
1

Distributed Algorithms for Secure Multipath Routing
Patrick P. C. Lee∗, Vishal Misra∗, and Dan Rubenstein†

∗Department of Computer Science †Department of Electrical Engineering
Columbia University

New York, NY
{pclee,misra}@cs.columbia.edu, danr@ee.columbia.edu

Abstract— To proactively defend against intruders from readily
jeopardizing single-path data sessions, we propose a distributed
secure multipath solution to route data across multiple paths so
that intruders require much more resources to mount success-
ful attacks. Our work exhibits several crucial properties that
differentiate itself from previous approaches. They include (1)
distributed routing decisions: routing decisions are made without
the centralized information of the entire network topology, (2)
bandwidth-constraint adaptation: the worst-case link attack is
mitigated for any feasible session throughput subject to the link-
bandwidth constraints, and (3) lexicographic protection: severe
link attacks are suppressed based on lexicographic optimization.
We devise two algorithms for the solution, termed the Bound-
Control algorithm and the Lex-Control algorithm, and prove their
convergence to the respective optimal solutions. Experiments
show that the Bound-Control algorithm is more effective to
prevent the worst-case single-link attack when compared to the
single-path approach, and that the Lex-Control algorithm further
enhances the Bound-Control algorithm by countering severe
single-link attacks and various models of multi-link attacks.
Moreover, the Lex-Control algorithm offers prominent protection
after only a few execution rounds. Thus, system designers can
sacrifice minimal routing security for significantly improved
algorithm performance when deploying the distributed secure
multipath solution.

Index Terms— security, multipath routing, minimax optimiza-
tion, maximum-flow problems, graph theory

I. INTRODUCTION

In conventional routing protocols such as OSPF [22] and
RIP [20], a network selects the least-cost path for routing
data from a sender to its targeted receiver. While this type
of path selection addresses the performance issue regarding
how data can be delivered efficiently, the use of a single path is
vulnerable to general failures and security threats. For instance,
intruders can disrupt the data session simply by attacking one
of the intermediate links along the associated path. Such a
denial-of-service (DoS) attack is feasible since only one single
path is chosen, and this singularity enables intruders to readily
devote their resources to attacking the only path.

Such networks can be secured with a secure multipath
approach in which the sender achieves routing security by
dispersing its data across multiple paths destined for the
receiver. Each path conveys a portion of data from the sender,
and the receiver assembles the data fragments arrived from

This material was supported in part by the National Science Foundation
under grant numbers CAREER ANI-560153 and NSF ANI-0238299, and by
gifts from the Intel IT Research Council and CISCO, and IBM. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National
Science Foundation.

various paths. To completely compromise the data session,
intruders must subvert all the routing paths, and thus require
more resources than those needed for attacking a single path.
We point out that using multiple paths can complicate the
packet-reordering problem [25]. However, it can be tackled
via sophisticated coding solutions (e.g., [6]) for non-real-time
data transfers or standard pre-buffering techniques (e.g., [18])
for real-time data transfers. Therefore, it is feasible to adopt
the multipath scheme, and routing security is accomplished
proactively by exploiting the network diversity.

While implementing secure multipath routing within con-
ventional layer-3 architectures is a daunting task, more recent
application-layer architectures such as overlay networks (e.g.,
RON [3] and SOS [16]) and programmable router paradigms
(e.g., CROSS/Linux [12]) provide a promising platform for
deploying this multipath service. For instance, SOS [16] is
built upon an overlay network to proactively prevent DoS
attacks. The overlay routing scheme proposed in SOS is Chord
[24], which is a single-path approach. To offer multipath avail-
ability, we can instead use another overlay routing protocol
CAN [23] with multiple coordinate spaces so that each overlay
node is assigned multiple neighbors. With the secure multipath
approach, the security strength of SOS is further elevated.

One major challenge is to design a distributed solution
that implements the process of selecting the “best” data
allocation across multiple paths on the above architectures.
The distributed solution enhances the traditional centralized
solutions for secure multipath routing such as [5], [14] in
several aspects. First, it does not require any network node
to have full knowledge of the entire network topology, and
is therefore more easily applied in large networks. Also, it
allows network nodes to locally decide the security costs,
bandwidths, and choices of routes, and thus improves the
flexibility over centralized coordination. Furthermore, it is
adequate for decentralized peer systems, such as RON [3],
whose nodes are located in different domains and are often
administered independently.

In this paper, we devise a distributed secure multipath
solution that determines the multipath routes to maximize the
security with respect to an important class of link attacks. Our
work is suitable for two session models:

• Fixed-rate session: A session wishes to send data from
the source to the sink at a pre-determined rate.

• Maximal-rate session: A session wishes to send data
from the source to the sink at the fastest rate allowed by
the network using all available paths.

Our primary security objective is to minimize the maximum

2

damage incurred by a single-link attack (or failure), i.e., an
intruder compromises data along a single link in a given
network. There are two reasons to justify our preliminary
analysis on a single-link attack. First, there are many attack
and failure scenarios where a single-link failure is likely to
cause the majority of problems, as the network can often be
repaired, or routes are adjusted to account for the failure before
a subsequent outage occurs. Second, our experiments show
that our solution that is designed for preventing a single-link
attack provides substantial resilience to multiple simultaneous
attacks as well. Thus, our analysis can serve as a baseline for
future work that focuses on multi-link attacks.

Unlike the traditional load-balancing solutions that mini-
mize the maximum link utilization (i.e., the maximum ratio of
the link throughput to the link bandwidth), our objective is to
offer security guarantees using all available network resources.
For example, in the maximal-rate session model where the link
utilization is always unity, our solution minimizes the worst-
case single-link attack while attaining the maximum possible
throughput with the provisioned network bandwidth.

We first propose a distributed solution called the Bound-
Control algorithm that minimizes the maximum throughput
loss when a link is attacked. We formulate this solution as
a maximum-flow problem that can be solved in a distributed
fashion based on the extension of the Preflow-Push algorithm
[11]. In particular, our Bound-Control algorithm adapts to
the network where every link has a specified bandwidth that
bounds the link throughput. Therefore, it supports both fixed-
rate and maximal-rate session models subject to the link-
bandwidth constraints.

We then extend the Bound-Control algorithm to another
distributed solution called the Lex-Control algorithm that
defends against not only the worst-case link attack, but also
the link attacks that do not cause the worst damage but are still
severe (e.g., the second and third worst-case link attacks). The
Lex-Control algorithm achieves this property by scattering the
costs incurred by the link attacks as evenly as possible over all
the links in a network, or equivalently solving a lexicographic-
optimization problem. This type of problem was well studied
in [9], in which a centralized solution is proposed for load
balancing. Our Lex-Control algorithm, instead, provides a
distributed method that solves lexicographic optimization to
counter severe link attacks.

By simulation, we evaluate the resilience of the Bound-
Control algorithm and the Lex-Control algorithm against
uniform, proportional, and worst-case attacks on single or
multiple links. Our results indicate substantial improvement
over single-path alternatives. For instance, in a 200-node,
1000-link network, the Bound-Control algorithm decreases the
cost incurred by the worst-case single-link attack by 78% when
compared to the single-path approach. The simulation also
illustrates that the Lex-Control algorithm reduces by more than
50% the number of links that can incur severe damage due to
single-link attacks, and this reduction is realized after only
three or four iterations. Thus, by executing only a few rounds
of the Lex-Control algorithm, we can improve algorithm
efficiency with only minor degradations in routing security.

