the code of other KV
stores, so that the total number of MemTables is the same
as in UniKV. For other parameters of UniKV, by default, we
set the partition size as 40 GB to balance write performance
and memory cost, and the UnsortedStore size in a partition as

(a) Throughput under single-threaded operations

Load 100M Update 100M
0

0.5

1.0

1.5
13.0X

10.8X

8.8X

6.6X

3.5X

1.0X

7.1X
5.9X

5.3X
4.7X

1.7X
1.0X

(b) Write size

Read 10M
0

0.1

0.3

0.5
41.6X

32.5X

40.2X

26.1X

7.8X

1.0X

(c) Read size

Load 100M
0

50

100

150
LevelDB

RocksDB

HyperLevelDB

PebblesDB

UniKV

User Data

(d) Store size

Fig. 9: Experiment 1 (Micro-benchmark performance).

Flush Compaction GC Partition Split
LevelDB 204.4 2229.5 − −
RocksDB 204.4 1726.2 − −
HyperLevelDB 204.4 1402.2 − −
PebblesDB 204.4 1026.3 − −
UniKV 204.4 188.4 288.1 35.2

TABLE I: Number of I/Os (in million) of writing 100 GB of data.

4 GB to limit the memory overhead of the hash index. For GC
operations, UniKV uses a single GC thread; for scans, UniKV
maintains a background thread pool with 32 threads (the impact
of multi-threading on scans is evaluated in Experiment 8).
Finally, we use YCSB [22], [31] to generate various types of
workloads. By default, we focus on 1 KB KV pairs with 24-Byte
keys (the impact of KV pair size is studied in Experiment 5)
and issue the requests based on the Zipf distribution with a
Zipfian constant of 0.99 (the default in YCSB).

B. Performance Comparisons

Experiment 1 (Micro-benchmarks). We first evaluate
various performance aspects of UniKV, including the load, read,
update and scan performance under single-threaded operations,
as well as data write size, data read size, KV store size,
and I/O cost of different phases of writes. Specifically, we
first randomly load 100 M KV pairs (about 100 GB) that
will finally be split into four partitions for UniKV. We then
evaluate the performance of 10 M read operations, 100 M update
operations, and 1 M scan operations (each seek() has 50
next() operations) that scan 50 GB of data.

(i) Throughput. Figure 9(a) shows the throughput. Compared
to other KV stores, UniKV achieves 1.7-9.6× load throughput,
3.1-6.6× read throughput, and 1.6-8.2× update throughput.
Note that UniKV is now implemented on LevelDB, yet it
still outperforms other advanced KV stores with specific opti-
mization features. For scans, UniKV achieves nearly the same
throughput as LevelDB and 1.3-1.4× throughput compared
to RocksDB, HyperLevelDB and PebblesDB. The reason is
that UniKV adopts optimizations, such as multi-threading for
fetching values concurrently and the read-ahead mechanism
for prefetching values into cache (see §III-F).

(ii) Write amplification. We evaluate the total write size. We
randomly load 100 M KV pairs, then update the loaded 100 M

Fig. 10: Experiment 2 (Performance under mixed workloads).

KV pairs to show the write amplification. Figure 9(b) shows
the results. UniKV significantly reduces the write size, so it
reduces the write amplification to 3.5×, which is only about
half of that in PebblesDB. In particular, it reduces 46.7-73.2%
of write size in the load phase, and reduces 65.2-76.6% of
write size in the update phase, compared to other KV stores.

(iii) Read amplification. We evaluate the total read size
when operate 10 M read requests on the loaded KV store.
Figure 9(c) shows the total read size for all KV stores. UniKV
significantly reduces the total read size, which decides the read
performance. The read amplification is only about 7.8×. Thus,
UniKV reduces 69.7-80.6% of read size in the read phase
compared to other KV stores.

(iv) Space amplification. Figure 9(d) shows the KV store
size of different KV stores after the load phase. All systems
consume similar storage space in the load phase. UniKV incurs
slightly extra storage overhead, which is mainly for storing the
pointers that record the locations of values.

