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Abstract—Cloud block storage systems support diverse types
of applications in modern cloud services. Characterizing their
I/O activities is critical for guiding better system designs and
optimizations. In this paper, we present an in-depth analysis of
production cloud block storage workloads through the block-level
I/O traces of billions of I/O requests collected from Alibaba Cloud.
We study the characteristics of load intensity, spatial patterns,
and temporal patterns. Also, we present a comparative study on
our traces and the notable public block-level I/O traces from
Microsoft Research Cambridge, and identify the commonalities
and differences of the two sets of traces. Finally, we provide
15 findings and discuss their implications on load balancing,
cache efficiency, and storage cluster management in a cloud block
storage system. Our traces are now released for public use.

I. INTRODUCTION

Traditional desktop and server applications, such as virtual
desktops, operating systems, web services, relational databases,
and key-value stores, are now moving to the cloud. Cloud
block storage systems [1], [2], [13], [17], [18], [34] form an
infrastructure that allows cloud service providers to manage
large-scale physical storage clusters. They also provide virtual
disks, called volumes, for clients to host various types of
applications. To allow performance optimizations and efficient
resource provisioning of cloud block storage systems, it is
critical to characterize and understand the I/O behaviors of the
applications in production environments.

Several field studies have analyzed the I/O behaviors of
various architectures via the collection and characterization of
block-level I/O traces [3], [9], [11], [12], [21], [35]. In particular,
the public block-level I/O traces released by Microsoft Research
Cambridge [21] have received wide attention from researchers
and practitioners. The traces, which we refer to as MSRC, have
been extensively analyzed to motivate storage system designs
and optimizations, such as I/O scheduling [6], [14], [15], [21],
caching [23], [24], erasure-coded storage [7], [34], as well as
cloud block storage [13].

However, the MSRC traces, which were collected from
enterprise data centers more than a decade ago, may not
necessarily reflect the actual I/O behaviors of today’s cloud
block storage systems. Modern cloud environments often host
much more diverse types of applications, some of which feature
unique characteristics (e.g., short-lived tasks [20]) that are not
commonly found in traditional data center environments. Also,
the overall workloads in MSRC are read-dominant [21], while
the workloads in cloud environments are often write-dominant
due to the heavy use of read caches in cloud applications [16],
[30]. Such deficiencies motivate the need of collecting and

analyzing comprehensive block-level I/O traces from real-world
cloud block storage systems in large-scale production.

In this paper, we present an in-depth study on the block-
level I/O traces collected from a production cloud block storage
system deployed at Alibaba Cloud. Our traces, which we refer
to as AliCloud, cover one-month I/O activities of 1,000 volumes,
totaling billions of I/O requests and hundreds of terabytes of I/O
traffic. We characterize the I/O behaviors in terms of the load
intensity, spatial patterns, and temporal patterns. In particular,
we present a comparative analysis on both the AliCloud and
MSRC traces, and identify the commonalities and differences
of the two traces. To this end, we highlight 15 findings, and
provide insights into load balancing, cache efficiency, and
storage cluster management in cloud block storage systems.
To the best of our knowledge, our trace analysis is one of the
largest field studies on block-level I/O traces reported in the
literature [3], [9], [11], [12], [21], [35].

We highlight some major findings of our trace analysis. For
load intensity, both traces show similar amounts of I/O traffic,
while AliCloud shows more diverse workloads. For spatial
patterns, both traces show aggregations of reads and writes
in small working sets, while the aggregations of reads and
writes in AliCloud are more prominent. Also, both traces show
varying patterns in update coverage. For temporal patterns, both
traces have varying temporal update patterns across volumes.
However, they show different access tendencies for the written
blocks: each written block in AliCloud is likely followed by
a write, while that in MSRC is about equally likely to be
followed by either a read or a write.

We now release the block-level I/O traces of AliCloud at:
https://github.com/alibaba/block-traces. We hope that the
community can use the traces to not only validate our analysis,
but also drive new designs and optimizations for cloud block
storage and generally large-scale storage systems.

II. BACKGROUND AND METHODOLOGY

We introduce the cloud block storage architecture considered
in the paper (Section II-A). We further elaborate how our trace
analysis should characterize the I/O activities in response to the
design considerations for cloud block storage (Section II-B).

A. Cloud Block Storage

Figure 1 depicts the architecture of a cloud block storage
system considered in the paper. The cloud block storage system
serves as a middleware layer that bridges: (i) the virtual
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Fig. 1: Architecture of a cloud block storage system. It comprises
multiple volumes that host a mix of cloud applications (e.g., virtual
desktops, operating systems, web services, relational databases, and
key-value stores).

disks (referred to as the volumes) that are perceived by upper-
layer applications, and (ii) the storage clusters that provide
physical storage space owned by cloud service providers. Each
application is allocated with a dedicated volume. It issues
read or write requests through the dedicated volume to the
storage clusters. Each volume is typically replicated across
multiple storage clusters for fault tolerance. For performance
and reliability, today’s storage cluster are often backed by flash-
based solid-state drives (SSDs) instead of hard disk drives [32].

In production, a cloud block storage system may manage
diverse types of upper-layer cloud applications (Figure 1).
The I/O characteristics of such applications are often largely
different, as we show in this paper.

B. Analysis Methodology

Cloud block storage systems should maintain quality-of-
services guarantees (e.g., low-latency requests and fairness)
and efficient resource utilizations (e.g., long device lifetime).
We highlight three design considerations of cloud block storage
systems, namely load balancing, cache efficiency, and storage
cluster management. In the following, we explain how each of
the design considerations can be addressed in our trace analysis
of I/O activities in cloud block storage.