The paper proceeds as follows. In Section II, we formulate

TABLE I

IMPORTANT NOTATION USED IN THIS PAPER

N set of nodes
L set of links
G network (N ,L)
s source node
t sink node
L(u) set of outgoing links l∈L of node u ∈ N
X session throughput from source s to sink t
xl proportion of session data carried by link l ∈ L
x proportion vector (xl, l ∈ L)
cl security constant of link l ∈ L
al attack cost clxl of link l ∈ L
a∗ minimized worst-cast attack cost
cap(l) capacity of link l ∈ L in maximum-flow problems
fl flow of link l ∈ L in maximum-flow problems
f flow vector (fl, l∈L) in maximum-flow problems
f∗ resulting maximum-flow value
Bl bandwidth of link l ∈ L
bl fraction bound of link l ∈ L
a non-increasing attack-cost sequence
a∗ lexicographically optimized a
fs flow value broadcast by source s (see Section III)
U sufficiently large value (see Sections III and IV)
Gf∗ residual network with respect to f∗ (see Section IV)

the secure multipath approach. Sections III and IV present
and validate the Bound-Control algorithm and the Lex-Control
algorithm, respectively. In Section V, we report several exper-
iments that evaluate the algorithms. Specifically, we assess
the Lex-Control algorithm in response to the uniform, propor-
tional, and worst-case link attacks. Section VI compares our
algorithms with related work. Section VII discusses the limita-
tions of our work and suggests future directions. Section VIII
concludes.

II. PROBLEM FORMULATION

In this section, we formalize the secure multipath approach
as a minimax-optimization problem and hence its equivalent
maximum-flow problem. This formulation will also be used
later when we include link-bandwidth constraints and lexico-
graphic optimization. Note that the following formulation is
generally based on [1], [2], [4], [7], [9], [11], [19]. To aid
our discussion, Table I summarizes the notation that we use
throughout the paper.

Our discussion relies on the concepts of the maximum flow
and the minimum cut. Given a network with a number of
nodes and links, the maximum-flow problem is to determine
the maximum flow that can be sent from a source node s to
a sink node t subject to the capacity constraints (i.e., each
link has flow bounded by the link capacity) and the flow-
conservation constraints (i.e., the net flow entering any node
except the source and the sink equals zero) [2]. Suppose that
we partition the nodes into two sets S and T , where s ∈ S
and t∈T . A cut refers to the set of links directed from S to
T . A minimum cut is the cut that has the minimum capacity
(i.e., the minimum sum of capacities of all links in the cut).
The max-flow min-cut theorem states that the maximum-flow
value equals the capacity of the minimum cut [2].

3

We are interested in a connected, directed, and acyclic
network that is viewed as a graph G = (N ,L), where N
is the set of nodes and L is the set of directed links. Our
analysis is based on a single data session with a source node
s and a sink node t. We emphasize that our analysis can be
generalized to a homogeneous class of multiple data sessions
by mapping source s and sink t to the ingress and egress points
of the network, respectively. Suppose that source s sends data
to sink t with a session throughput given by X (say, in Mb/s).
We let xl, 0≤xl ≤ 1, be the proportion of the entire session
data carried by link l∈L (i.e., xl equals the throughput of link
l divided by X) and let x= (xl, l∈L) be the corresponding
proportion vector.

Our analysis focuses on a single-link attack (see Section I).
Quantifying the damage of the attack is very difficult, and we
leave its investigation as future work. In this paper, we assume
that the damage of the attack on link l ∈ L is characterized
as an attack cost al = clxl, where cl denotes the security
constant of link l. The security constant cl can have several
physical interpretations, such as the probability that link l
is successfully attacked given that the intruder attempts to
attack link l [4], the failure probability of link l [7], or the
proportion of loss of data traversing link l when it is attacked.
Note that for the security constant cl to have a consistent
interpretation across different links l, it has to be calibrated
with respect to an agreed upon definition of an attack. An
example would be quantifying the resources employed by
an intruder, and then computing the success probability of
an attack for different links given the same amount of the
intruder’s resources. A precise quantification of cl however is
not the focus of this work, and we assume the existence of an
agreed upon definition of cl. Every node u can determine in
advance the security constants cl for its own outgoing links
l ∈ L(u), where L(u) is the set of all outgoing links of
node u, using security monitoring systems [19] or statistical
measurements [7]. For instance, in a hybrid wired/wireless
network, those applications of measuring security constants
naturally lead to higher security constants for wireless links as
opposed to wired links, indicating the higher susceptibility of
wireless links to subversion. In order to be consistent with the
interpretation of cl as a probability or proportion, we require
that 0 ≤ cl ≤ 1.

A. Minimax Optimization

To mitigate the worst damage due to a single-link attack,
our objective is to decide a feasible proportion vector x
that minimizes the maximum attack cost over all links in
the network. This can be viewed as the following minimax
optimization problem1:

a∗ = min
x

max
l∈L

al = min
x

max
l∈L

clxl

subject to 0 ≤ xl ≤ 1, ∀l ∈ L. (1)

Problem 1 can be solved in polynomial time via linear
programming, but this is a centralized solution and requires

1All problems presented in this paper are under flow-conservation con-
straints, although the convention is omitted for brevity.

the information of the entire network topology. To implement
a distributed solution, we can first transform the problem into a
maximum-flow problem by setting the capacity of every link
l, denoted by cap(l), as the reciprocal of cl [1], and then
solve for the maximum flow using the distributed Preflow-Push
algorithm [11], which is summarized as follows. Source s first
initiates the algorithm by pushing the maximum possible flow
to its neighbor nodes. All nodes except source s and sink t
then attempt to push the flow toward sink t along the estimated
shortest paths until the resulting maximum flow reaches sink
t. Any excess flow is pushed back to source s. In [11], the
authors explain how to implement the Preflow-Push algorithm
in a distributed and asynchronous fashion. We refer readers
there for a detailed discussion.

Let f = (fl, l ∈ L) be the flow vector where fl denotes
the flow carried by link l, and f be the net flow entering
sink t. Problem 1 can therefore be mapped to the following
maximum-flow problem:

f∗ = max
f

f

subject to 0 ≤ fl ≤ 1/cl, ∀l ∈ L, (2)

where the solutions to Problems 1 and 2 are related by:

a∗ = 1/f∗,
xl = fl/f∗, ∀l ∈ L.

To illustrate both problems, Figure 1(a) depicts a network
where cl =1 for all links l. From the Preflow-Push algorithm,
we know the maximum flow is f∗ = 2 and thus the worst-
case attack cost is minimized at a∗=0.5. Also, the algorithm
returns the corresponding vectors f and x.

B. Minimax Optimization with Bandwidth Constraint

One limitation of Problem 1 is that every link is assumed to
have infinite bandwidth so that it can accommodate the entire
session data. To incorporate the link-bandwidth constraints,
we assume that each node u specifies a priori a bandwidth Bl

(say, in Mb/s) for its outgoing links l ∈ L(u). We let bl =
min(Bl/X, 1), where 0≤bl≤1, denote the fraction bound of
link l that bounds from above the proportion of data that can
be sent through link l for a given session throughput X . We
then incorporate the fraction bound into Problem 1 as:

a∗ = min
x

max
l∈L

al = min
x

max
l∈L

clxl

subject to 0 ≤ xl ≤ bl, ∀l ∈ L. (3)

The corresponding maximum-flow problem becomes:

f∗ = max
f

f

subject to 0 ≤ fl ≤ min(1/cl, blf), ∀l ∈ L. (4)

For clarity, the term bandwidth (i.e., Bl, where l ∈ L)
represents the maximum amount of data that can be sent across
a link, and the term capacity (i.e., cap(l) = min(1/cl, blf),
where l∈L) denotes the upper bound of the link flow in the
transformed maximum-flow problem. While the bandwidth Bl

is fixed, the capacity cap(l) varies depending on the flow value
f that reaches sink t.