(v) I/O costs. Finally, we evaluate the I/O cost (in number
of I/Os) of different phases of writes for all KV stores, as
shown in Table I (the I/O size is 512 bytes). For LSM-tree-
based KV stores, the I/O cost is due to flushing MemTables and
compacting SSTables. For UniKV, the I/O cost is due to flushing
MemTables, compacting SSTables, GC in log files, and splitting
partitions. Compared to other KV stores, UniKV reduces 41.9-
70.6% of I/O cost in total, mainly because the partial KV
separation scheme avoids the unnecessary movement of values
during compaction, and the dynamic range partitioning scheme
manages each partition independently and allows UniKV to
perform more fine-grained GC operations.

Experiment 2 (Performance under mixed workloads).
We evaluate the overall performance of all KV stores under
read-write mixed workloads. We first randomly load 100 M KV
pairs, and run a workload of 100 M operations mixed with both
read and write with different read-write ratios (30:70, 50:50, and
70:30). Figure 10 shows the overall throughput under different
read-write mixed workloads. UniKV outperforms all other KV
stores. Specifically, the overall throughput of UniKV is 6.5-
7.1×, 4.4-4.6×, 4.3-4.7× and 2.0-2.3×, compared to LevelDB,
RocksDB, HyperlevelDB, and PebblesDB, respectively. The
reason is that UniKV maintains a two-layered storage architec-
ture with in-memory hash indexing for hot data to improve read
performance, and adopts partial KV separation and dynamic
range partitioning to reduce merge overhead and support good
scalability to improve write performance. Thus, it improves
both read and write performance simultaneously.

Fig. 11: Experiment 3 (YCSB performance).

C. Yahoo Cloud Serving Benchmark

Experiment 3 (YCSB performance). Now we evaluate the
performance under YCSB [22], which is an industry standard
to evaluate KV stores and contains a standard set of six
core workloads (Workloads A-F). Each workload represents a
specific real-world application. Specifically, Workloads A and
B are read-write mixed with 50% and 95% reads, respectively.
Workload C is a read-only workload with 100% reads. Workload
D also contains 95% reads, but the reads query the latest values.
Workload E is a scan-dominated workload which contains 95%
scans and 5% writes. Finally, Workload F contains 50% reads
and 50% read-modify-writes which require a get() before
every insert() operation. We first randomly load 100 M KV
pairs before running each YCSB workload. Each workload
consists of 50 M operations, except for Workload E, which
contains 10 M operations with each scan involving 100 next().

Figure 11 shows the results. UniKV always outperforms
other KV stores under both read-dominated and write-dominated
workloads. Compared to other KV stores, the throughput of
UniKV is 2.2-5.4× under Workload A, 2.1-4.2× under Work-
load B, 2.6-4.4× under Workload C, 2.7-7.3× under Workload
D, and 1.8-4.4× under Workload F. For the scan-dominated
Workload E, UniKV achieves slightly better performance, as
its scan throughput is 1.1-1.3× compared to other KV stores.

D. Performance on Large KV Stores

Experiment 4 (Performance on large KV stores). We
evaluate the performance on large KV stores to show the
scalability of UniKV. As shown in Experiments 1-3, PebblesDB
has the best performance among existing KV stores, so we focus
on PebblesDB in the following experiments. We still show the
throughput of load, read, and update, as well as the total write
size during load using the same setting as before, except now
we vary the KV store size from 200 GB to 300 GB. Figure 12
shows that UniKV consistently outperforms PebblesDB in
all aspects. It achieves 1.8-2.0× write throughput, 3.2-3.6×
read throughput, and 1.4-1.5× update throughput. Also, the
performance gain of UniKV increases for larger KV stores.
For the write size, we show the total write size when loading
different KV stores. Compared to PebblesDB, UniKV reduces
47.4-52.1% of write size during the load phase.

