
1

On the Detection of Signaling DoS Attacks on 3G
Wireless Networks

Patrick P. C. Lee, Tian Bu, and Thomas Woo

Abstract— Third Generation (3G) wireless networks based on
the CDMA2000 and UMTS standards are now increasingly
being deployed throughout the world. Because of their complex
signaling and relatively limited bandwidth, these 3G networks
are generally more vulnerable than their wireline counterparts,
thus making them fertile ground for new attacks. In this paper,
we identify and study a novel Denial of Service (DoS) attack,
called signaling attack, that exploits the unique vulnerabilities
of the signaling/control plane in 3G wireless networks. Using
simulations driven by real traces, we are able to demonstrate the
impact of a signaling attack. Specifically, we show how a well-
timed low-volume signaling attack can potentially overload the
control plane and detrimentally affect the key elements in a 3G
wireless infrastructure. The low-volume nature of the signaling
attack allows it to avoid detection by existing intrusion detection
algorithms, which are often signature or volume-based. As a
counter-measure, we present and evaluate an online early detec-
tion algorithm based on the statistical CUSUM method. Through
the use of extensive trace-driven simulations, we demonstrate that
the algorithm is robust and can identify an attack in its inception,
before significant damage is done.

I. INTRODUCTION

The targets of most denial-of-service (DoS) attacks so
far are wireline end-points, whose prevalence provides vast
opportunities for an attacker to explore and launch new at-
tacks. As the roll-out of nation-wide wireless data networks
continues, we expect more types of DoS attacks will start
targeting wireless networks. Currently, third generation (3G)
wide-area wireless networks based on the CDMA2000 [24]
and UMTS [25] standards are widely deployed. As of De-
cember 2005, there were over 300 million CDMA subscribers
worldwide[6]. Emerging 3G data standards, such as EV-DO
and HSDPA, promise to deliver broadband mobile Internet ser-
vices with peak rates of 2.4 Mbps and 14.4 Mbps, respectively.
The number of data subscribers is projected to reach a billion
before 2010 [6]. As the number of data-capable wireless end-
points escalates, they will become susceptible targets of new
DoS attacks in the near future.

Apart from the sheer number of mobile endpoints, a multi-
tude of other factors also contribute to making a 3G wireless
network more vulnerable to attacks. These include:

• Limited wireless link bandwidth: As opposed to most
wireline links, 3G wireless links tend to have much lower
capacity thus it takes significantly less traffic to overload
the link.

• High signaling overhead: With existing 3G standards, to
transfer a similar amount of data, a lot more signaling
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messages/handshakes is needed for a wireless network
than that in a wireline network. For instance, in order
to improve the utilization of limited radio resources, a
radio channel is only allocated to a mobile when there is
data to transfer, and it will be revoked after an inactivity
timeout. Such dynamic channel allocation and revocation
procedures introduce lots of signaling operations.

• Heavy control processing: The hierarchical nature of
current 3G (CDMA2000 or UMTS) networks places
certain critical system functions such as power control,
resource allocation, paging, etc. on a few infrastructure
elements. The Radio Network Controller (RNC) and the
base stations (BS) are involved in these activities for each
mobile. By necessity, the engineering of these network
elements is typically based on a certain load profile that is
derived from the projected traffic patterns and behaviors
of mobiles. Any operational deviation from these design
assumptions can cause significant overload condition, and
potentially non-graceful degradation.

In a nutshell, 3G wireless networks are significantly more
fragile than wireline networks. To begin, most of the wireline
DoS attacks would still apply to a wireless network. In
addition, the above unique vulnerabilities of 3G networks can
be exploited by new forms of wireless-specific DoS attacks.

In this paper, we introduce a novel DoS attack termed
the signaling attack, which seeks to overload the control
plane of a 3G wireless network using low-rate, low-volume
attack traffic, based on some of the aforementioned 3G-specific
vulnerabilities. Unlike conventional DoS attacks that focus
on the data plane, the signaling attack creates havoc in the
signaling plane of a 3G network by repeatedly triggering radio
channel allocations and revocations. To accomplish this, an
attacker first sends a low-volume packet burst to a mobile.
If the mobile does not currently have a radio channel, the
network will allocate a new one to complete the data transfer.
After an inactivity timeout, the radio channel is torn down to
recycle it back for others’ use and help preserve the mobile
energy that will otherwise be wasted on maintaining the
channel. Immediately after the channel release, the attacker
sends another low-volume packet burst to the mobile so as
to trigger another radio channel establishment. By repeatedly
doing so at appropriately timed periods, this can generate
a considerable number of signaling operations. As detailed
in Section II, each channel establishment/release requires the
RNC and BS to process more than 20 signaling messages.
Launching this against large number of mobiles can easily
introduce an excessive amount of signaling messages. The
potential damage includes (1) overloading of RNC and BS,
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leading to reduced system performance, (2) denial of service
to legitimate signaling messages due to congestion in the
signaling paths, and (3) shortening of the mobile battery life.