4

s

a

d

t

(0.5, 1, -)

e

f

b

c

(0.5, 1, -)

(0.5, 1, -)

(0.5, 1, -)

(0.5, 1, -)(0.5, 1, -)

(0, 0, -)(0, 0, -)

(0, 0, -)(0, 0, -)

s

a

d

t

(0.6, 1, 1)

e

f

b

c

(0.6, 1, 1)

(0.6, 1, 1)

(0.4, 0.67, 0.4)

(0.4, 0.67, 1)(0.4, 0.67, 1)

(0, 0, 1)(0, 0, 1)

(0, 0, 1)(0, 0, 1)

s

a

d

t

e

f

b

c

(0.3, 1.5, 1)

(0.6, 3, 1)

(0.4, 2, 0.4)

(0.3, 1.5, 1)(0.3, 1.5, 1)

(0.3, 1.5, 1)

(0.2, 1, 1)(0.2, 1, 1)

(0.2, 1, 1)(0.2, 1, 1)

(a) a∗ = 0.5 (b) a∗ = 0.6 (c) a∗ = 0.6

Fig. 1. Optimal solutions to the three optimization problems: (a) minimax optimization, (b) minimax optimization with the bandwidth constraints, and (c)
lexicographic optimization. Every link l has cl =1 and is associated with a triple (xl, fl, bl), where xl and fl are the solutions after the optimization problems
are solved, and bl (defined for (b) and (c) only) denotes the initial fraction bound assigned to link l. Note that bl is different from its initial value after the
lexicographic-optimization problem is solved (see Section IV and Figure 3 for details).

Figure 1(b) depicts the case where we assign the fraction
bound bl = 0.4 to the link from node f to sink t and bl = 1
to the rest. The solutions f and x are adjusted accordingly to
satisfy the fraction bounds.

Similar to Problem 1, we can solve Problem 3 in a
centralized manner via linear programming. To implement a
distributed approach, we develop the Bound-Control algorithm
that is built upon the Preflow-Push algorithm to solve Prob-
lem 4 and hence Problem 3. Section III describes the algorithm
and formally proves its correctness.

C. Lexicographic Optimization

A limitation of the previous problems is that they are
concerned only with how to minimize the worst-case attack
cost, but do not attempt to reduce the costs of severe link
attacks. For example, in Figures 1(a) and 1(b), the attack costs
are unevenly distributed. Specifically, in Figure 1(b), there are
six links whose attack costs are at least 0.4 each. By evenly
distributing the costs as shown in Figure 1(c), only two such
links exist. Thus, we reduce the number of links where the
single-link attacks can lead to severe damage.

To formalize the concept of the even distribution of at-
tack costs, we let a = 〈cl1xl1 , cl2xl1 , · · · , cl|L|xl|L|〉, where
l1, l2, · · · , l|L| ∈ L, be a non-increasing attack-cost sequence.
The distribution of the attack costs is said to be the most
even if the associated attack-cost sequence a is lexicographi-
cally minimized, i.e., for any other non-increasing attack-cost
sequence a′ = 〈cl1x

′
l1

, cl2x
′
l2

, · · · , clLx′
l|L|〉 �= a, there exists

some i, where 1≤ i < |L|, such that clj xlj = clj x
′
lj

for j < i
and clixli <clix

′
li

. Let lexmin (.) be the function that returns
the lexicographically minimum sequence a∗. We then express
the lexicographic-optimization problem as:

a∗ = lexmin
x

a = lexmin
x

〈cl1xl1 , · · · , clLxlL〉
subject to x = arg min

x
max
l∈L

clxl,

0 ≤ xl ≤ bl, ∀l ∈ L. (5)

Hence, the corresponding maximum-flow problem is:

a∗ = lexmin
f

a = lexmin
f

〈cl1fl1

f
, · · · , clLflL

f
〉

subject to f = arg max
f

f,

0 ≤ fl ≤ min(1/cl, blf), ∀l ∈ L. (6)

This type of lexicographic-optimization problem was ana-
lyzed in [9], whose solution is centralized and requires the
knowledge of the whole network state. In Section IV, we
propose the Lex-Control algorithm to address this problem. By
extending the Bound-Control algorithm and setting the fraction
bounds of the links appropriately, the Lex-Control algorithm
can determine the lexicographically optimal solutions for
Problem 6 and hence Problem 5 in a distributed fashion.

III. BOUND-CONTROL ALGORITHM

This section presents the Bound-Control algorithm, which
solves Problem 4, the maximum-flow problem in which the
fraction bound bl is imposed on every link l ∈ L. We
describe its working mechanism, prove its correctness, and
finally address how it supports both fixed-rate and maximal-
rate session models described in Section I.

Here, we let fs be the flow value that source s broadcasts
to the network in the Bound-Control algorithm. We also let
U be a sufficiently large value that approximates infinity. For
instance, U can be the largest value that can be processed by
the implementation.

A. Description of the Bound-Control Algorithm

The idea of the Bound-Control algorithm is to repeatedly
solve a maximum-flow problem via the Preflow-Push algo-
rithm and adjust the link capacities until the maximum-flow
result converges to the optimal solution. The Bound-Control
algorithm is shown in Algorithm 1.

In Algorithm 1, source s first broadcasts a sufficiently
large value fs = U to initiate the Bound-Control algorithm
(line 1). Next, all network nodes execute the Preflow-Push
algorithm subject to the link-capacity constraint cap(l) =
min(1/cl, blfs) = 1/cl for every link l ∈ L (lines 2-5). By
checking the amount of flow that has been sent out, source
s can determine the maximum-flow result. Source s then
broadcasts the computed maximum-flow result represented by
fs to the network (lines 7-8) so that every network node
can adjust the capacities of its outgoing links (lines 9-11).
Afterward, all nodes execute again the Preflow-Push algorithm
under the new link capacities (line 12). The algorithm iterates
in the repeat-until loop (lines 7-12), and terminates if the
maximum flow obtained from the Preflow-Push algorithm

5

s

a

d

t

(0.5, 1, 1)

e

f

b

c

(0.5, 1, 1)

(0.5, 1, 1)

(0.5, 1, 0.4)

(0.5, 1, 1)(0.5, 1, 1)

(0, 0, 1)(0, 0, 1)

(0, 0, 1)(0, 0, 1)

s

a

d

t

(0.56, 1, 1)

e

f

b

c

(0.56, 1, 1)

(0.56, 1, 1)

(0.44, 0.8, 0.4)

(0.44, 0.8, 1)(0.44, 0.8, 1)

(0, 0, 1)(0, 0, 1)

(0, 0, 1)(0, 0, 1)

(a) 1st Preflow-Push: maximum flow = 2 (b) 2nd Preflow-Push: maximum flow = 1.8

s

a

d

t

(0.58, 1, 1)

e

f

b

c

(0.58, 1, 1)

(0.58, 1, 1)

(0.42, 0.72, 0.4)

(0.42, 0.72, 1)(0.42, 0.72, 1)

(0, 0, 1)(0, 0, 1)

(0, 0, 1)(0, 0, 1)

s

a

d

t

(0.6, 1, 1)

e

f

b

c

(0.6, 1, 1)

(0.6, 1, 1)

(0.4, 0.67, 0.4)

(0.4, 0.67, 1)(0.4, 0.67, 1)

(0, 0, 1)(0, 0, 1)

(0, 0, 1)(0, 0, 1)

(c) 3rd Preflow-Push: maximum flow = 1.72 (d) Optimal solution: f∗ =1.67, a∗ =1/f∗ =0.6

Fig. 2. Example of the Bound-Control algorithm in Algorithm 1 for the network shown in Figure 1. Every link l has cl =1 and is associated with a triple
(xl, fl, bl). The figures illustrate: (a)-(c) the flow values after the first three executions of the Preflow-Push algorithm (lines 5 and 11) and (d) the optimal
solution returned from the Bound-Control algorithm.

Algorithm 1 Bound-Control
1: source s broadcasts fs = U to all nodes u ∈ N
2: for all u ∈ N do
3: for all l ∈ L(u) do
4: node u sets cap(l) = min(1/cl, blfs)
5: all nodes run Preflow-Push
6: repeat
7: source s sets fs to be the maximum-flow result
8: source s broadcasts fs to all nodes u ∈ N
9: for all u ∈ N do

10: for all l ∈ L(u) do
11: node u sets cap(l) = min(1/cl, blfs)
12: all nodes run Preflow-Push
13: until source s finds that fs equals the maximum-flow result

equals the flow value fs that has just been broadcast (line
13). The optimal value f∗ is given by fs (as will be shown
later).