E. Performance Impact and Overhead

Experiment 5 (Impact of KV pair size). We study the
impact of KV pair size varied from 256 B to 32 KB, and
keep other parameter settings as before. Figure 13 shows the

200GB 250GB 300GB
0

10

20

30

40

50 PebblesDB UniKV

(a) Load different KV stores

200GB 250GB 300GB
0

5

10

15 PebblesDB UniKV

(b) Read on different KV stores

200GB 250GB 300GB
0

20

40

60 PebblesDB UniKV

(c) Update on different KV stores

200GB 250GB 300GB
0

1

2

3 PebblesDB UniKV

(d) Total write size

Fig. 12: Experiment 4 (Performance on large KV stores).

256B 1KB 4KB 16KB 32KB
0

50

100 PebblesDB
 UniKV

(a) Load throughput

256B 1KB 4KB 16KB 32KB
0.2

0.4

0.6

0.8 PebblesDB

 UniKV

(b) Total write size

256B 1KB 4KB 16KB 32KB
0

50

100

150 PebblesDB
 UniKV

(c) Read throughput

256B 1KB 4KB 16KB 32KB
0

50

100 PebblesDB

 UniKV

(d) Update throughput

Fig. 13: Experiment 5 (Impact of KV pair size).

throughput and total write size of randomly loading 100 GB KV
pairs, as well as the throughput of reading 10 GB and updating
100 GB KV pairs; note that the figure reports the throughput
of KV stores in terms of MB/s instead of KOPS to better
illustrate the performance trend with respect to the amount of
data being accessed. As the KV pair size increases, both UniKV
and PebblesDB have higher throughput due to the efficient
sequential I/Os. For load, read and update performance, UniKV
always outperforms PebblesDB. When KV pairs become larger,
the improvement of UniKV decreases for the throughput and
write size of loading a KV store, and the improvement increases
for the throughput of reads and updates. The reason is that
PebblesDB maintains more SSTables in the first level as KV
pair size increases. This reduces the compaction overhead, but
causes reads to check these SSTables one by one, leading to
degraded read performance. Also, more SSTables in the first
level will be merged to next level in the update phase, which
leads to degraded update performance. In contrast, UniKV
always maintains fixed UnsortedStore and partition sizes. Thus,
all the throughput of load, read and update in UniKV grows
steadily as the KV pair size increases.

Experiment 6 (Impact of the UnsortedStore size). We
study the impact of UnsortedStore size on UniKV. We ran-
domly load 100 M KV pairs and issue 10 M read operations.
Figure 14(a) shows the results by varying the UnsortedStore size
from 1 GB to 16 GB when fixing the partition size as 40 GB. As
the UnsortedStore size increases, the load throughput increases,
while the read performance remains nearly the same. However,
the memory overhead used for the hash index for UnsortedStore
increases. Thus, the UnsortedStore size should be limited to
trade between performance and memory overhead.

Load Read
0

10

20

30

40

50
 US=1GB

 US=4GB

 US=8GB

 US=16GB

(a) Impact of the US size

Load Read
0

10

20

30

40

50
 PA=20GB

 PA=40GB

 PA=60GB

(b) Impact of partition size

Fig. 14: Experiment 6 (Impact of the UnsortedStore (US) size) and
Experiment 7 (Impact of partition size).

Experiment 7 (Impact of partition size). We study the
impact of partition size on UniKV. We again randomly load
100 M KV pairs and issue 10 M reads. Figure 14(b) shows the
results by varying the partition size from 20 GB to 60 GB, while
fixing the UnsortedStore size as 4 GB. The partition size only
has a small impact on write performance and almost no impact
on read performance. The reason is that GC is operated within
each partition independently. Thus, the smaller the partition,
the more efficient the GC operations for finer granularity of
GC. However, the partition size influences the memory cost as
UniKV needs to allocate a MemTable for each partition. Thus,
a smaller partition size may incur more memory usage, so the
partition size should be limited.