As opposed to current DoS attacks that generate aggressive
traffic, the signaling attack can be achieved with low-rate, low-
volume traffic. Thus, the signaling attack can effectively evade
detection by today’s intrusion detection/prevention systems,
which are effective mostly against flooding-based DoS attacks.

To understand the damage caused by the signaling attack,
suppose that a 3G wireless network has inactivity timeout set
to 5 s1 and that an attacker generates a 40-byte packet burst.
By sending packet bursts periodically at a time slightly larger
than 5 s, the attacker generates only 64bps attack traffic, which
is invisible to volume-based detection systems. If the attacker
is using a cable modem with 1Mbps uplink bandwidth, then
it can simultaneously attack approximately 160K mobiles, a
number potentially sufficient to bring down a wireless network
infrastructure that serves a large metropolitan area such as New
York City. Note that this signaling attack can also be mounted
to other emerging wide-area networks such as 802.16/WiMAX
that share the same vulnerability (see [17]).

We propose an online early detection mechanism for sig-
naling attack by formulating it as a change-point detection
problem, which aims to identify the sources of signaling
attacks by monitoring any abnormal behavior against profiled
benign behavior. Our detection algorithm is based on the
non-parametric CUSUM test, which does not require the
parameterization of the network traffic distribution of interest
and has been shown to be asymptotically optimal for change-
point problems [4], [5], [20], [27]. To make the algorithm
robust against intelligent attackers that attempt to increase the
detection delay and hence aggravate the damage, our detection
mechanism is derived in a way that the detection delay depends
only on the amount of additional signaling load due to the
attack but not on anything else, such as the attack strategy.

To summarize, this paper makes the following contributions.
We identify a novel signaling DoS attack specific for 3G wire-
less networks and demonstrate its severity through simulation
driven by synthetic and real traces. The attack is unique in
the sense that it overloads the control plane with only low-
rate, low-volume attack traffic, and hence makes conventional
signature or volume-based detection schemes ineffective. To
combat this, we present a novel online early detection algo-
rithm that can identify the attackers before they cause any
major damage. Through extensive trace-driven evaluation, we
demonstrate that our detection algorithm has a short detection
delay while rarely generating false alarms.

The remainder of the paper proceeds as follows. Section II
presents the vulnerabilities of the signaling plane in a general
3G wireless network and explains how they are susceptible the
signaling attack. Based on trace-driven simulation, Section III
demonstrates the severe damage resulting from the signaling
attack. In Section IV, we present a CUSUM-based detection
mechanism to identify the source of a signaling attack. In
Section V, we evaluate the effectiveness of our detection mech-
anism. Section VI addresses possible enhancements to our

1It is the default value in many deployed networks.
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current work and the reaction mechanism. Section VII reviews
related work on different forms of DoS attacks in wireline and
wireless networks, and we conclude in Section VIII.

II. SIGNALING ATTACKS ON 3G WIRELESS NETWORKS

In this section, we first overview the network elements of a
3G network architecture and their inter-connections. Here, we
use the UMTS network architecture as our example. We focus
on the signaling procedures among the network elements for
radio channel establishment and release. We then demonstrate
how an attacker may exploit these signaling procedures to
overload the control plane.

Note that the signaling attack can be launched to
CDMA2000 and 802.16/WiMAX networks as well. In the
interest of space, we refer readers to [17] for the discussion.

A. UMTS Network Architecture

Figure 1 shows the typical architecture of a UMTS wireless
network. We first describe two of its main components: the
Gateway GPRS Support Node (GGSN) and the Serving GPRS
Support Node (SGSN). The GGSN is a GPRS network entity
that serves as the mobile wireless gateway between an SGSN
and the Internet. When a mobile successfully authenticates
and registers with the network, a Point-to-Point (PPP) link
is set up between the GGSN and the mobile. On the other
hand, the SGSN is responsible for sending data to and from
mobile stations, in addition to maintaining information about
the location of a mobile and performing authentication for the
mobile. Typically, there are multiple SGSNs, each of which
serves the GPRS users physically located in its serving area.