Load balancing. Maintaining load balancing across storage
devices is important for availability. If load imbalance exists,
some storage devices may be overloaded by a large number
of I/O requests and cannot serve incoming requests in a
timely manner, thereby increasing the overall I/O latencies.
In addition, the overloading of I/O requests may aggravate
flash wearing [32], leading to reduced endurance. Since load
balancing addresses the performance differences due to the
uneven distribution of I/O traffic, our trace analysis should
examine the load intensities of I/O traffic.

Cache efficiency. To speed up I/O performance, storage
systems typically cache frequently accessed data based on
efficient resource allocation schemes and admission policies
[4], [29]. However, the high variations of I/O characteristics
may introduce improper cache space allocation and cache
management policies, which degrade hit ratios and increase the
overall I/O latencies. To investigate how the caching design
can leverage workload characteristics, our trace analysis should
address the spatial and temporal aggregations of I/O traffic.

Storage cluster management. Enterprise storage clusters
increasingly move to flash-based storage, which is sensitive to

varying workload patterns in both performance and endurance.
In particular, the update patterns can determine the effectiveness
of garbage collection and wear-leveling in flash [10]. Storage
cluster management should address the variations of workload
patterns, so as to maintain high performance and endurance of
the underlying flash devices. Thus, our trace analysis should
focus on the spatial and temporal patterns for update requests.
Also, as small and random I/Os can degrade the performance
and endurance of flash storage [19], our trace analysis should
also examine the randomness of I/Os.

III. TRACES

We describe two sets of traces used in our analysis (Sec-
tion III-A) and state the limitations of our trace analysis
(Section III-B). We present a high-level analysis on the basic
statistics as well as the commonalities and differences on both
traces (Section III-C).

A. Trace Overview

Our trace analysis is based on two sets of block-level I/O
traces collected from different production environments. For
brevity, we refer to the traces as AliCloud and MSRC in short
in the following discussion.

AliCloud. The traces were collected from a cloud block
storage system deployed at Alibaba Cloud over a one-month
period in January 2020. They comprise block-level I/O requests
collected from 1,000 volumes, each of which has a raw capacity
from 40 GiB to 5 TiB. The workloads span diverse types of
cloud applications (Section II-A). Each collected I/O request
specifies the volume number, request type, request offset,
request size, and timestamp.

MSRC [21]. The traces were collected by Microsoft Re-
search Cambridge from a data center of Microsoft Windows
servers over a one-week period in February 2007. They
comprise one-week block-level I/O requests from 36 volumes
over 179 disks on 13 servers. The workloads span a variety
of applications, including home directories, project directories,
web services, source control, media services, etc. Each collected
I/O request includes all the fields as in AliCloud; in addition,
it also includes the response time of the request.

B. Limitations

Our trace analysis has several limitations due to the unavail-
able information in AliCloud. First, the traces do not record the
response times of the I/O requests as in MSRC, so we cannot
conduct latency analysis on I/O requests in actual deployment.
Also, the traces do not indicate the specific applications
running atop individual volumes, so we cannot investigate the
relationship between specific application workloads and their
I/O patterns. Finally, the traces do not capture the information
of physical storage devices (e.g., data placement and failure
statistics), so we cannot study the performance and reliability
correlations between the cloud block storage system and the
underlying storage clusters.



AliCloud MSRC
#Volumes 1,000 36

Duration (days) 31 7
#Reads (millions) 5,058.6 304.9
#Writes (millions) 15,174.4 128.9
Read Traffic (TiB) 161.6 9.04
Write Traffic (TiB) 455.5 2.39

Update Traffic (TiB) 429.2 2.01
Total WSS (TiB) 29.5 2.87
Read WSS (TiB) 10.1 2.82
Write WSS (TiB) 26.3 0.38

Update WSS (TiB) 18.6 0.17

TABLE I: Basic statistics of both AliCloud and MSRC.

C. High-level Analysis

We now present a high-level analysis on both AliCloud
and MSRC by collectively analyzing the I/O requests of all
volumes in each of the traces and presenting the overall basic
statistics. We further identify some of their commonalities and
differences. Table I shows different categories of basic statistics
of both AliCloud and MSRC, including (i) the numbers of
reads and writes, (ii) the total amounts of data read, written,
and updated, as well as (iii) the working set sizes (WSSs) of
reads, writes, and updates.

AliCloud has a much larger scale than MSRC. Referring
to Table I, AliCloud has a much larger scale than MSRC in
various aspects, including the number of volumes, the trace
duration, the number of I/O requests, and the size of I/O traffic;
to our knowledge, the scale of AliCloud is among the largest
block-level I/O traces reported in the literature. Specifically,
AliCloud contains 20.2 billion I/O requests, 46.6× the total
number of I/O requests in MSRC. It also has much larger
scales, in terms of the number of volumes (27.8×), the I/O
traffic size (54.1×), and the WSS (10.3×), compared to those
in MSRC.

Reads span a small proportion of working sets in
AliCloud. Referring to Table I, reads in AliCloud only occupy
34.3% of the total WSS, while reads in MSRC occupy a much
larger proportion (98.4%) of the total WSS. On the other hand,
writes in AliCloud occupy 89.4% of the total WSS. The results
indicate that a substantial amount of written data is never
read again. One possible reason is that a large fraction of
applications (e.g., backups or journaling) tend to only write
data but rarely read data.

Small-size I/Os dominate in both AliCloud and MSRC.
Figure 2(a) shows the cumulative distributions of request sizes
across all I/O requests in both AliCloud and MSRC. We see that
both traces feature small-size I/O requests (less than 100 KiB).
Specifically, in AliCloud, 75% of reads and writes are no larger
than 32 KiB and 16 KiB, respectively, while in MSRC, 75%
of reads and writes are no larger than 64 KiB and 20 KiB,
respectively.

The dominance of small-size I/O requests also holds in
individual volumes. We compute the average request size for
each volume. Figure 2(b) shows the cumulative distributions of
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Fig. 2: Cumulative distributions of I/O request sizes.