Experiment 8 (Impact of multi-threading on scans). We
study the impact of multi-threading on scans. As shown in
Experiments 1, LevelDB has the best scan performance among
existing KV stores, so we focus on comparing UniKV with
LevelDB. We first randomly load 100 M KV pairs, and issue
1 M scan operations with each scan involving 50 next().
Figure 15(a) shows the results by varying the number of threads
for scan requests from 1 to 32. As the number of threads
increases, both UniKV and LevelDB have higher throughput.
However, UniKV has slightly lower throughput than LevelDB
when there are multiple scan threads (e.g., by 10-20% for 8
to 32 threads). The reason is UniKV maintains a thread pool
that fetches values from log files concurrently during scans,
which incur more CPU and I/O usage. The scan efficiency
degrades as the CPU and I/O usage is more demanding under
multi-threaded requests.

Experiment 9 (Performance under direct I/O). We study
the impact of direct I/O on performance. Since all KV stores
except RocksDB do not support direct I/O, we modify their
source code to include the O_DIRECT attribute in the open()
calls and turn off write-caching of disk to enable direct I/O.
We first randomly load 100 M KV pairs, and issue 10 M reads
and 1 M scans under direct I/O. Figure 15(b) shows the results.

1 8 16 32
0

2

4

6 LevelDB UniKV

(a) Multi-threaded scan

Load Read Scan
0

5

10 LevelDB

RocksDB

HyperLevelDB

PebblesDB

UniKV

(b) Performance under direct I/O

Fig. 15: Experiment 8 (Impact of multi-threading on scans) and
Experiment 9 (Performance under direct I/O).

LevelDB PebblesDB UniKV
Writes (100 M) 442 796 622
Reads (10 M) 318 748 142
Scans (1 M) 112 516 96

TABLE II: Experiment 10 (Memory usage) (in MB).

The throughput of writes, reads, and scans for all KV stores
drops significantly under direct I/O since all operations involve
disk I/O access. Nevertheless, UniKV outperforms other KV
stores under direct I/O. It achieves 1.6-8.0× load throughput,
6.7-9.3× read throughput, 1.9-4.4× scan throughput compared
to other KV stores. The improvements of UniKV for reads and
scans increase under direct I/O, since the multi-level access in
other KV stores reads more SSTables through disk and UniKV
can take full advantage of the I/O parallelism of SSDs.

Experiment 10 (Memory usage). We evaluate the memory
usage of UniKV. UniKV builds a light-weight in-memory hash
index for the UnsortedStore of each partition, and the number
of buckets is set as 4 M and each bucket costs 8-Byte. Also,
considering the utilization of buckets is about 80%, it means
that the remaining 20% of index entries overflow. Thus, UniKV
incurs extra (4 M×8-Byte+4 M×20%×8-Byte)×4=154 MB
index memory in total when loading 100 M KV pairs that are
split into 4 partitions. Recall that we set block_cache_size as
170 MB for all KV stores, while UniKV uses 8 MB by default.
Thus, UniKV costs nearly the same memory as LevelDB but
much less than PebblesDB, since PebblesDB builds extra
SSTable_File_Level Bloom filters for each SSTable in
memory to improve reads; it consumes 300 MB for 100 M KV
pairs [18]. On the other hand, UniKV removes the Bloom filters
of SSTables and does not need to read and cache them during
read phase, thereby saving about 100 M×10 bits/key=120 MB
memory used by Bloom filters for 100 M KV pairs.

We also compare the memory usage by experiments. We keep
the setting of randomly loading 100 M KV pairs and issuing
10 M reads and 1 M scans. We record the biggest memory usage
during load, read and scan phase by monitoring the memory
usage of KV store process in real time (via the top command),
and treat it as the actual memory consumption of KV stores.
As shown in Table II, UniKV consumes 180 MB more memory
than LevelDB for writes as it needs to build the hash index
in memory, however, UniKV costs 176 MB and 16 MB less
memory than LevelDB for reads and scans, respectively, as it
keeps a smaller block cache and does not need to cache Bloom
Filters in memory. Compared to PebblesDB, UniKV always
costs less memory, especially for reads and scans.