Figure 2 illustrates the Bound-Control algorithm in Al-
gorithm 1 for the network shown in Figure 1. Figure 2(a)
shows the values of fl and xl for every link l ∈ L after the
first execution of the Preflow-Push algorithm (line 5). Source
s then broadcasts fs = 2 to the network (line 8). Node f
subsequently sets the capacity of its outgoing link to sink t
to be cap(l) = min(1/cl, blfs) = min(1, 0.8) = 0.8, while the
capacities cap(l) of other links remain one. Figures 2(b) and
2(c) show the flow values after the second and third executions
of the Preflow-Push algorithm (line 12). Upon termination, the
Bound-Control algorithm returns the maximum flow f∗=1.67
and hence the optimal attack cost a∗ =1/f∗ =0.6, as shown
in Figure 2(d).

B. Correctness of the Bound-Control Algorithm

To prove the correctness of the Bound-Control algorithm,
we first show the existence of an optimal maximum flow f∗ for
Problem 4 under a necessary and sufficient condition for the
values of bl. Then we prove that the flow value fs broadcast
by source s is strictly decreasing and bounded from below by
f∗. This implies the Bound-Control algorithm converges to
the optimal value f∗.

Lemma 1: (Existence) There always exists a maximum flow
f∗ > 0 for Problem 4 if and only if

∑
l∈C bl ≥1 for any cut

C in the network G.
Proof: Necessity (⇒): Given f∗ > 0, suppose that

there exists a cut C such that
∑

l∈C bl < 1. Hence, the
capacity of the cut C is given by

∑
l∈C min(1/cl, blf

∗) ≤∑
l∈C blf

∗ = f∗ ∑
l∈C bl < f∗. This contradicts the max-flow

min-cut theorem, which suggests that the capacity of any cut
is at least the value of the maximum flow.

Sufficiency (⇐): We want to show that f = 1 is a feasible
flow for Problem 4. From Problem 4, if f = 1, the capacity
of any cut C is given by

∑
l∈C min(1/cl, bl) ≥

∑
l∈C bl ≥ 1

(recall that cl is normalized and so 1/cl≥1). Hence, the flow
f = 1 is bounded from above by the capacity of any cut and is
regarded as feasible. This implies the optimal maximum flow
f∗ > 0 exists.

Before proceeding to the next proof, we define additional
notation. Based on Algorithm 1, we first let f

(0)
s be the flow

value fs initially broadcast (line 1). For n≥1, we let f
(n)
s be

the flow value fs broadcast in the nth iteration of the repeat-
until loop (line 8). Note that f

(n)
s represents the maximum

flow computed from the previous execution of the Preflow-
Push algorithm. Moreover, we let C(n) and C∗ be one of the

6

minimum cuts associated with the maximum flows f
(n)
s and

f∗, respectively.
Lemma 2: (Monotonicity and boundedness) For any posi-

tive integer n, we have f
(n−1)
s ≥ f

(n)
s ≥ f∗. In particular, if

f
(n−1)
s =f

(n)
s for some n, we have f

(n−1)
s =f

(n)
s =f∗.

This lemma implies that prior to the termination of the
Bound-Control algorithm, the flow value fs is strictly decreas-
ing. Furthermore, if the value fs that has just been broadcast
equals the computed maximum-flow result, the algorithm
terminates with the optimal value f∗ = fs.

Proof: We first prove by induction on n that f
(n−1)
s ≥

f
(n)
s ≥f∗ for any positive integer n.

• Base case: For n = 1, f
(0)
s equals the sufficiently large

value U , while f
(1)
s is the maximum flow given by the

first run of the Preflow-Push algorithm. This implies that
f

(0)
s ≥ f

(1)
s . Also, f

(1)
s and f∗ are the maximum flows

subject to the capacity constraints cap(l) = 1/cl and
cap(l)=min(1/cl, blfs) for every link l∈L, respectively.
Since the latter constraint is tighter, f∗ is no greater than
f

(1)
s .

• Induction hypothesis: Let f
(k−1)
s ≥ f

(k)
s ≥ f∗ for some

positive integer k.
• Induction step: We note that f

(k)
s , f

(k+1)
s , and f∗ are the

maximum-flow results subject to the capacity constraints
cap(l)=min(1/cl, blf

(k−1)
s), cap(l)=min(1/cl, blf

(k)
s),

and cap(l) = min(1/cl, blf
∗) for every link l ∈ L,

respectively. By hypothesis, f∗ is subject to the tightest
capacity constraint, followed by f

(k+1)
s , and finally f

(k)
s .

This implies that f
(k)
s ≥f

(k+1)
s ≥f∗.

By induction, we have f
(n−1)
s ≥ f

(n)
s ≥ f∗ for any posi-

tive integer n. Furthermore, if f
(n−1)
s = f

(n)
s , f

(n)
s is the

maximum flow satisfying the capacity constraint cap(l) =
min(1/cl, blf

(n−1)
s) = min(1/cl, blf

(n)
s) for every link l ∈L.

Thus, f
(n)
s is a feasible flow for Problem 4. This implies

f
(n)
s ≤ f∗. However, we have proved that in every iteration,

we have f
(n)
s ≥f∗. It follows that f

(n)
s =f∗.

Theorem 1: (Convergence) The Bound-Control algorithm
converges to the maximum-flow value f∗ > 0 to Problem 4,
provided that

∑
l∈C bl≥1 for any cut C.

Proof: Immediate from Lemmas 1 and 2.

C. Discussion of the Bound-Control Algorithm

The correctness of Theorem 1 relies on the condition that∑
l∈C bl ≥ 1 for any cut C. As stated in Section II, the fraction

bound bl is expressed as a normalized value min(Bl/X, 1)
for all l ∈ L, where X and Bl refer to the feasible session
throughput and the bandwidth of link l, respectively. As X is
a feasible throughput, we must have

∑
l∈CBl≥X for any cut

C. Thus, we have the scaled sum
∑

l∈Cbl ≥ 1 for any cut C,
and Theorem 1 is applicable.

In actual implementation, we can provide support for both
fixed-rate and maximal-rate session models (see Section I)
by determining the feasible session throughput X and hence
the fraction bound bl in a distributed fashion. Source s first
initiates the Preflow-Push algorithm to decide the feasible
session throughput X subject to the bandwidth constraint

Bl for all l ∈ L, and then broadcasts X to all the nodes
in the network so that they can specify the fraction bound
bl for their associated links l. The fixed-rate session model
is thus provided by sending data at the fixed rate X . If
X is the maximum flow returned from the Preflow-Push
algorithm, it means we can achieve the maximum security
under the maximum session throughput using the Bound-
Control algorithm. Thus, the maximal-rate session model is
supported.

We can further enhance the efficiency of the implementa-
tion of the Bound-Control algorithm. Based on the proof of
Lemma 2, we can show that if fs starts with a sufficiently
small positive value, then the broadcast value fs is increasing
to the optimal value f∗. As a result, we can employ bisection
search to locate the optimal value f∗ in the Bound-Control
algorithm as follows. Suppose that flow and fhigh denote the
lower and upper bounds, respectively. Source s first initializes
flow to be zero and fhigh to be twice the maximum-flow
result determined by the first execution of the Preflow-Push
algorithm (i.e., line 5 of Algorithm 1). It then broadcasts
fs = (flow +fhigh)/2 to the network. If the next execution
of the Preflow-Push algorithm returns the maximum flow less
than fs, source s assigns the maximum-flow result to fhigh.
Otherwise, the result is assigned to flow instead. Source s
repeatedly searches for fs, and the algorithm terminates if the
most recently broadcast value fs and the latest maximum-
flow result are equal (or different by some tolerance value
depending on the implementation).