0

20

40

60

80

100

0 5 10 15 20 25 31
Number of active days

C
um

ul
at

iv
e 

(%
) AliCloud

MSRC

Fig. 3: Cumulative distributions
of numbers of active days across
all volumes.
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Fig. 4: Cumulative distributions
of write-to-read ratios across all
volumes.

the average request sizes of all volumes in both AliCloud and
MSRC. We see that 75% of the average read and write sizes
in AliCloud are less than 39.1 KiB and 34.4 KiB, respectively,
while 75% of the average read and write sizes in MSRC are
less than 50.8 KiB and 15.3 KiB, respectively.

A non-negligible fraction of volumes in AliCloud are
active in short time periods. We study the activeness of
individual volumes. Here, we measure the number of active
days for each volume, in which a volume is said to be active if
it receives at least one I/O request (i.e., up to 31 and 7 active
days in AliCloud and MSRC, respectively). Figure 3 depicts the
cumulative distributions of numbers of active days across all
volumes in both AliCloud and MSRC. In AliCloud, 15.7% of
volumes are active for only one day, while all volumes in MSRC
are active for all 7 days in the entire trace duration. One possible
reason for the short active periods in such volumes in AliCloud
is the presence of short-lived tasks in cloud applications [20].

Most volumes in AliCloud are write-dominant. Referring
to Table I, the overall write-to-read ratio (i.e., the ratio between
the number of writes and the number of reads) in AliCloud
is 3:1, while that in MSRC is 0.42:1. We further analyze the
write-to-read ratios on a per-volume basis. Figure 4 shows
the cumulative distributions of write-to-read ratios across all
volumes in both AliCloud and MSRC. In AliCloud, 91.5%
(915 out of 1,000) of volumes are write-dominant (i.e., the
write-to-read ratios are larger than 1). Also, almost half (42.4%)
of the volumes even have very high write-to-read ratios that
are larger than 100. This is in contrast to MSRC, in which only
53% (19 out of 36) of volumes are write-dominant. A possible
reason is the wide use of application-level read caches, which
absorb reads in the application layer without issuing them to
the storage layer [30].

Summary. Both AliCloud and MSRC have some common
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Fig. 5: Finding 1. Average and peak intensities of volumes (sorted by average
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aspects, such as the dominance of small-size I/O requests, yet
they also have many differences. In particular, AliCloud has the
following unique aspects: a very large scale, a small WSS for
reads, a non-negligible fraction of volumes with short active
periods, and high write-to-read ratios in most volumes.

IV. FINDINGS

In this section, we conduct an in-depth analysis on both
AliCloud and MSRC in three aspects: load intensity, spatial
patterns, and temporal patterns. We report 15 findings from
our analysis.

A. Load Intensity

We study the load intensity characteristics of volumes in both
AliCloud and MSRC through a number of metrics. Specifically,
we examine the average and peak load intensities [21] and
the distribution of inter-arrival times of requests [27]. We also
examine the activeness of volumes through the number of
active volumes [21] and the active period of each volume.

Finding 1. Both AliCloud and MSRC have similar load
intensities of volumes.

We measure the load intensities of individual volumes, in
terms of the number of requests per second (req/s), in two
aspects. We first measure the average intensity of a volume,
defined as the total number of requests divided by the time
elapsed between the first and last requests of the volume. We
also measure the peak intensity of a volume, in which we divide
the whole duration of requests of the volume into one-minute
intervals and find the peak intensity as the maximum number
of requests (per minute) across all intervals.

Figure 5 shows the average and peak intensities of volumes
in both AliCloud and MSRC, sorted by the average intensities
of volumes in descending order. We observe similar trends
of average and peak intensities in both traces. In AliCloud
and MSRC, only 1.90% and 2.78% of volumes have average
intensities above 100 req/s, while 81.6% and 72.2% of volumes
have average intensities lower than 10 req/s, respectively. Their
medians of average intensities are 2.55 req/s and 3.36 req/s,
respectively. Furthermore, the maximum peak intensities in
AliCloud and MSRC are 4,926.8 req/s and 4,633.6 req/s, re-
spectively.

Finding 2. Both AliCloud and MSRC have high burstiness
in a non-negligible fraction of volumes, but have overall low
burstiness.

Traces AliCloud MSRC
Peak intensity (req/s) 15,965.8 5,296.8

Average intensity (req/s) 7,554.1 717.0
Burstiness ratio 2.11 7.39

TABLE II: Finding 2: Overall peak and average intensities as well
as burstiness ratios.

We examine the burstiness of both traces. We measure the
burstiness ratio of a volume, defined as the ratio between
the peak intensity and the average intensity of the volume.
Figure 6 shows the cumulative distributions of burstiness ratios
across all volumes in both AliCloud and MSRC. We see that a
substantial fraction of volumes (20.7% in AliCloud and 38.9%
in MSRC) have burstiness ratios higher than 100. This implies
that such volumes can observe load imbalance at some time.
On the other hand, if we examine overall burstiness level by
aggregating all volumes of the whole traces, the burstiness
ratios are mild, with 2.11 for AliCloud and 7.39 for MSRC
(see Table II).

Finding 3. AliCloud has more diverse burstiness across
volumes than MSRC.

The volumes in AliCloud span a wider range of burstiness
than those in MSRC. Referring to Figure 6, for the volumes
with low burstiness, 25.8% of volumes in AliCloud have bursti-
ness ratios less than 10, while in MSRC, the corresponding
percentage of volumes is only 2.78%. On the other hand, for the
volumes with high burstiness, 2.60% of volumes in AliCloud
have burstiness ratios larger than 1,000, while there is no such
volume in MSRC. The high diversity of burstiness in AliCloud
suggests large variations in workload characteristics.