Another key component of a UMTS network is the Radio
Network Controller (RNC), which is the point where wireless
link layer protocols terminate. The RNC provides the interface
between a mobile communicating through a Base Station
(BS) and the network edge. This includes management of
radio transceivers in BS equipment (radio resource control),
admission control, channel allocation, as well as management
tasks such as handoffs between BSs and deciding power con-
trol parameters. The functionalities of a BS include wireless
link transmission/reception, modulation/demodulation, physi-
cal channel coding, error handling, and power control. In this
hierarchical architecture, multiple mobiles communicate with a
BS, and multiple BSs communicate with an RNC, and multiple
RNCs talk to the SGSN/GGSN.



3

RRC
connection

establishment

Data call
starts

Radio bearer
establishment

Data
Transfer Idle

Radio bearer
release

RRC
connection

release

Dormant

Fig. 2. UMTS data call. Multiple RABs may
be established within one RRC connection.

Mobile BS RNC SGSN

Radio link
reconfiguration prepare

RAB assignment
request

Radio link
reconfiguration ready

Downlink synchronization

Data transport bearer
setup

Uplink synchronization

Radio link
reconfiguration commit

RAB setup

Apply new transport format set

RAB setup complete RAB assignment
response

Fig. 3. UMTS Radio Bearer Establishment

Mobile BS RNC SGSN

Radio link
reconfiguration prepare

RAB assignment
request (release)

Radio link
reconfiguration ready

Data transport bearer
release

Radio link
reconfiguration commit

RAB release

Apply new transport format set

RAB release complete

RAB assignment
response (release)

Fig. 4. UMTS Radio Bearer Release

B. Signaling for Radio Resource Control

The data service session provided by the network to mobile
is often referred to as a data call that starts from the mobile
connects to the network for data service and stops when the
mobile disconnects from the network. Figure 2 shows the steps
of a UMTS data call. The paging stage is not presented as it
is necessary only when the network originates a data call. We
also skip the authentication and security events that are not
relevant in the context. Detailed specification of a UMTS data
call can be found in [1].

A Radio Resource Control (RRC) connection is first created.
While there is only one RRC connection during a data call,
the network may establish one or more Radio Access Bearers
(RAB) within the single RRC connection in an on-demand
fashion. RABs are the actual radio resources for data commu-
nication. They are released after a timeout period for inactivity
so that they can be reused by other mobiles. In addition, the
mobiles may extend their battery life by releasing the idle
RAB because maintaining a RAB requires periodic channel
condition updates that consume much energy.

When new data arrives for a mobile without a RAB, an RAB
establishment procedure is invoked to allocate radio resources
for data delivery. The procedure varies depending on the type
of RAB being established or released. Figure 3 shows the
procedure for establishing a synchronized RAB. There are
about a total of 15 signaling messages being processed by
the RNC. The processing load would be even higher in order
to support fast handoff.

The allocated RAB is released after an inactivity timeout.
Similarly, the release procedure will vary depending on the
type of the RAB. Figure 4 shows the procedure for the release
of a synchronized RAB. There are a total of 12 signaling
messages being processed by the RNC. Similarly, the support
of fast handoff would result in even more signaling steps.

C. Signaling Attacks on UMTS Networks

Due to the signaling overhead required for RAB
setup/release, an attacker may seek to trigger excessive amount
of signaling messages in order to overload an RNC and
potentially the BSs. This can be done by regularly sending

low-volume bursts at appropriately timed periods such that
immediately after a RAB is torn down due to inactivity,
a burst arriving from the attacker will trigger a new RAB
establishment.

The attack may cause severe damage to the control plane: (a)
the signaling path between the RNC and the BS is congested
with the setup/release messages associated with each RAB;
(b) the RNC processor is tied up with maintaining states and
processing signaling messages and is thus overloaded. The
consequence of (a) is that valid signaling messages may not
receive allocation of resources, causing it to be dropped by
the RNC due to insufficient buffers and/or excessive delay that
leads to timeout. The consequence of (b) is that overloading
an RNC can effectively deny legitimate services to the mobiles
being served by the RNC. Another side effect of the signaling
attack is the potential draining of the mobile battery. Normally,
for power conservation, a mobile switches to a low-power idle
or dormant state when there is no packet to be sent or received.
Since low-volume bursts are sent regularly, mobiles would stay
active longer than necessary.

As shown in Section I, if the RAB inactivity timeout is
5 s, then by generating 40-byte packets to 160K mobiles
periodically at a time slightly larger than 5 s, or equivalently
64 kbps attack traffic only, all RNCs serving a metropolitan
area such as New York city can be brought down. The low-
volume nature of the signaling attack makes it hard to be
detected by conventional intrusion-detection mechanisms that
are designed to defend against flooding-based DoS attacks.