With bisection search, the complexity of the Bound-Control
algorithm is O(pT), where p is the number of precision digits
describing all possible flow values and T is the complexity
of executing the Preflow-Push algorithm. For instance, if
the Bound-Control algorithm implements the distributed and
asynchronous version of the Preflow-Push algorithm [11], it
introduces O(p|N |2|L|) messages and takes O(p|N |2) time
to converge.

IV. LEX-CONTROL ALGORITHM

In this section, we present the Lex-Control algorithm, which
solves the lexicographic optimization specified in Problem 6
and hence Problem 5. We explain how the Lex-Control algo-
rithm is extended from the Bound-Control algorithm, and then
prove its correctness.

A. Description of the Lex-Control Algorithm

To understand the Lex-Control algorithm, suppose that
for a particular maximum-flow problem, we have found the
maximum flow f∗ and minimized the worst-case attack cost
a∗ = 1/f∗. The network will then constitute a set of critical
links, defined as the links l ∈ L whose attack costs cannot
be further decreased without increasing a∗. The idea of the
Lex-Control algorithm is to iteratively solve a maximum-
flow problem using the Bound-Control algorithm and identify
additional critical links until the lexicographically optimal
solution a∗ is obtained.

Before describing the algorithm, we present two properties
that indicate how to pinpoint the critical links.

7

s

a

d

t

(0.6, 1, 1)

e

f

b

c

(0.6, 1, 1)

(0.6, 1, 0.6)

(0.4, 0.67, 0.4)

(0.4, 0.67, 1)(0.4, 0.67, 1)

(0, 0, 1)(0, 0, 1)

(0, 0, 1)(0, 0, 1)

s

a

d

t

(0.3, 1, 0.3)

e

f

b

c

(0.3, 1, 0.3)

(0.6, 2, 0.6)

(0.4, 1.33, 0.4)

(0.3, 1, 1)(0.3, 1, 1)

(0.3, 1, 0.3)(0.3, 1, 0.3)

(0.1, 0.33, 1)(0.1, 0.33, 1)

s

a

d

t

(0.3, 1.5, 0.3)

e

f

b

c

(0.3, 1.5, 0.3)

(0.6, 3, 0.6)

(0.4, 2, 0.4)

(0.2, 1, 0.2)(0.2, 1, 0.2)

(0.3, 1.5, 0.3)(0.3, 1.5, 0.3)

(0.2, 1, 0.2)(0.2, 1, 0.2)

(a) 1st Bound-Control: maximum flow=1.67 (b) 2nd Bound-Control: maximum flow=3.33 (c) 3rd Bound-Control: maximum flow=5

Fig. 3. Example of the Lex-Control algorithm in Algorithm 2 for the network shown in Figure 1. Every link l has cl = 1 and is associated with a triple
(xl, fl, bl). After every execution of the Bound-Control algorithm (lines 1 and 11), the nodes identify the critical links (in dashed arrows) and adjust the
fraction bounds bl accordingly (lines 6-10).

Property 1: In a maximum-flow problem, if link l ∈ L lies
on a minimum cut, then it is critical.

Proof: The attack cost of link l∈L is al =clfl/f∗. Since
cl is fixed and f∗ is the maximum flow, the attack cost al can
only be decreased by reducing fl. If link l lies on a minimum
cut, it is saturated (i.e., flow of link l equals its link capacity).
We can hence regard the reduction of fl as the decrease in the
capacity of link l. This results in the decrease in the capacity
of the minimum cut and, by the max-flow-min-cut theorem,
the decrease in the maximum flow f∗. Thus, the minimized
worst-case attack cost a∗=1/f∗ increases. By definition, link
l is critical.

To help present the next property, we define the residual
network Gf∗ = (N ,Lf∗) with respect to the maximum flow
f∗ as follows [2]. Suppose that the maximum flow f∗ is solved
and each link l∈L carries a flow fl. To construct Lf∗ , for each
link l∈L directed from node u to node v, where u, v∈N , if
cap(l) − fl > 0, we include a forward link from u to v into
Lf∗ , and if fl > 0, we include a backward link from v to u
into Lf∗ .

Property 2: For every link l ∈ L directed from node u to
node v, where u, v∈N , if node v is not reachable from node
u in Gf∗ , link l lies on a minimum cut.

Proof: Let S be the set of nodes reachable from node u in
Gf∗ and T =N−S. By assumption, we have u∈S and v∈T .
We note that link l∈L carries flow from u to v (otherwise, v is
reachable from u in Gf∗) and the flow originates from source
s, so s is reachable from u in Gf∗ . It follows that s ∈ S.
Similarly, the flow arriving at v will eventually reach t, so v
is reachable from t in Gf∗ . This implies that t∈ T (if t∈ S
instead, v is reachable from u via t in Gf∗). Moreover, since
the nodes in T are not reachable from the nodes in S, there
are no links directed from S to T in Gf∗ , so the links from S
to T in G are saturated and they must represent a minimum
cut. Since l is one of the links directed from S to T , l lies on
the minimum cut.

Based on Properties 1 and 2, each node u∈N can invoke
any algorithm that can check the connectivity of a graph
(e.g., the breadth-first search) on Gf∗ . This check is used to
determine whether its neighbors in G are reachable in Gf∗ .
If not, the corresponding links l∈L(u) between node u and
its neighbors in G are lying on a minimum cut and hence are
critical. This enables the identification of all critical links in a

Algorithm 2 Lex-Control
1: all nodes run Bound-Control
2: source s sets f∗ to be the computed maximum flow
3: while f∗ < U do
4: source s broadcasts f∗ to all nodes u ∈ N
5: for all u ∈ N do
6: node u runs a connectivity-checking algorithm on Gf∗
7: for all l ∈ L(u) do
8: if l is a critical link then
9: node u sets cl = 1/U

10: node u sets bl = fl/f∗

11: all nodes run Bound-Control
12: source s sets f∗ to be the computed maximum flow

distributed fashion.
Algorithm 2 summarizes the Lex-Control algorithm. All

nodes first run the Bound-Control algorithm to minimize
the worst-case attack cost subject to the capacity constraint
cap(l) = min(1/cl, blf) for all l ∈ L in the transformed
maximum-flow problem (line 1). Source s then broadcasts
the computed maximum flow f∗ (line 4). Each node runs a
connectivity-checking algorithm (e.g., the breadth-first search)
on Gf∗ to determine if its outgoing links are critical (lines 6-8).
It modifies cl and bl for each spotted critical link l (lines 9-
10) which adjusts capacity cap(l) to bound only the proportion
of flow currently carried (since 1/cl = U becomes very large
and does not affect cap(l)). Since bl is set to the proportion of
flow carried by the critical link l (line 10), we still guarantee∑

l∈C bl≥1 for any cut C, and hence, by Theorem 1, guarantee
the convergence of the later executions of the Bound-Control
algorithm. The algorithm iteratively identifies the critical links
(lines 3-12, collectively defined as a lexicographic iteration),
and terminates when the maximum flow computed from the
Bound-Control algorithm equals the sufficiently large value U .
Figure 3 depicts how the Lex-Control algorithm evaluates the
lexicographically optimal solution for the network shown in
Figure 1.

B. Correctness of the Lex-Control Algorithm

Here, we formally prove that the Lex-Control algorithm
converges to the lexicographically optimal solution a∗ for
Problems 5 and 6.

Lemma 3: In the Lex-Control algorithm, if a link is deter-
mined to be critical in a lexicographic iteration, it remains

8

critical in subsequent lexicographic iterations.
Proof: Consider the links that are found to be critical.

By Property 1, they lie on some minimum cut. Let C be this
minimum cut. From lines 9-10 of Algorithm 2, the capacity of
the cut C is specified as

∑
l∈C blf , where f is the flow value

reaching the sink. By flow conservation, we have
∑

l∈C bl =1,
and thus the capacity of C is specified as f . In the next
lexicographic iteration, due to flow conservation, the flow
across C is the newly computed maximum flow which also
equals the specified capacity of C. By the max-flow min-cut
theorem, C is still a minimum cut and hence the underlying
links remain critical.