Finding 4. Both AliCloud and MSRC have high short-term
burstiness from the perspective of inter-arrival times of requests.

We measure the inter-arrival times of I/O requests (i.e., the
elapsed time between two adjacent requests) for each volume.
Also, we consider five groups of percentiles of inter-arrival
times for each volume, including the 25th, 50th, 75th, 90th,
and 95th percentiles. We represent each group of percentile
values of all volumes by boxplots.

Figure 7 shows the results of both AliCloud and MSRC.
Both traces have a high number of bursty requests, as indicated
by large fractions of short inter-arrival times in the volumes.
In particular, the medians of the groups of 25th, 50th, and
75th percentiles are lower than 1.3 ms, or equivalently over
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Fig. 7: Finding 4. Inter-arrival times of requests. Each boxplot
represents the distribution of all the values collected in each volume
according to the corresponding percentile.

700 req/s (i.e., 31 µs, 145 µs, and 735 µs in AliCloud, and
3.5 µs, 30.5 µs, and 1.3 ms in MSRC, respectively).

Also, the volumes in AliCloud have much higher inter-
arrival times of requests than those in MSRC. For example,
half of the volumes in AliCloud has 25th percentiles higher
than 31 µs (Figure 7(a)), while half of the volumes in MSRC
have 25th percentiles higher than 3.5 µs (Figure 7(b)). The
same observation holds for other groups of percentiles.

Finding 5. Most of the volumes in both AliCloud and MSRC
are active throughout the trace periods, while AliCloud has
higher activeness than MSRC.

Recall from Section III-C that we examine the activeness
of volumes of both AliCloud and MSRC on a per-day basis.
We now revisit the activeness of volumes of both traces in a
more fine-grained manner. Specifically, we divide the traces
into 10-minute intervals. We say that a volume is active in an
interval if it has at least one request in the interval. We also
say that a volume is read-active and write-active in an interval
if it has at least one read request and one write request in the
interval, respectively.

Figure 8 depicts the numbers of active, read-active, and write-
active volumes throughout the trace periods in both AliCloud
and MSRC. More than 59.4% of volumes in both traces are
active throughout the whole trace periods. Also, the number of
active volumes in AliCloud has a more stable trend compared
to that in MSRC.

We also measure the active time period of each volume,
based on the number of 10-minute intervals in which the
volume is active. Figure 9 depicts the cumulative percentages
of active time periods across all volumes in both AliCloud
and MSRC. More than 72.2% and 55.6% of the volumes are
active during 95% of the whole trace periods in AliCloud and
MSRC, respectively. This indicates that most of the volumes
in both AliCloud and MSRC have high activeness throughout
the whole trace periods, and AliCloud has higher activeness
in general than MSRC.

Finding 6. Writes are the dominant factor in determining
activeness in both AliCloud and MSRC.

Referring to both Figures 8 and 9, the curves of “Active” and
“Write-active” nearly overlap with each other in both AliCloud
and MSRC. It suggests that the activeness of both traces (in
terms of the number of active volumes and the active time
period of a volume) is mainly determined by the presence of
writes.
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Fig. 8: Findings 5-7. Numbers of active, read-active, and write-active
volumes. Note that the “Active” and “Write-active” curves almost
overlap with each other.
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Fig. 9: Findings 5-7. Cumulative distributions of active time periods
across all volumes. Note that the “Active” and “Write-active” curves
almost overlap with each other.

Finding 7. Removing write requests shows drastic decreases
in activeness in both AliCloud and MSRC. AliCloud is also
less read-active than MSRC.

If we remove write requests and consider only the read-active
volumes, Figure 8 shows that the number of active volumes
decreases drastically. In particular, the number of active
volumes reduces by 58.3-73.6% in AliCloud (Figure 8(a)),
while the reduction is 24.6-65.8% in MSRC (Figure 8(b)).

Figure 9 shows that removing write requests also causes the
volumes in both AliCloud and MSRC to have low read-active
time. In AliCloud, half of the volumes have less than only 1.28
days of read-active time after removing writes, and only 7.9%
of the volumes can reach more than 30 days of read-active time
(Figure 9(a)). In MSRC, half of the volumes are read-active
for less than 2.66 days, and only 16.7% of the volumes can
reach more than 6 days of read-active time (Figure 9(b)). This
suggests that removing writes produces a high level of idle
periods, such that we can apply write offloading to cloud block
storage for power savings [21].

B. Spatial Patterns

We study the spatial characteristics of volumes in both
AliCloud and MSRC through the following metrics. First, we
study the randomness of I/O requests by examining the offset
differences of recent requests [3], [25], as random I/Os can
compromise the performance and endurance of flash-based
storage [19]. Second, we examine the aggregations of reads
and writes in working sets, so as to provide hints for resource
allocation in caching [13], [14], [24]. Finally, we examine the
patterns of update coverage (i.e., the percentage of WSS for
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Fig. 10: Finding 8. Cumulative distributions of randomness ratios
of volumes (figure (a)) and the relationship between the randomness
ratios and total traffic sizes in top-10 traffic-intensive volumes.

updates), which is important for optimizing update performance
in the storage cluster management [7].

Finding 8. Random I/Os are common in both AliCloud and
MSRC. The volumes in AliCloud see more random I/Os than
those in MSRC.

We study the randomness of I/O requests by examining the
spatial relationships among adjacent requests. To quantify the
randomness of a request, we measure the minimum distance
between the current offset of the request and the offsets of
the previous 32 requests [3], [25]. If the minimum distance
exceeds a threshold (e.g., 128 KiB [25]), we regard the request
as a random request. We measure the randomness ratio of a
volume, defined as the percentage of random requests over all
requests.