MemTable (s) Metadata (s) Index (s)
LevelDB 0.92 0.05 0
UniKV 0.96 0.06 3.18

TABLE III: Experiment 11 (Crash recovery time).

Experiment 11 (Crash recovery). Note that UniKV guar-
antees crash consistency by implementing the mechanism in
§III-G, which can recover inserted data, hash indexing, and
GC-related state correctly. We measure the recovery time after
a crash when randomly loading 100 M KV pairs. Table III
shows the results. UniKV requires more time for crash recovery
compared with LevelDB. In particular, UniKV takes nearly the
same time to recover the metadata from the manifest file and
the KV pairs in MemTable from log file after a crash, but it
costs another 3.18 seconds to recover the hash index from disk
files. Note that the larger UnsortedStore also implies the larger
hash indexing, so the recovery time is also longer.

V. RELATED WORK

Hash indexing. Several KV stores are based on hash
indexing. The baseline design [6], [7], [25] maintains an in-
memory hash index that stores a key signature and a pointer
for referencing KV pairs that are stored on disk. Various
optimizations on hash indexing include: page-oriented access
in LLAMA [32], log-based storage and multi-version indexing
in LogBase [33], and lossy and lossless hash indexing for
parallel accesses in MICA [34]. In-memory hash indexing is
also explored in data caching, such as concurrent in-memory
hash tables for caching recently written KV pairs in FloDB
[35]. However, hash indexing has poor scalability and cannot
efficiently support scans.

LSM-tree. Many persistent KV stores build on the LSM-
tree [12] to address scans and scalability issues. Prior studies
focus on improving the write performance of the LSM-
tree design, including: fine-grained locking in HyperLevelDB
[23], concurrency and parallelism optimization [5], [36], [37],
compaction overhead reduction [10], [38], optimized LSM-
tree-like structures [17], [18], hotness awareness [20], and KV
separation [15], [19], [39], etc. Some studies focus on improving
the read performance of the LSM-tree, including differentiated
Bloom filters for multiple levels in Monkey [30], elastic memory
allocation for Bloom filters based on data locality in ElasticBF
[26], and a succinct trie structure in SuRF [40].

Hybrid indexing. Some KV stores combine different index-
ing techniques. For example, SILT [41] combines log-structured,
hash-based, and sorted KV stores and uses compact hash tables
to reduce per-key memory usage. NV-tree [42], HiKV [43], and
NoveLSM [44] design new index structures for non-volatile
memory (NVM). Data Calculator [45] and Continuums [46]
focus on unifying major distinct data structures for enabling
self-designing KV stores.

UniKV also takes a hybrid indexing approach. Unlike the
above hybrid indexing techniques, UniKV aims to simultane-
ously achieve high performance in reads, writes, and scans,
while supporting scalability. It is also deployable in commodity
storage devices (e.g., SSDs) without relying on sophisticated
hardware like NVM nor complicated computations.

VI. CONCLUSION

We propose UniKV, which unifies hash indexing and the
LSM-tree in a single system to enable high-performance
and scalable KV storage. By leveraging data locality with a
layered design and dynamic range partitioning, UniKV supports
efficient reads and writes via hash indexing, as well as efficient
scans and scalability via the LSM-tree. Testbed experiments on
our UniKV prototype justify its performance gains in various
settings over state-of-the-art KV stores.

ACKNOWLEDGMENT

This work is supported in part by the National Key
Research and Development Program of China under Grant
No.2018YFB1800203, NSFC 61772484, 61772486, Youth In-
novation Promotion Association CAS, and PingCAP. Yongkun
Li is USTC Tang Scholar, and he is the corresponding author.

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM Trans. Comput. Syst., vol. 26, pp.
4:1–4:2, Jun. 2008.

[2] S. Ghemawat and J. Dean, “LevelDB,” https://leveldb.org.
[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proc. ACM SOSP’07,
Washington, USA, Oct. 2007, pp. 205–220.