III. IMPACT OF THE SIGNALING ATTACK

To demonstrate the impact of the signaling attack, the ideal
approach is to attack an operational 3G wireless network and
observe performance degradation or even network breakdown.
However, the experiments on a real network are not feasible
due to both economical and legal reasons. We may also
collect data traces and corresponding signaling traces from
3G operational networks and simulate the signaling attack by
inserting hypothetical attack traffic into the traces. However,
data traces from live 3G networks are not currently available
due to sensitivities around privacy and competition. Therefore,
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we consider two types of traces for the purpose of demonstra-
tion: (1) synthetic traces derived from the 3G traffic models
presented in the literature and (2) real traces collected from a
campus-wide wireless network.

A. Simulation with Synthetic Traces

Based on the 3G traffic models described in [2], [9], [18],
we construct a discrete-event traffic simulator that generates
synthetic traces for a UMTS network. The trace generation is
composed of three levels. In the session level, the simulator
creates a new user session according to a Poisson arrival
process with mean 1 s, such that each session is of type
voice or data with probabilities 0.4 and 0.6, respectively. We
assume that a voice session has an exponentially distributed
duration with mean 120 s, while a data session lasts until
all session data has been transferred, where the data volume
follows a lognormal distribution with parameters µ=11.1170 s
and σ=1.3818 s. In the burst level, each (voice or data) session
consists of alternating ON/OFF periods such that packets are
generated during the ON period only. Both ON and OFF
durations are exponentially distributed, with the same mean
3 s for voice sessions and with means 0.2075 s and 12 s,
respectively, for data sessions. In the packet level, packets
are generated based on the distributions of inter-arrival time
and packet size. Since the packet-level time variations are so
small that they are insignificant to the inactivity timer of a
radio channel, we assume that the packet-level parameters are
constant. Thus, we fix the packet inter-arrival time and packet
size to be 0.02 s and 31 bytes, respectively, for voice sessions
(based on the AMR 12.2 mode) and 8.3 ms and 480 bytes,
respectively, for data sessions. Finally, we assume that each
mobile is associated with a single user session, and that after
the session is completed, the mobile remains connected to the
wireless network for 30 minutes based on the observation in
[15].

After generating the synthetic traces, we add an attacker
that periodically injects additional low-volume packet bursts
at every attack interval, which is set to be slightly larger than
the inactivity timeout of a radio channel so as to maximize
the chance of introducing signaling events. Specifically, the
attacker randomly selects a subset of mobiles that are con-
nected to the network. It then sends a 40-byte packet (e.g.,
a TCP packet with zero payload) to each of the attacked
mobiles. Any attacked mobile that has been idle over the
channel inactivity timeout will invoke a signaling event at the
RNC for establishing a new radio channel. Here, we focus on a
UMTS network that has inactivity timeout set to 5 s. It should
be noted that this inactivity timeout is a tunable parameter that
is set up by network operators once and rarely changes.

Figure 5 illustrates, over a 4-hour-long synthetic trace,
the signaling load recorded every 15 minutes when different
numbers of mobiles are attacked at each attack interval. It
clearly shows the severe damage resulting from the signaling
attack. For example, when 80 mobiles are attacked at each
attack interval, the signaling load increases by 2.5 times as
compared to the no-attack case.

Also, the 4-hour-long synthetic trace contains 2.4 GB of
normal traffic, while the additional traffic for attacking 80
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Fig. 5. Signaling load under a signaling attack using a synthetic trace.

mobiles accounts for (14400 / 5 × 80 × 40 bytes) / 2.4GB
= 0.4% of the total traffic only. Among the attack traffic,
about 90% of which triggers a signaling event at an RNC.
This shows that an RNC can be heavily overloaded with low-
volume traffic.

B. Simulation with Real Traces

As noted in Section III-A, the packet-level time scales are
much smaller than the inactivity timer of a radio channel.
Therefore, although the wireless access medium may disturb
the packet transmission delay, the channel inactivity and hence
the RAB setup/release events are less influenced by link
delay variance of the access medium. Instead, they are mainly
influenced by the packet arrival pattern resulting from user
and application behaviors as well as network transport layer
protocols. Thus, regardless of the access medium, the impact
of a signaling attack that we observe should be similar to that
in the previous synthetic-trace simulation.