Figure 10(a) shows the cumulative distributions of random-
ness ratios of volumes in both AliCloud and MSRC. AliCloud
in general shows a higher randomness ratio than MSRC. In
particular, all volumes in MSRC have less than 46% of random
requests, while 20% of volumes in AliCloud have more than
50% of random requests.

We further examine the randomness ratios of the top-10
volumes that have the most I/O traffic in each trace. Figure 10(b)
shows the relationships between the randomness ratios and
the total I/O traffic sizes of the top-10 volumes. We see
that the volumes with large amounts of I/O traffic have high
randomness ratios in general. The randomness ratios of the
top-10 volumes in AliCloud and MSRC are 13.9-83.4% and
11.3-40.8%, respectively, and their I/O traffic sizes are 20.0-
52.8 TiB and 0.17-2.26 TiB, respectively. The results indicate
that random I/Os are also common in traffic-intensive volumes.

Combining with the observation that small-size I/O requests
dominate in both traces (Section III-C), we see that random and
small I/Os are common in both traces (especially in AliCloud).
Such access patterns can compromise the performance and
endurance of flash-based storage [19].

Finding 9. Reads and writes aggregate in small working
sets for a non-negligible fraction of volumes in both AliCloud
and MSRC. Writes are more aggregated than reads.

We study how reads and writes aggregate in the working sets
for each volume. Specifically, in the read (or write) working
sets, we focus on the top-1% and top-10% of unique blocks
that receives most read (or write) traffic. We examine the
percentages of read (or write) traffic size of such blocks over

0

20

40

60

80

100

Read Write
Request type

%
 o

f 
T

ra
ff

ic

1%
10%

0

20

40

60

80

100

Read Write
Request type

%
 o

f 
T

ra
ff

ic

1%
10%

(a) AliCloud (b) MSRC

Fig. 11: Finding 9. Boxplots of percentages of traffic sizes for the
top-1% and top-10% read and write blocks across all volumes.

the total read (or write) traffic size; a higher percentage implies
that the I/O traffic is more aggregated in such blocks.

Figure 11 shows the boxplots of percentages of traffic sizes
for the top-1% and top-10% blocks across all volumes in
AliCloud and MSRC. We see that the read and write traffic
can aggregate in the top-1% and top-10% blocks in a non-
negligible fraction of volumes. In AliCloud, 75% of volumes
have at least 2.5% and 13.6% of read traffic in the top-1%
and top-10% read blocks, respectively (Figure 11(a)), while in
MSRC, the corresponding percentages of read traffic are 3.1%
and 19.6%, respectively (Figure 11(b)).

In AliCloud, the boxplots show 147 volumes as outliers in
top-1% read blocks (Figure 11(a)). Such outlier volumes have
more than 21.3% of read traffic in their top-1% read blocks. It
implies that a small read cache can absorb a substantial amount
of read traffic for such volumes.

Compared to reads, writes are more aggregated as in
the figure. In AliCloud, the 25th percentiles of read traffic
in top-1% and top-10% read blocks are 2.5% and 13.6%
respectively, while the 25th percentiles of write traffic in top-
1% and top-10% write blocks increase to 13.0% and 31.2%,
respectively (Figure 11(a)). Similar observations hold in MSRC
(Figure 11(b)).

Finding 10. Reads and writes tend to aggregate in read-
mostly and write-mostly blocks in AliCloud, respectively.

We further classify the blocks into different types as in [14]
and examine the aggregation of reads and writes. Specifically,
we classify a block as read-mostly (or write-mostly) if its read
(or write) traffic occupies more than 95% of its total I/O traffic.
We examine the percentage of read (or write) traffic that goes
to read-mostly (or write-mostly) blocks.

Table III shows the overall percentages of read and write
traffic that goes to read-mostly and write-mostly blocks in both
AliCloud and MSRC. In AliCloud, the majority of read traffic
(59.2%) and write traffic (80.7%) goes to read-mostly blocks
and write-mostly blocks, respectively. In MSRC, 75.9% of
read traffic goes to read-mostly blocks; however, only 33.5%
of write traffic goes to write-mostly blocks. Note that the
limited aggregation of writes in write-mostly blocks in MSRC
is inconsistent with the prior finding in [14]. The reason is
that the study in [14] considers only 12 out of 36 volumes in
MSRC, while we consider all 36 volumes.

Figure 12 shows the cumulative distributions of percentages
of read and write traffic that goes to read-mostly and write-
mostly blocks, respectively, across all volumes in both AliCloud



Traces AliCloud MSRC
Reads to read-mostly blocks (%) 59.2 75.9

Writes to write-mostly blocks (%) 80.7 33.5

TABLE III: Finding 10. Percentages of read and write traffic going
to read-mostly and write-mostly blocks, respectively.
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Fig. 12: Finding 10. Cumulative distributions of percentages of
read and write traffic going to read-mostly and write-mostly blocks,
respectively, across all volumes.

and MSRC. Most of the volumes in both traces have high
percentages of read and write traffic aggregated in read-mostly
and write-mostly blocks, respectively. In AliCloud, half of the
volumes have more than 83% of reads going to read-mostly
blocks and more than 99% writes going to write-mostly blocks
(Figure 12(a)). In MSRC, the corresponding percentages are
90% and 75%, respectively (Figure 12(b)).

Finding 11. AliCloud generally has higher update coverage
than MSRC. The update coverage also varies across volumes.

Recall that Table I (Section III-C) shows the overall WSSs
(working set sizes) for reads, writes, and updates. We now
examine the spatial characteristics of updates. We focus on the
update working set, which covers the blocks that are written
more than once. We measure the update coverage of a volume,
defined as the ratio between the update WSS and the total
WSS of the volume [7].

Table IV shows the averages, medians, and 90th percentiles
of update coverage of all volumes in both AliCloud and MSRC.
In general, AliCloud has higher update coverage than MSRC.
In AliCloud, half of volumes have larger than 61.2% of update
coverage, while in MSRC, the corresponding percentage is
9.4% only. This suggests that AliCloud is more update-intensive
than MSRC.