[4] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project voldemort,” in
Proc. USENIX FAST’12, San Jose, CA, Feb. 2012, pp. 18–18.

[5] Facebook, “RocksDB,” https://rocksdb.org.
[6] B. Debnath, S. Sengupta, and J. Li, “Flashstore: High throughput persistent

key-value store,” Proc. VLDB Endow., vol. 3, pp. 1414–1425, Sep. 2010.
[7] ——, “Skimpystash: Ram space skimpy key-value store on flash-based

storage,” in Proc. ACM SIGMOD’11, Athens, Greece, Jun. 2011, pp.
25–36.

[8] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel et al., “Finding a
needle in haystack: Facebook’s photo storage,” in Proc. USENIX OSDI’10,
Vancouver, Canada, Oct. 2010, pp. 47–60.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload
analysis of a large-scale key-value store,” in Proc. ACM SIGMETRICS’12,
London, England, UK, Jun. 2012, pp. 53–64.

[10] R. Sears and R. Ramakrishnan, “blsm: A general purpose log structured
merge tree,” in Proc. ACM SIGMOD’12, Scottsdale, Arizona, USA, May
2012, pp. 217–228.

[11] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong,
“Atlas: Baidu’s key-value storage system for cloud data,” in Proc.
MSST’15, Santa Clara, CA, USA, May 2015, pp. 1–14.

[12] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree,” Acta Informatica, vol. 33, no. 4, pp. 351–385, 1996.

[13] Apache, “HBase,” https://hbase.apache.org/.
[14] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage

system,” SIGOPS Oper. Syst. Rev., vol. 44, pp. 35–40, Apr. 2010.
[15] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“Wisckey: Separating keys from values in ssd-conscious storage,” in Proc.
USENIX FAST’16, Santa Clara, CA, Feb. 2016, pp. 133–148.

[16] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse, and
R. Panigrahy, “Design tradeoffs for ssd performance,” in Proc. USENIX
ATC’08, Boston, Massachusetts, Jun. 2008, pp. 57–70.

[17] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “Lsm-trie: An lsm-tree-based
ultra-large key-value store for small data,” in Proc. USENIX ATC’15,
Santa Clara, CA, Jul. 2015, pp. 71–82.

[18] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, “Pebblesdb:
Building key-value stores using fragmented log-structured merge trees,”
in Proc. ACM SOSP’17, Shanghai, China, Oct. 2017, pp. 497–514.

[19] H. H. W. Chan, Y. Li, P. P. C. Lee, and Y. Xu, “Hashkv: Enabling
efficient updates in KV storage via hashing,” in Proc. USENIX ATC’18,
Boston, MA, USA, Jul. 2018, pp. 1007–1019.

[20] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan, A. Arora,
K. Gupta, and P. Konka, “Triad: Creating synergies between memory, disk
and log in log structured key-value stores,” in Proc. USENIX ATC’17,
Santa Clara, CA, USA, Jul. 2017, pp. 363–375.

[21] Z. L. Li, C.-J. M. Liang, W. He, L. Zhu, W. Dai, J. Jiang, and G. Sun,
“Metis: Robustly tuning tail latencies of cloud systems,” in Proc. USENIX
ATC’18, Boston, MA, USA, Jul. 2018, pp. 981–992.

[22] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. ACM SoCC’10,
Indianapolis, Indiana, USA, Jun. 2010, pp. 143–154.

[23] R. Escriva, “HyperLevelDB,” https://github.com/rescrv/HyperLevelDB/.
[24] Wikipedia, “Bloom Filter,” https://en.wikipedia.org/wiki/Bloom_filter.
[25] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and

V. Vasudevan, “Fawn: A fast array of wimpy nodes,” in Proc. ACM
SOSP’09, Big Sky, Montana, USA, Oct. 2009, pp. 1–14.

[26] Y. Li, C. Tian, F. Guo, C. Li, and Y. Xu, “Elasticbf: Elastic bloom filter
with hotness awareness for boosting read performance in large key-value
stores,” in Proc. USENIX ATC’19, Renton, WA, Jul. 2019, pp. 739–752.