Due to the unavailability of real traces from a 3G operational
network, we instead take the traces collected from the IEEE
802.11b wireless local area network (LAN) at Dartmouth
College in Fall 2003 [15] for our evaluation purpose. We
emphasize that by no means do we suggest that these traces
are ideal for a 3G wireless network. In order to use the traces
to drive the simulation of a 3G network, we first assume that
all hosts associated with the access points are mobiles in a
3G network. We then simulate the signaling load at an RNC
before and after the signaling attack.

We use the same setup as in Section III-A for injecting
attack traffic, i.e., at each attack interval that is slightly larger
than 5 s, an attacker sends a 40-byte packet to a random set
of mobiles that are connected to a wireless network.

Figure 6 illustrates the signaling load when different num-
bers of mobiles are attacked at each attack interval, using the
traces collected on November 3, 2003. As in Section III-A, the
signaling load is significantly increased due to the signaling
attack. For instance, by periodically attacking 80 mobiles, the
signaling load of the RNC increases more than five times,
while (not shown in the figure) only less than 0.6% additional
traffic is introduced. We also repeat the simulation using traces
collected from different days and the results are similar.
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C. Discussion

When a malicious host launches signaling attacks, it might
not know the exact set of IP addresses that have been assigned
to active mobiles (i.e., the mobiles being connected to the
wireless network). However, the IP address segments of major
wireless service providers are public information [11]. Recent
studies [7], [21] also discuss how to identify active mobiles
in a cellular data network. To simplify our simulation without
compromising our key results, we only insert attack traffic for
active mobiles.

Since the bandwidth required for attacking a single mobile
is very small, the attacker may choose to send packets to
all or a large portion of the IP addresses of a wireless
network. Any packet targeting an inactive mobile is dropped
by GGSNs (UMTS) or PDSNs (CDMA2000), whereas any
packet reaching an active mobile that has its radio channel
released would trigger a signaling event for a channel setup.
In this case, the signaling attack can still be achieved with
low-volume attack traffic even the active mobiles only occupy
a small portion of the IP address segment. For example, in the
real-trace simulation in Section III-B, if we assume that the
active mobiles only occupy 10% of the IP address segment,
the attacker only needs 6% additional traffic to increase the
signaling load of an RNC by five times.

IV. DETECTING SIGNALING ATTACKS

In order to defend against signaling attacks, we propose to
monitor all data traffic that enters and leaves a 3G wireless
network for detecting any ongoing signaling attacks and their
originators. Our online detection algorithm is based on the
statistical cumulative sum (CUSUM) test, whose objective is
to identify any anomaly that deviates from normal behavior as
early as possible.

In this section, we first describe what data samples should
be used as the input to the detection algorithm and where they
should be collected. We then overview the CUSUM test and
demonstrate how to apply the CUSUM test for robust detection
of signaling attack with the appropriate choices of parameters.

A. Data Sample Collection

We now explain how data samples are collected for the
purpose of attack detection. We define a remote host to be

a node that originates downlink traffic to a mobile within a
wireless network. Note that a remote host can be either a node
in the Internet or another mobile in the same wireless network.
We uniquely identify a flow (a.k.a. session) by the address pair
of a mobile and a remote host. We refer a packet to be inbound
(resp. outbound) if it is transmitted from (resp. to) a remote
host to (resp. from) a mobile. We treat a packet as inbound
if the remote host is a mobile itself. We say a remote host
triggers a virtual setup if it initiates a packet to a flow that
has not transmitted any inbound or outbound packet over the
last inactivity timeout.

It is important to note that virtual setups are measured at
the flow level. They do not necessarily lead to any actual radio
channel setup (and hence any signaling event) since a mobile
does not release its radio channel if there have been data
transfers between the mobile and other remote hosts in the
last inactivity timeout. However, the virtual setup provides a
measure of the intention of a remote host to launch a signaling
attack. If the remote host triggers a significant number of
virtual setups over a short period of time, then there is a
strong evidence that the remote host attempts to mount a
signaling attack, regardless of how many signaling operations
are actually caused by these virtual setups.

In our analysis, we only focus on inbound attacks, i.e.,
the signaling attack is always originated from remote hosts.
Although a mobile may frequently establish and release radio
channels with other non-mobiles, the signaling events are
associated with a single mobile only. Hence, the increase in
the RNC load is very limited.

For a given remote host, we define the inter-setup time as
the time interval between two adjacent virtual setups (which
can be on the same flow or on two different flows) that are
triggered by the remote host. The smaller the inter-setup time
is, the higher likelihood that the corresponding remote host
is mounting a signaling attack. Therefore, for each remote
host, we monitor a sequence of its inter-setup time samples
{t1, t2, · · · } in the CUSUM test (see Section IV-C). We then
use the abrupt decrease of the inter-setup time as an indicator
of a signaling attack.