Figure 13 shows the cumulative distributions of update
coverage percentages across all volumes in both AliCloud
and MSRC. In AliCloud, the update coverage is diverse, in
which 45.2% of volumes have update coverage larger than
65%. On the other hand, in MSRC, 33 out of 36 volumes have
update coverage below 65%.

C. Temporal Patterns

We study the temporal characteristics of volumes in both
AliCloud and MSRC by examining the temporal relationship
of adjacent I/O requests. We first examine the time elapsed
between adjacent requests to the same block with respect to
different combinations of read and write requests for workload-
aware caching designs [24]. We also study the update interval
(i.e., the time interval between two consecutive writes to the

Traces AliCloud MSRC
Mean (%) 76.6 36.2

Median (%) 61.2 9.4
90th percentiles (%) 92.1 63.0

TABLE IV: Finding 11. Means, medians, and 90th percentiles of
update coverage of all volumes.
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Fig. 13: Finding 11. Cumulative distributions of update coverage
percentages across all volumes.

same block), which facilitates flash-based storage management.
[6], [15]. Finally, we study the miss ratios under least recently
used (LRU) caching, which reflects the temporal aggregation
of traffic for caching efficiency [28], [31].

Finding 12. Both AliCloud and MSRC have large read-after-
write (RAW) time, but small write-after-write (WAW) time. In
AliCloud, the number of WAW requests is larger than that of
RAW requests.

We first examine two types of adjacent requests [24]: (i)
a read-after-write (RAW) request, which refers to the read
following immediately the write to the same block; and (ii)
a write-after-write (WAW) request, which refers to the write
following immediately the write to the same block. We measure
the time of a RAW (resp. WAW) request as the elapsed time
between the adjacent read and write (resp. the two adjacent
writes) to the same block.

Figure 14 shows the cumulative distributions of RAW and
WAW times across all RAW and WAW requests, respectively,
in both AliCloud and MSRC. Both AliCloud and MSRC have
large RAW time. Specifically, the 50th percentiles of the RAW
time in AliCloud and MSRC are 3.0 hours and 16.2 hours,
respectively. Also, the numbers of RAW requests that exceed
5 minutes are 93.3% and 68.8% in AliCloud and MSRC,
respectively; such findings are consistent with those in the
prior work [24].

On the other hand, both AliCloud and MSRC have small
elapsed time in WAW requests, as shown in Figure 14. In
particular, the 50th percentiles of the WAW time in AliCloud
and MSRC are 1.4 hours and 0.2 hours, respectively. Also,
22.4% and 50.6% of WAW times in AliCloud and MSRC
are less than 1 minute, respectively. This suggests that write
caching can effectively absorb the subsequent writes to the
same block and hence reduce the load for primary storage.

Table V shows the numbers of RAW and WAW requests in
both AliCloud and MSRC. We observe a large difference in the
numbers of RAW and WAW requests in AliCloud, but a small
difference in MSRC. Specifically, in AliCloud, the numbers
of RAW and WAW requests are 12.4 billion and 103.7 billion,

Jinhong Li
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Fig. 14: Finding 12. Cumulative distributions of RAW and WAW
times across all RAW and WAW requests, respectively.

Traces RAW (M) WAW (M) RAR (M) WAR (M)
AliCloud 12,432.7 103,708.4 29,845.0 11,760.6
MSRC 297.2 289.8 1,382.6 330.0

TABLE V: Findings 12-13. Numbers of RAW, WAW, RAR, and
WAR requests (in millions).

respectively; the number of WAW requests is 8.4× that of
RAW requests. In MSRC, those numbers are 297.2 million
and 289.8 million, respectively, and are close to each other.

Finding 13. Most of the read-after-read (RAR) and write-
after-read (WAR) requests in AliCloud have large elapsed time,
while the RAR and WAR requests in MSRC generally have
very small elapsed time. In both traces, the WAR time is much
larger than the RAR time, while the numbers of RAR and WAR
requests are comparable.

We further examine two types of adjacent requests: (i) a read-
after-read (RAR) request, which refers to the read following
immediately the read to the same block; and (ii) a write-
after-read (WAR) request, which refers to the write following
immediately the read to the same block.

Figure 15 shows the cumulative distributions of RAR and
WAR times across all RAR and WAR requests, respectively,
in both AliCloud and MSRC. In AliCloud, most of the RAR
and WAR times are larger than 1 minute, while only 22.1%
and 2.8% of RAR and WAR times are less than 1 minute,
respectively (Figure 15(a)). However, in MSRC, there exist
non-negligible fractions of RAR and WAR times (35.6% and
29.2%, respectively) that are less than 1 minute. Also, at least
18.5% and 25.4% of RAR and WAR times are smaller than
1 second, respectively (Figure 15(b)).

Overall, in both AliCloud and MSRC, the WAR time is
generally larger than the RAR time. In AliCloud, the 50th
percentiles of RAR and WAR times are 2.0 minutes and
18.3 hours, respectively, while 21.0% and 88.8% of RAR and
WAR times are larger than 1 hour, respectively (Figure 15(a)).
In MSRC, the 50th percentiles of RAR and WAR times are
5.0 minutes and 5.5 hours, respectively, while 33.6% and 66.7%
of RAR and WAR times are larger than 1 hour, respectively.
The results indicate that a block being read is likely read again
soon.

We also examine the numbers of RAR and WAR requests in
both AliCloud and MSRC, as shown in Table V. In AliCloud
and MSRC, the numbers of RAR requests are 2.54× and 4.19×
those of WAR requests, respectively.

Finding 14. Written blocks have varying update intervals.
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Fig. 15: Finding 13. Cumulative distributions of RAR and WAR times
across all RAR and WAR requests, respectively.