[27] Wikipedia, “Cuckoo hash,” https://en.wikipedia.org/wiki/Cuckoo_hashing.
[28] A. Partow, “General Hash Functions Library,” https://www.partow.net/

programming/hashfunctions/.
[29] Dartmouth, “Hash Collision Probabilities,” https://www.math.dartmouth.

edu/archive/m19w03/public_html/Section6-5.pdf.
[30] N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal navigable

key-value store,” in Proc. ACM SIGMOD’17, Chicago, USA, May 2017,
pp. 79–94.

[31] J. Ren, “C++ version of YCSB,” https://github.com/basicthinker/YCSB-C.
[32] J. Levandoski, D. Lomet, and S. Sengupta, “Llama: A cache/storage

subsystem for modern hardware,” Proc. VLDB Endow., vol. 6, pp. 877–
888, Aug. 2013.

[33] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, “Logbase:
A scalable log-structured database system in the cloud,” Proc. VLDB
Endow., vol. 5, pp. 1004–1015, Jun. 2012.

[34] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage,” in Proc. USENIX
NSDI’14, Seattle, WA, Apr. 2014, pp. 429–444.

[35] O. Balmau, R. Guerraoui, V. Trigonakis, and I. Zablotchi, “Flodb:
Unlocking memory in persistent key-value stores,” in Proc. ACM
EuroSys’17, Belgrade, Serbia, Apr. 2017, pp. 80–94.

[36] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong,
“An efficient design and implementation of lsm-tree based key-value
store on open-channel ssd,” in Proc. ACM EuroSys’14, Amsterdam, The
Netherlands, Apr. 2014, pp. 16:1–16:14.

[37] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Keidar, “Scaling concurrent
log-structured data stores,” in Proc. ACM EuroSys’15, Bordeaux, France,
Apr. 2015, pp. 32:1–32:14.

[38] P. Shetty, R. Spillane, R. Malpani, B. Andrews, J. Seyster, and E. Zadok,
“Building workload-independent storage with vt-trees,” in Proc. USENIX
FAST’13, San Jose, CA, Feb. 2013, pp. 17–30.

[39] H. Zhang, M. Dong, and H. Chen, “Efficient and available in-memory
kv-store with hybrid erasure coding and replication,” in Proc. USENIX
FAST’16, Santa Clara, CA, Feb. 2016, pp. 167–180.

[40] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton, and
A. Pavlo, “Surf: Practical range query filtering with fast succinct tries,”
in Proc. ACM SIGMOD’18, Houston, USA, Jun. 2018, pp. 323–336.

[41] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A memory-
efficient, high-performance key-value store,” in Proc. ACM SOSP’11,
Cascais, Portugal, Oct. 2011, pp. 1–13.

[42] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-tree:
Reducing consistency cost for nvm-based single level systems,” in Proc.
USENIX FAST’15, Santa Clara, CA, Feb. 2015, pp. 167–181.

[43] F. Xia, D. Jiang, J. Xiong, and N. Sun, “Hikv: A hybrid index key-value
store for dram-nvm memory systems,” in Proc. USENIX ATC’17, Santa
Clara, CA, USA, Jul. 2017, pp. 349–362.

[44] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “Redesigning lsms for nonvolatile memory with novelsm,” in
Proc. USENIX ATC’18, Boston, MA, USA, Jul. 2018, pp. 993–1005.

[45] S. Idreos, K. Zoumpatianos, B. Hentschel, M. S. Kester, and D. Guo,
“The data calculator: Data structure design and cost synthesis from first
principles and learned cost models,” in Proc. ACM SIGMOD’18, Houston,
USA, Jun. 2018, pp. 535–550.

[46] S. Idreos, N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, Ross, Jain et al.,
“Design continuums and the path toward self-designing key-value stores
that know and learn,” in Proc. CIDR’19, Asilomar, USA, Jan. 2019.