B. Placement of Detection Points

In order to collect input data for the detection algorithm, we
have to monitor all IP packets entering and leaving a wireless
network, decode their source and destination addresses, and
compute the inter-setup times. Although we may collocate
the detection elements with an RNC/SGSN for monitoring
all mobiles served by the RNC/SGSN, neither the RNC nor
the SGSN works at the IP layer, leading to extra efforts for
extracting IP packets from either radio frames (in the RNC) or
encapsulated packets (in the SGSN). An ideal place for data
collection would be between the GGSN and the Internet where
all traffic is composed of IP packets. However, the inter-mobile
communication always turns around at the GGSN and is thus
not available for data collection in this setting. To tackle this
problem, we suggest two solutions. The first one is to add
a packet sniffer that passively captures all packets entering
and leaving the GGSN and pass them to the detection unit.
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Another solution is to configure the GGSN so that all inter-
mobile traffic is routed to the detection unit and then back to
the GGSN. This loop-back feature is supported by the GGSN
and being used for firewalling inter-mobile traffic today.

Some security measures such as firewalls and intrusion
detection systems may have been placed between the GGSN
and the Internet for protecting a wireless network from other
general attacks. We may then implement our detection al-
gorithm as an additional detection module in an existing
detection system and take advantage of the traffic policies
that have already been built into the system for reacting to
the detected attacks.

C. Overview of the CUSUM Test

We first overview the CUSUM test and motivate how it
is well-suited for intrusion detection. Here, we consider its
non-parametric version that does not assume any a priori
distribution of the data samples being considered. Thus, as
long as the data samples are not extremely dependent, we are
guaranteed the asymptotic optimality, i.e., the detection time
is minimized among all possible detection schemes subject to
a fixed worst-case expected false alarm rate [5], [27]. Detailed
discussion of the CUSUM test and its non-parametric version
can be found in [4], [5], [20], [27].

In the context of the signaling attack detection, for each
remote host, the CUSUM test monitors a set of n inter-setup
time samples {t1, t2, · · · , tn}2. Each inter-setup time sample
tn is assigned a score z(tn). When a sample tn is available,
we update the CUSUM statistic qn as follows:

qn = max(qn−1 + z(tn), 0),

Take action if qn ≥ h,
(1)

where h > 0 is the pre-specified CUSUM threshold. Note that
if an inter-setup time sample t follows a malicious behavior,
then the expected score E(z(t)) should be positive so that
qn will eventually rise above threshold h. On the other hand,
E(z(t)) should be negative when the data samples follow a
benign behavior. We justify the choice of z(t) in Section IV-D.

The CUSUM test is adequate for identifying any abrupt
change of a benign behavior to a malicious behavior. To un-
derstand this, note that if a host is benign, z(tn) is negative (in
the expected sense) and the corresponding qn will stay around
the zero value, regardless of how long the benign behavior
has been observed. However, when the benign behavior turns
to a malicious one, qn increases and eventually surpasses the
threshold. Therefore, the CUSUM test prevents an attacker
from suppressing qn with a long history of benign behavior.
This ensures that the CUSUM test detects a malicious behavior
in a timely manner.

D. Choice of Score z(t)

It is important to prevent an attacker from tricking the
CUSUM test with an intelligent strategy. Thus, we seek to

2In [17], we validate via trace-driven simulation that the inter-setup time
samples are not strongly dependent, so the condition of applying the CUSUM
test is satisfied.

Algorithm 1 Detection algorithm
1: for each arrival of packet P belonging to F = (M, R) do
2: if R has not been marked “malicious” then
3: if P is inbound & virtual setup triggered then
4: if the setup is NOT the first one triggered by R then
5: Set t = now - R’s last setup time
6: Set R.q = max{R.q + (−t/α + 1), 0}
7: if R.q > h then
8: Mark the remote host as “malicious”
9: Set R’s last setup time = now

define z(t) such that no attacker can evade detection as it
causes extra signaling overhead, i.e., if any two attackers
introduces the same expected rate of signaling attacks, then
the expected delay to detect both attackers should be the same,
regardless of their attack strategies. In other words, if any two
attackers introduce the same number of virtual setups over time
T , then they should have the same cumulative score

∑
z(t),

which captures the behavior of all inter-setup time samples,
when the CUSUM test is carried out at time T .