We measure the update interval of a block, defined as the
elapsed time between two consecutive writes to the same block.
Note that the update interval differs from the WAW time, as the
former allows reads between two writes. Each block may be
written more than once, so it may be associated with multiple
update intervals (e.g., a block that is written M times has M−1
update intervals). The update interval of a block describes the
lifetime of the block data.

Table VI shows the update intervals in different groups of
percentiles across all volumes in AliCloud and MSRC. In
AliCloud, the update intervals generally have long durations,
while in MSRC, the update intervals generally have short
durations. In AliCloud, 50% of update intervals are larger than
1.6 hours, and the 90th percentile is 50.3 hours. In MSRC,
the update intervals have a bimodal pattern, in which 50% of
update intervals are smaller than 0.03 hours, while 25% of
update intervals are larger than 24.0 hours. The reason of such
a bimodal pattern in MSRC is that a volume is responsible for
source control (i.e., src1 0) and updates data blocks daily. If
we exclude the daily updates, most of the written blocks in
MSRC have very short update intervals.

Figure 16 shows the boxplots of update intervals of different
groups of percentiles across all volumes in AliCloud and MSRC.
We see that the distributions of update intervals have high
variations across volumes in both AliCloud and MSRC. For
example, in AliCloud, the 50th percentiles of update intervals
of all volumes range from 1 second to 17.8 days (Figure 16(a)),
while in MSRC, the 50th percentiles of update intervals of all
volumes range from 1 minute to 24 hours.

Many volumes have non-negligible proportions of short
update intervals in their update requests. To further examine
the distributions of update intervals in individual volumes, we
divide the update intervals by duration into four groups: (i)
less than 5 minutes, (ii) 5-30 minutes, (iii) 30-240 minutes,
and (iv) more than 240 minutes. We calculate the proportions
for the four groups of update intervals for each volume, and
represent the proportions across all volumes by boxplots.

Figure 17 shows the boxplots of proportions for the four
groups of update intervals across all volumes in both AliCloud
and MSRC. Both AliCloud and MSRC have large proportions
of either very small or very large update intervals. In AliCloud,
half of the volumes have more than 35.2% and 38.2% of update
intervals in less than 5 minutes and in more than 240 minutes,
respectively (Figure 17(a)), while in MSRC, half of the volumes
have more than 47.2% and 18.9% of update intervals in less



Percentiles (hours) 25th 50th 75th 90th 95th
AliCloud 0.03 1.59 15.5 50.3 120.2
MSRC 0.02 0.03 24.0 24.0 24.1

TABLE VI: Finding 14. Overall percentiles of update intervals across
all volumes.
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Fig. 16: Finding 14. Boxplots of percentiles of update intervals across
all volumes.
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Fig. 17: Finding 14. Boxplots of proportions for the four groups of
update intervals across all volumes.

than 5 minutes and in more than 240 minutes (Figure 17(b)).
Thus, a substantial amount of data is either updated frequently
or not updated for long.

Finding 15. Some volumes in AliCloud have low miss ratios
even under a small cache size. Also, AliCloud shows higher
reduction in miss ratios than MSRC when the cache size
increases.

Finally, we study the impact of caching with respect to
the temporal patterns of the volumes. For each volume, we
simulate a fixed-size cache for both reads and writes using the
LRU policy, and evaluate the corresponding cache miss ratios
for reads and writes. Here, we select 1% and 10% of the WSS
of a volume as the cache size.

Figure 18 shows the boxplots of miss ratios across all
volumes in both AliCloud and MSRC. Some volumes show
low miss ratios (i.e., LRU-based caching is effective). For the
cache size of 10% of WSS, the 25th percentiles of the miss
ratios for reads and writes are 59.4% and 30.7%, respectively,
in AliCloud (Figure 18(a)), while the corresponding miss ratios
are 64.1% and 32.0%, respectively, in MSRC (Figure 18(b)).
Also, some volumes in AliCloud can have very low miss ratios
when the cache size is only 1% of WSS, implying that the
access patterns of such volumes have high temporal locality.

AliCloud has higher reduction in miss ratios when the cache
size increases from 1% to 10% of WSS. In AliCloud, the 25th
percentiles of the miss ratios for reads and writes reduce from
96.1% to 59.4% and from 52.8% to 30.7% (i.e., 36.7% and
22.1% of absolute reduction), respectively (Figure 18(a)), while
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Fig. 18: Finding 15. Boxplots of miss ratios for reads and writes
across all volumes, under the cache sizes of 1% and 10% of the WSS
of a volume.

in MSRC, the 25th percentiles of the miss ratios for reads and
writes reduce from 86.9% to 64.1% and from 46.2% to 32.1%
(i.e., 22.8% and 14.1% of absolute reduction), respectively
(Figure 18(b)). The higher reduction may be also attributed to
the higher temporal locality for the volumes in AliCloud.

V. SUMMARY OF FINDINGS

We now discuss the implications of our findings of the
trace analysis in both AliCloud and MSRC. We show how
the findings address the design considerations in cloud block
storage, including load balancing, cache efficiency, and storage
cluster management (Section II-B).

Load balancing. We focus on the average and peak intensi-
ties as well as the activeness of volumes. From Finding 1, we
observe that while many applications are hosted in the cloud,
the volumes in cloud block storage have similar load intensities
to those in traditional data centers more than a decade ago.

From Findings 2-4, we observe the existence of burstiness in
a non-negligible fraction of volumes. While the overall bursti-
ness remains low, the burstiness can be severe in individual
volumes, thereby leading to performance degradations if load
balancing is not properly maintained. Both the high diversity
of workloads and the presence of bursty requests make the
load balancing of cloud block storage more challenging than
in traditional data centers.