Remark: Lemma 3 implies that the attack cost of every
critical link remains unchanged in subsequent lexicographic
iterations.

Lemma 4: Before the Lex-Control algorithm ends, every
lexicographic iteration finds new critical links. Moreover,
among the non-critical links that are identified to be critical,
at least one of them has the attack cost 1/f∗, where f∗ is the
maximum flow returned from the previous execution of the
Bound-Control algorithm.

Proof: Suppose the algorithm proceeds to a new lex-
icographic iteration. This implies that f∗ is less than the
sufficiently large value U (due to line 3 of Algorithm 2),
where f∗ is the maximum flow computed from the previous
execution of the Bound-Control algorithm. By the max-flow
min-cut theorem, f∗ equals the capacity of some minimum cut,
say C, and this capacity is equal to

∑
l∈C min(1/cl, blf

∗). To
achieve f∗ <U , we must have a minimum cut C in which at
least one link l has capacity equal to 1/cl instead of blf

∗ so
that f∗ is bounded away from U (otherwise, f∗ = U is the
maximum flow and the algorithm terminates). This link l is
previously non-critical (otherwise, its capacity is specified by
blf

∗ due to line 10 of Algorithm 2) and is now identified to
be critical (since it lies on a minimum cut). Furthermore, its
attack cost is given by 1/f∗.

Remark: Lemma 4 implies that at least one newly identified
critical link exhibits the minimized worst-case attack cost
computed from the latest execution of the Bound-Control
algorithm.

Lemma 5: Within the Lex-Control algorithm, the maximum
flow computed in each execution of the Bound-Control algo-
rithm is strictly increasing.

Proof: From Lemma 4, the maximum flow, say f∗,
computed in an execution of the Bound-Control algorithm is
given by

∑
l∈C min(1/cl, blf

∗), where C denotes a minimum
cut that includes a non-critical link l. Notice that C is not a
minimum cut in the previous executions of the Bound-Control
algorithm, or link l would have already been identified as
critical. Thus, C has greater capacity. By the max-flow min-cut
theorem, the computed maximum flow becomes greater, and is
thus strictly increasing in each execution of the Bound-Control
algorithm.

Theorem 2: The Lex-Control algorithm converges to the
lexicographically optimal solution a∗.

Proof: By Lemmas 3 and 4, each lexicographic iteration
of the Lex-Control algorithm identifies two types of critical
links: the already spotted ones (if any) and the newly spotted

ones. By Lemma 3, the attack costs of the already identified
critical links remain the same. Meanwhile, by the definition of
a critical link and Lemma 4, the new critical links have their
attack costs minimized subject to the computed minimized
worst-case attack cost that is exhibited by at least one new
critical link. Thus, the Lex-Control algorithm approaches the
lexicographically optimal solution as more critical links are
identified.

By Lemma 5, the maximum flow returned from the Bound-
Control algorithm is strictly increasing, so it eventually reaches
the very large value U . In this case, for any remaining non-
critical link l, its attack cost is given by al = clfl/U , which
is negligibly small (or simply regarded as zero). Thus, the
attack costs of any remaining links are at the optimized
values (which are zeros). As the attack costs of the critical
links are minimized (by the definition of a critical link), the
Lex-Control algorithm terminates with the lexicographically
optimal solution a∗.

C. Discussion of the Lex-Control Algorithm

The complexity of the Lex-Control algorithm is dominated
by the executions of the Bound-Control algorithm. Since each
lexicographic iteration discovers at least one critical link, the
Lex-Control algorithm has a complexity that is O(|L|T ′),
where T ′ is complexity of the Bound-Control algorithm.

Instead of locating all critical links, we can simply perform
a pre-determined number, say k, of lexicographic iterations to
identify a subset of critical links in order to gain performance
benefits in the implementation. Since the later lexicographic
iterations attempt to identify the critical links with modest
attack costs, the most substantial security improvements occur
during earlier lexicographic iterations. With this modification,
the complexity of the Lex-Control algorithm is reduced to
O(kT ′).

V. EXPERIMENTS

In this section, we perform an extensive experimental study
on the proposed algorithms via simulation. We consider three
network settings, each of which contains 200 nodes, con-
nected by 600, 800, and 1000 links, respectively. We use
BRITE [21], a network topology generator, to construct 50
experimental topologies for each network setting. All nodes
within a topology are randomly connected and randomly
placed in a rectangular two-dimensional plane. We dedicate
the nodes closest to and farthest from the origin (i.e., the
bottom left-hand corner of the plane) to be source s and
sink t, respectively. To construct a directed acyclic topology,
for each link between any two nodes u and v, we direct it
from node u to node v if node u’s Euclidean distance to the
origin is less than that of node v. Moreover, each link l is
uniformly assigned a security constant cl between 0 and 1
and a bandwidth Bl between 1 and 5. We then analyze the
average performance of the algorithms over the 50 topologies.

The version of the Bound-Control algorithm that we evalu-
ate implements the bisection-search technique (see Section III-
C). Also, the Lex-Control algorithm that we consider termi-
nates after a fixed number of lexicographic iterations (see
Section IV-C).

9

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 e

xe
cu

tio
ns

 o
f

th
e

P
re

flo
w

-P
us

h
al

go
rit

hm

Proportion of the maximum possible session throughput

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
in

im
iz

ed
 w

or
st

-c
as

e
at

ta
ck

 c
os

t

Proportion of the maximum possible session throughput

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ou

tin
g

ov
er

he
ad

Proportion of the maximum possible session throughput

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

(a) Number of executions of the
Preflow-Push algorithm

(b) Minimized worst-case attack cost (c) Routing overhead

Fig. 4. Experiment 1: Analysis of the Bound-Control algorithm at different session throughputs.

Our experiments focus on three metrics, namely:

• Number of executions of the Preflow-Push algorithm: We
use this metric to assess the message complexity and the
convergence time of the proposed algorithms.

• Attack cost (defined in Section II): This metric is used to
measure the resilience offered by the proposed algorithms
toward various types of link attacks. In the experiments,
we will focus on different variants of this metric.

• Routing overhead: This metric is defined as the ratio of
the average hop-count from source s to sink t in the mul-
tipath approach to the hop-count in the single shortest-
path approach. By “shortest path”, we mean the path that
has the fewest hop-count. Let r(u) be the hop-count from
node u to sink t and luv ∈ L be the link directed from
node u to node v. Recall that xl denotes the proportion of
the session data carried by link l. The average hop-count
of the multipath routing is thus given by the recursive
equation r(s) =

∑
u:lsu∈L

xlsu∑
u:lsu∈L xlsu

[1+r(u)], where

r(t) is initialized to be zero. We then divide r(s) by
the hop-count of the shortest-path approach to obtain the
routing overhead.

Experiment 1 (Analysis of the Bound-Control algorithm
at different session throughputs): This experiment studies
how the Bound-Control algorithm protects against the worst-
case single-link attack at various session throughputs. For each
topology, we use the Preflow-Push algorithm to determine
the maximum possible session throughput subject to the link-
bandwidth constraints, and consider the throughput rates that
are given by different proportions of the determined maxi-
mum session throughput. This addresses both fixed-rate and
maximal-rate session models (see Section I). We then assign
the appropriate fraction bounds to all links (see Section III-C).
Finally, we apply the Bound-Control algorithm to obtain the
metrics. Here, we measure the degree of resilience based on
the minimized worst-case attack cost.