With this objective, we can formally prove that z(t) must
be a linear function of t. The detailed proof is shown in [17].

The formula for z(t) can now be derived as follows. We
consider a tunable parameter α, defined as the cut-off point
such that if inter-setup time t > α, it is likely to be a benign
sample, while if t < α, it is likely to be a malicious sample.
Since z(t) is linear, it attains maximum when t = 0. By setting
z(0) = 1, we have z(t) ≤ 1 for all t, and hence the ceiling of
the CUSUM threshold �h� denotes the minimum number of
inter-setup time samples required to decide if a remote host is
malicious. As a result, we can write z(t) as

z(t) =
−t

α
+ 1. (2)

E. Choice of h

For a given choice of z(t) with E(z(t)) < 0, the probability
that the CUSUM statistic qn surpasses a positive value h is
small but not zero either. However, the probability decreases
as the value of h increases. Therefore, the false positive ratio
is a decreasing function of h. On the other hand, qn takes
longer to surpass a large h even when E(z(t)) > 0 and hence
the detection delay increases. The choice of h is to trade
off between the false positive rate and the detection delay.
Note that for some specific distributions (e.g., exponential) of
data samples, h is often derived from the average running
length (ARL) between two false positives that measures the
false alarm tolerance. In the non-parametric setting (i.e., no a
priori distribution of data samples is known), we will show
how the empirical value of h can be obtained from the real
traces in Section III-B.

F. Detection Algorithm

We now present the detection algorithm that monitors if
any remote host is mounting a signaling attack, as shown in
Algorithm 1. The detection algorithm is applied only to the
remote hosts that are not marked as malicious attackers. Upon
the arrival of a packet P (either inbound or outbound), the
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detection algorithm first determines the corresponding flow F ,
which identifies mobile M and remote host R. An inbound
packet from R only triggers a virtual setup for flow F (Line
3) when no packet has been observed in flow F over last
inactivity timeout. If the virtual setup is not the first one due
to packets from R (Line 4), a new inter-setup time is computed
(Line 5) and the CUSUM values associated with R are updated
(Line 6) using Equations 1 and 2. R is marked malicious
when the associated CUSUM statistic crosses the pre-selected
threshold h (Lines 7 and 8). The most recent time that R
triggers a virtual setup is tracked for computing the next inter-
setup time (Line 9). Note that the initial values of the CUSUM
parameters for all remote hosts are always set to zero.

V. PERFORMANCE EVALUATION

In this section, we evaluate our detection mechanism against
the signaling attack based on trace-driven simulation. From
Section III, we observe similar damage brought by the sig-
naling attack using both synthetic and real traces. Thus, our
following evaluation focuses on the real traces collected from
Dartmouth College. While the wireless LAN traces are not
ideal, our evaluation methodology can be directly applied
when real traces from a 3G operational network is available.

Here, we consider a UMTS system whose inactivity timeout
for a RAB is set to be 5 s.

A. Metrics

In evaluating an intrusion-detection system, there are three
fundamental metrics that we can consider: (1) false positive
ratio, the fraction of benign remote hosts that are mistakenly
identified as malicious over all observed remote hosts, (2)
false negative ratio, the fraction of malicious remote hosts that
are missed over all observed remote hosts, and (3) detection
time, the delay that the detection algorithm needs to identify
a malicious remote host since it starts the signaling attack.

Here, we do not consider the false negative ratio. Because
of the linearity of z(t), the CUSUM decision depends only
on the additional signaling load due to the signaling attack,
regardless of what the attack strategy is. If there exists a
false negative, then it implies that the signaling load generated
by this missed attacker is within an acceptable level. In this
case, the malicious hosts that are missed by our detection
mechanism actually have little impact on the total signaling
load. As a result, our following analysis focuses on the false
positive ratio and the detection time.

The above metrics are quantified based on how we classify
a remote host as benign or malicious. Here, we assume that
all remote hosts in the original traces are benign, and that the
remote hosts that we inject to the traces for generating attack
traffic are malicious.

The false positive ratio and the detection time are intrinsi-
cally conflicting metrics that depend on how we choose the
tunable parameters α and h for our detection algorithm (see
Section IV). Intuitively, by choosing a small value of α and
a large value of h, we reduce the false positive ratio, but in
the meantime lengthen the detection time. We investigate the
trade-off in the following subsections.

B. False Positive Ratio vs. Different Tunable Parameters

In this subsection, we analyze the false positive ratio of our
detection mechanism with different values of α and h.