From Findings 5-7, we observe that writes are the dominant
factor of activeness, while a large number of volumes are
not active in reads. In particular, most volumes in cloud
block storage are write-dominant (Section III-C). It is thus
possible to offload writes (e.g., by redirecting writes to other
storage locations) to create idle periods in cloud block storage
workloads for power savings [21].

In the design of load balancing, the data placement strategies
should be aware of the diversity of workloads and the burstiness
of individual volumes. The log-structured design [22] is proven
useful for balancing the write traffic in cloud-scale flash-based
storage [32].

Cache efficiency. We study the spatial and temporal charac-
teristics of volumes, which provide guidelines for motivating
new caching designs for cloud block storage.

From Findings 9 and 15, we observe the patterns of both
spatial and temporal traffic aggregations in a small fraction of
blocks, especially for writes. Many volumes in cloud block
storage show high aggregations of reads and writes, implying



that it is viable to allocate limited cache resources for absorbing
substantial amounts of reads and writes.

From Finding 10, we observe that many volumes in cloud
block storage have reads and writes aggregated in read-mostly
and write-mostly blocks, respectively. Thus, one possible
caching admission policy is to identify the read-only and
write-only blocks in workloads, as such blocks can absorb
a substantial amount of I/O traffic.

From Findings 12 and 13, the blocks that have been written
tend to be rewritten again, while the elapsed time for the next
read to come is longer than the next write. In contrast, the
blocks that have been read tend to receive another read or
write after a long period of time. Thus, if our goal is to absorb
writes with caching, a possible strategy is to favor the caching
of the blocks that have been written rather than those that have
been read, as the latter may unlikely generate write hits. Also,
cloud block storage can benefit from disk-based write caching
[24], due to the limited reads from the disk-based cache.

Storage cluster management. Characterizing the spatial
and temporal characteristics of volumes is also critical for
storage cluster management. Here, we focus on flash-based
storage (Section II-A).

From Finding 8, we observe that upper-layer applications
in cloud block storage issue lots of small and random I/Os,
which are known to hurt both the performance and endurance
of flash-based storage [19]. The log-structured storage design
[22] and I/O clustering [19] can help mitigate the overhead of
small and random I/Os.

From Findings 11 and 14, the update patterns have high
variations across volumes, both spatially and temporally. The
varying update patterns can harm the effectiveness of garbage
collection and wear leveling in flash [10]. Thus, cloud block
storage systems should take into account the varying patterns
when optimizing update workloads for flash-based storage.
A possible direction is to maintain the flash-translation layer
(FTL) at the system level [8] to flexibly coordinate the I/Os
issued to flash.

VI. RELATED WORK

We review related work on the field studies on storage
workloads and how they inspire storage system designs.

Characterization of storage workloads. Several field stud-
ies characterize storage workloads using block-level I/O traces
in various architectures, such as virtual machines [3], Windows
servers [11], [21], smartphone applications [35], containerized
applications [9], and virtual desktop infrastructures [12]. In
contrast, our field study focuses on cloud block storage that
supports a diverse set of cloud applications in large-scale
production. In particular, we provide findings and insights
on performance optimizations for load balancing, caching
efficiency, and storage cluster management.

Inspirations from load intensity. Some designs are inspired
by the characteristics of load intensity in storage workloads.
Narayanan et al. [21] offload writes to reduce power consump-
tions with the observation that some volumes are idle in reads,
thereby removing writes in those volumes can increase the

idle periods for power saving. SRCMap [26] reduces power
consumptions using sampling and replication, based on the
observation on the I/O size and intensity of active data sets. Ursa
[13] adopts the log-structured design, based on the observation
that small writes dominate in real-world workloads.

Inspirations from spatial patterns. Some designs exploit
the spatial characteristics of storage workloads. BORG [5]
organizes frequently written data in a small dedicated disk
partition to reduce the I/O seek time. FlashTier [23] manages
sparse address mappings in flash caching, as storage I/Os
are often aggregated in a small number of blocks. ACGR
[14] regulates I/O accesses for flash storage, based on the
observation of read and write aggregations in read-only
and write-only blocks, respectively. To improve the update
performance in erasure-coded storage, CodFS [7] proposes
dynamic reserved space management for parity updates to
address the varying working sets of updates across storage
workloads, while PBS [34] exploits the large fractions of
overwrites to mitigate parity update overhead.

Inspirations from temporal patterns. Some designs exploit
the temporal characteristics of storage workloads. Griffin [24]
leverages the large time intervals between writes and the
subsequent reads to the same block to build an HDD-based
write cache for improving the SSD lifetime. Some studies
leverage the characteristics of update intervals in storage
workloads for improving write performance [15], lifetime [6],
garbage collection modeling, and data reduction [33] in SSDs.
Counter Stacks [31] and SHARDS [28] consider the reuse
distance (i.e., the number of distinct items accessed between
two accesses to the same item) to improve caching efficiency.

Cloud block storage systems. Several cloud block storage
designs are proposed in the literature. Parallax [17] provides
storage virtualization for virtual machines atop shared block
storage. Blizzard [18] manages POSIX applications atop cloud
block storage. Ursa [13] is a hybrid block storage system that
combines HDDs (hard disk drives) and SSDs (solid-state drives)
for cloud-scale virtual disks. PBS [34] supports erasure-coded
cloud block storage with efficient updates. Our trace analysis
provides suggestions for optimizing such cloud block storage
designs.

VII. CONCLUSION

We present an in-depth trace analysis on a production
cloud block storage system, using block-level I/O traces
collected from Alibaba Cloud. We reveal the commonalities
and differences from the existing public block-level I/O traces.
We highlight 15 findings, based on which we further discuss the
implications on three practical design considerations for cloud
block storage, including load balancing, cache efficiency, and
storage cluster management. We have released our traces for
the community to identify new findings and research directions
for storage system research.
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