Figure 4 depicts the performance metrics at different session
throughputs, and Table II shows the worst-case attack cost
in the single shortest-path approach in each network setting.
From Figure 4(b), we see that the Bound-Control algorithm
substantially reduces the worst-case attack cost when com-
pared to the single shortest-path approach (e.g., from 0.78
to 0.17, or by 78%, for the 1000-link network that uses
the maximal-rate model for the maximum session through-

TABLE II

WORST-CASE ATTACK COST IN THE SHORTEST-PATH APPROACH

Network setting Attack cost
200 nodes, 600 links 0.73
200 nodes, 800 links 0.72
200 nodes, 1000 links 0.78

put). Specifically, we observe two kinds of trade-offs. First,
as the session throughput increases, links experience tighter
fraction bounds in general. This leads to more executions of
the Preflow-Push and higher worst-case attack cost. Second,
while a network with more links attains a smaller worst-
case attack cost, it also incurs more messages in running the
Bound-Control algorithm (since the message complexity of the
Preflow-Push algorithm is proportional to the number of links
according to Section III-C) as well as higher routing overhead.
Experiment 2 (Analysis of the Lex-Control algorithm at
different numbers of lexicographic iterations): This exper-
iment considers how the Lex-Control algorithm prevents the
severe single-link attacks when it executes different numbers
of lexicographic iterations. We regard a single-link attack as
“severe” if its resulting attack cost is at least 25% of the
worst-case one. Here, for each topology, we evaluate the
algorithm using the maximal-rate session model (see Section I)
in which the maximum session throughput is determined as in
Experiment 1. Also, we use the number of links that incur
severe attack costs as the resilience measure.

Figure 5 plots the resulting metrics. It shows that the Lex-
Control algorithm reduces the number of links where the
single-link attacks are severe. The reduction is more salient
in the 1000-link network (e.g., by more than 50% in three
or more lexicographic iterations). The trade-off is that the
required number of executions of the Preflow-Push algorithm
increases linearly with the number of lexicographic iterations.
One interesting side benefit of the Lex-Control algorithm is
that it alleviates the routing overhead as well. A possible
explanation is that shorter paths incur smaller attack costs in
general, so as the Lex-Control algorithm proceeds, it identifies
these more secure shorter paths and hence reduces the routing
overhead. From Figures 5(b) and 5(c), the benefits of the
Lex-Control algorithm are more prominent in the first three
lexicographic iterations. Thus, in practice, it is reasonable to
run a small number of lexicographic iterations. This allows
system designers to select the trade-off of diminishing returns.

10

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10

N
um

be
r

of
 e

xe
cu

tio
ns

 o
f

th
e

P
re

flo
w

-P
us

h
al

go
rit

hm

Number of lexicographic iterations

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

N
um

be
r

of
 li

nk
s

in
cu

rr
in

g
at

 le
as

t 2
5%

of

 th
e

w
or

st
-c

as
e

at
ta

ck
 c

os
t

Number of lexicographic iterations

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 2 4 6 8 10

R
ou

tin
g

ov
er

he
ad

Number of lexicographic iterations

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

(a) Number of executions of the
Preflow-Push algorithm

(b) Number of links incurring severe
attack costs

(c) Routing overhead

Fig. 5. Experiment 2: Analysis of the Lex-Control algorithm at different numbers of lexicographic iterations.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10

A
ve

ra
ge

 a
tta

ck
 c

os
t

Number of lexicographic iterations

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 2 4 6 8 10

A
ve

ra
ge

 a
gg

re
ga

te
 a

tta
ck

 c
os

t

Number of lexicographic iterations

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10

A
ve

ra
ge

 a
gg

re
ga

te
 a

tta
ck

 c
os

t

Number of lexicographic iterations

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

(a) Average attack cost under the uni-
form single-link attacks

(b) Average aggregate attack cost under
the uniform 10-link attacks

(c) Average aggregate attack cost under
the uniform 50-link attacks

Fig. 6. Experiment 3: Analysis of the Lex-Control algorithm subject to different scales of uniform link attacks.

Experiment 3 (Analysis of the Lex-Control algorithm sub-
ject to different scales of uniform link attacks): Although
our analysis concentrates on the worst-case single-link attack,
since the Lex-Control algorithm seeks the most balanced
distribution of attack costs of all links, we envision that it also
minimizes the average attack cost under uniform link attacks,
i.e., an intruder uniformly attacks a single or multiple links
that carry session data. In this experiment, we investigate this
potential benefit by considering different scales of uniform link
attacks.

In the experiment setup, we let the security constant cl be
the proportion of loss of data traversing link l that is being
attacked (see Section II), so the attack cost of link l, given
by al = clxl, represents the actual proportion of data loss
for the data session. For the single-link attack, we compute
the average attack cost by dividing the total attack cost of
all links by the number of links that carry data. For multi-
link attacks, we first look at the amount of remaining data
actually reaching the sink to compute the aggregate attack cost.
Then we simulate 50 multi-link attacks for each topology to
obtain the average aggregate attack cost. Here, we focus on
the maximal-rate session model as in Experiment 2.

Figure 6 illustrates the attack costs incurred by the uniform
attacks on one, 10, and 50 links. It shows that the Lex-Control
algorithm can abate the threats of uniform link attacks. For
instance, given that 50 out of 1000 links are attacked, the
average aggregate attack cost is reduced by 40% (or from 0.75
to 0.45) with four or more lexicographic iterations. Therefore,
apart from the worst-case single-link attack, the Lex-Control
algorithm also enhances the robustness of the network subject
to various scales of uniform link attacks.

Experiment 4 (Analysis of the Lex-Control algorithm sub-
ject to the proportional and worst-case multi-link attacks):
The final experiment assesses the Lex-Control algorithm under
the proportional and worst-case multi-link attacks. In the
proportional multi-link attack, an intruder attacks a number
of links such that the probability that each link is attacked is
directly proportional to its attack cost. In the worst-case multi-
link attack, however, the intruder deterministically attacks the
links with the highest attack costs. We use the same setting as
in Experiment 3 to evaluate the Lex-Control algorithm based
on the maximal-rate session model.

Figure 7 illustrates the average aggregate attack costs when
five links are attacked. In general, the Lex-Control algorithm
can mitigate the average aggregate attack costs in both pro-
portional and worst-case attacks. For instance, in the 1000-
link network, the attack cost is decreased from 0.3 to 0.23,
or by 23% in the proportional 5-link attack, and from 0.59
to 0.52, or by 12%, in the worst-case 5-link attack. Also,
around four lexicographic iterations are sufficient to achieve
such reduction.

Summary of experimental results: The experiments show
that the Bound-Control algorithm significantly protects against
the worst-case single-link attack, and that the Lex-Control al-
gorithm provides additional protection by reducing the number
of links with severe attack costs. Moreover, the Lex-Control al-
gorithm effectively defends against the uniform, proportional,
and worst-case multi-link attacks, with the majority of benefits
occurring within the first few lexicographic iterations.

11

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 2 4 6 8 10
A

ve
ra

ge
 a

gg
re

ga
te

 a
tta

ck
 c

os
t

Number of lexicographic iterations

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 2 4 6 8 10

A
ve

ra
ge

 a
gg

re
ga

te
 a

tta
ck

 c
os

t

Number of lexicographic iterations

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

(a) Average aggregate attack cost under the
proportional 5-link attacks

(b) Average aggregate attack cost under the
worst-case 5-link attacks

Fig. 7. Experiment 4: Analysis of the Lex-Control algorithm subject to the proportional and worst-case multi-link attacks

VI. RELATED WORK

In this section, we summarize the related work in the
contexts of minimax optimization, lexicographic optimization,
and secure multipath routing.

Minimax optimization has been analyzed extensively to
address the issues of load balancing and network security.
An excellent body of work on minimax optimization includes
[1], [4], [5], [13], [14], [17], in which they consider the load-
balancing problem (e.g., in [1], [13]), multipath solutions to
combat link attacks (e.g., in [4], [5], [14]), and the network-
intrusion problem (e.g., in [17]). While the analysis in [5]
uses linear programming, [1], [13], [17] discuss how to obtain
the minimax result by solving the maximum-flow problem. In
particular, [13] addresses the case in which the network links
are assigned different bandwidths. However, when applied
to our secure multipath setting, [13] considers specifically
the maximum session throughput and the zero/one security
constants. For comparison, our Bound-Control algorithm is a
generalization of their approach that supports the complete
range of session throughputs and security constants. Note that
the above studies implement the centralized algorithms that
assume the knowledge of the network topology. We extend
beyond this previous work by devising a distributed solution
to the minimax-optimization problem subject to the link-
bandwidth constraints.

The authors in [8], [9] address lexicographic optimization in
the network setting. While [8] considers only the lexicographic
optimization of the flows of the links attached to the source
node, [9] extends [1] to lexicographically optimize the flows of
all the links in the network. Specifically, the idea of [9] is to
solve the minimax problem via the maximum-flow problem
for a given network, identify the minimum-cut links, and
recursively solve the minimax problems for the subnetworks
separated by those links. Our Lex-Control algorithm exhibits
several distinctions from [9]. First, while [9] attempts to
maintain the proportion of flow of the links attached to the
source node (with respect to the entire network or each
subdivided network), we keep the proportions of flow of all the
critical links located throughout the network. Besides, while
the analysis in [9] assumes no link-bandwidth constraint, we
explicitly incorporate this constraint into our algorithm in the
analysis. Most importantly, our Lex-Control algorithm allows
distributed implementation since no network subdivision is
required, while their solution is centralized.

Extensive studies regarding secure multipath routing can
be found in [4], [5], [14], [19], [26]. Instead of solving the
problem via minimax optimization as in [4], [5], [14], the
authors in [19], [26] explore the node-disjoint paths among the
nodes that experience various attack probabilities. Our work,
like [4], [5], [14], relaxes the disjointness requirement and
allows shared paths. As a result, a higher degree of network
diversity is acquired.

VII. DISCUSSION AND FUTURE WORK

In this section, we address several limitations in our current
work and suggest directions for future research.

Data recovery: While our secure multipath approach dimin-
ishes the damage brought by link attacks, it should include a
data-recovery mechanism in implementation so that receivers
can recover all data as long as the scale of damage is modest.
One example of the data-recovery mechanism is the threshold
secret sharing system [19], which introduces redundancy to
the transferred data to enable receivers to obtain complete
information from partially received data. Although the redun-
dancy provides data reliability, it reduces the effective session
throughput as well. We therefore need further investigation on
this trade-off and the implementation considerations.

Fault-tolerance: Our work focuses on proactive protection,
but does not focus on reacting to link failures. We have
assumed that the nodes remain stable throughout the execution
of the algorithms, yet in practice, nodes can experience attacks
or transient failures. To offer fault-tolerance, we can either
restart the algorithms, or adopt the self-stabilizing solutions
in [10], [15]. In particular, [15] enhances the original Preflow-
Push algorithm to adjust to the changes of link states. However,
the worst-case complexity of this solution is proportional to
the number of adjustments multiplied by the complexity of
the original Preflow-Push algorithm, leading to severe per-
formance degradation if the adjustments occur frequently. In
fact, if we incorporate the data-recovery mechanism described
above, we can sustain the presence of faulty links. Hence,
we need to consider the trade-offs between restarting the
algorithms and invoking the self-stabilizing procedures.

Implementation: Our analysis is based on the complexity
of the Preflow-Push algorithm, yet the actual message com-
plexity and the convergence time in real network settings are
unknown. Thus, we need an implementation prototype for
more detailed analysis.

12

VIII. CONCLUSION

We presented the distributed secure multipath approach that
encompasses two algorithms: the Bound-Control algorithm
and the Lex-Control algorithm, both of which can proactively
combat link attacks in a distributed fashion. We validated that
both algorithms converge to the desired optimal solutions, and
evaluated the algorithms through simulations to demonstrate
their resilience toward different patterns of single-link and
multi-link attacks. In particular, the simulations demonstrate
that the Lex-Control algorithm counters severe link attacks
efficiently within the first few lexicographic iterations. This
implies that both routing security and algorithm performance
can be effectively achieved during actual implementation.

REFERENCES

[1] R. K. Ahuja. Algorithms for the Minimax Transportation Problem.
Naval Research Logistics Quarterly, 33:725–740, 1986.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithm, and Applications. Prentice Hall, 1993.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient
overlay networks. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP), October 2001.

[4] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka. Enhancing
Security via Stochastic Routing. In Proceedings of ICCCN, May 2002.

[5] J. P. Brumbaugh-Smith and D. R. Shier. Minimax Models for Diverse
Routing. INFORMS Journal on Computing, 14(1):81–95, Winter 2002.

[6] J. Byers, M. Luby, and M. Mitzenmacher. Accessing Multiple Mirror
Sites in Parallel: Using Tornado Codes to Speed Up Downloads. In
Proceedings of IEEE INFOCOM, March 1999.

[7] A. Fumagalli and M. Tacca. Optimal Design of Optical Ring Networks
with Differentiated Reliability (DiR). In Proceedings of the International
Workshop on Quality of Service in Multiservice IP Networks, January
2001.

[8] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A Fast Parametric Max-
imum Flow Algorithm and Applications. SIAM Journal on Computing,
18(1):30–55, February 1989.

[9] L. Georgiadis, P. Georgatsos, K. Floros, and S. Sartzetakis. Lexico-
graphically Optimal Balanced Networks. IEEE/ACM Transactions on
Networking, 10(6):818–829, December 2002.

[10] S. Ghosh, A. Gupta, and S. V. Pemmaraju. A Self-stabilizing Algorithm
for the Maximum Flow Problem. Distributed Computing, 10(3):167–
180, 1997.

[11] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum-
Flow Problem. Journal of the Association for Computing Machinery,
35(4):921–940, October 1988.

[12] P. Gopalan, S. C. Han, D. K. Y. Yau, X. Jiang, P. Zaroo, and J. C. S. Lui.
Application Performance on the CROSS/Linux Software-Programmable
Router. CS TR-01-019, Dept of Computer Sciences, Purdue University,
November 2001.

[13] C.-C. Han, K. G. Shin, and S. K. Yun. On Load Balancing in Mul-
ticomputer/Distributed Systems Equipped with Circuit or Cut-Through
Switching Capability. IEEE Transactions on Computers, 49(9):947–957,
September 2000.

[14] J. Hespanha and S. Bohacek. Preliminary Results in Routing Games.
In Proceedings of the 2001 American Control Conference, volume 3,
pages 1904–1909, June 2001.

[15] B. Hong and V. K. Prasanna. Distributed Adaptive Task Allocation in
Heterogeneous Computing Environments to Maximize Throughput. In
Proceedings of IPDPS, April 2004.

[16] A. Keromytis, V. Misra, and D. Rubenstein. SOS: An Architecture for
Mitigating DDoS Attacks. IEEE JSAC, Special Issue on Service Overlay
Networks, 22(1), January 2004.

[17] M. Kodialam and T. V. Lakshman. Detecting Network Intrusions via
Sampling: A Game Theoretic Approach. In Proceedings of IEEE
INFOCOM, April 2003.

[18] D. Loguinov and H. Radha. End-to-End Internet Video Traffic Dynam-
ics: Statistical Study and Analysis. In Proceedings of IEEE INFOCOM,
June 2002.

[19] W. Lou, W. Liu, and Y. Fang. SPREAD: Enhancing Data Confidentiality
in Mobile Ad Hoc Networks. In Proceedings of IEEE INFOCOM, March
2004.

[20] G. Malkin. RIP Version 2, November 1998. RFC 2453.
[21] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Approach to

Universal Topology Generation. In Proceedings of MASCOTS, August
2001.

[22] J. Moy. OSPF Version 2, April 1998. RFC 2328.
[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.

A Scalable Content-Addressable Network. In Proceedings of ACM
SIGCOMM, 2001.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applica-
tions. In Proceedings of ACM SIGCOMM, 2001.

[25] D. Thaler and C. Hopps. Multipath Issues in Unicast and Multicast
Next-Hop Selection, November 2000. RFC 2991.

[26] J. Yang and S. Papavassiliou. Improving network security by multi-
path traffic dispersion. In IEEE Military Communications Conference
(MILCOM), October 2001.