For a given a 24-hour trace, we set α to be the p-th
percentile of inter-setup times of all remote hosts. In other
words, we bound the proportion of inter-setup time samples
that have positive z(t) to be no more than p%. Here, we
consider the cases where p = 1, 5, 10, 15, and 20. We then
compute the false positive ratio versus different values of h
using our detection mechanism from the simulation.

Figure 7 illustrates the false positive ratio versus different
values of h, together with the percentile values of the observed
inter-setup time samples. In general, most remote hosts only
trigger a few virtual setups with large inter-setup times. Thus,
the false positive ratio in most cases is very small. For instance,
when α is no higher than the 10th-percentile, the false positive
ratio is less than 0.06% for h ≥ 3.

C. Detection Time vs. Different Tunable Parameters

To assess the detection time, we add to the traces a malicious
remote host that generates low-rate, low-volume packets to
a number of active mobiles every attack interval (see Sec-
tion III). We assume that the packets are randomly spaced
over the attack interval. Also, we randomly choose the active
mobiles to be attacked. We repeat the experiment 10 times with
different seeds, and the measured detection time is averaged
over the experimental instances.

Similar to the setting in Section III, we fix the attack interval
to be slightly larger than the inactivity timeout (which is 5 s
according to our assumption). We assume that the attacker
targets 5 mobiles at each attack interval.

Figure 8 illustrates the detection time versus different values
of h, where α is set at different percentiles of inter-setup time
samples. For smaller values of α and larger values of h, the
detection mechanism requires longer detection time to identify
the attacker, but in the meantime it produces fewer false
positives (see Figure 7). This suggests the trade-off between
different combinations of α and h.

D. Evaluation for the Signaling Attack Defense

We now evaluate our detection mechanism for defending
against the signaling attack. Since the false positive ratio is
low according to our previous evaluation, we fix α = 7.1138 s,
which is the 10th-percentile inter-setup time, and h = 3.

Our setup is similar to that in Section V-C. In addition to the
average detection time taken from 10 experimental instances,
we also obtain the minimum and maximum detection times
among those instances, and these bounds are shown as the
endpoints of the vertical lines in the plots.

In Section III, we demonstrate how a single remote host
can overload a RNC via the signaling attack. Figure 9 shows
the detection time versus different numbers of victims. In
most cases, the single attacker can be identified in less than
10 s since the signaling attack starts. As the attacker becomes
more aggressive by attacking more mobiles, we need less
detection time to identify this attacker. For instance, as shown
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in Section III, the attacker can double the signaling load of
an RNC by periodically attacking 20 mobiles. However, such
a signaling attack can be detected in less than one second.
This shows our detection mechanism can quickly identify an
attacker before it causes significant damage.

Furthermore, our detection mechanism remains robust to-
ward different attack strategies that have the same attack
intensity. The details can be found in [17].

VI. ENHANCEMENTS TO THE DETECTION MECHANISM

AND THE REACTION

In this section, we address some enhancements to our
detection mechanism so as to improve its scalability and
enable it to handle more challenging attacks. We also describe
a graceful approach for reacting to attacks that minimizes
impact of false alarm yet maintain load at sustainable level.

A. Scaling up the Detection

Our detection mechanism keeps track of every remote host,
and thus the storage requirement is proportional to the number
of remote hosts, which can be up to the total number of hosts
in the Internet. Although the amount of memory consumed
by our simulation is not a vital concern due to the relatively
small number of remote hosts in our traces as compared to
the upper bound, our detection mechanism should be able to
survive the abrupt surge of the number of remote hosts without
exhausting the memory storage.

One approach is to bound the storage requirement. Suppose
that we hash all remote hosts into a table of fixed size n.
We define a super node that corresponds to the subset of
remote hosts being hashed to the same entry. We then apply the
detection algorithm to each super node rather than individual
remote hosts. If a super node is not identified as malicious,
obviously none of the remote hosts in the super node are
malicious. On the other hand, if the super node is flagged
malicious, we cannot tell if any of its associated remote hosts
is malicious, because it is possible that some other remote
hosts are malicious, or all remote hosts are benign but their
aggregate behavior appears to be malicious.

In order to reduce false positives due to hash collisions,
we introduce m parallel hash tables with independent hash
functions (as in [8]). Each remote host is hashed to one entry
in each of the m tables in parallel, i.e., any remote host
is a member of m super nodes, each of which corresponds

to a unique hash table (function). Now, a remote host is
considered to be an attacker if its corresponding m super nodes
are all marked malicious. In general, because the fraction of
malicious remote hosts is small, a super node is less likely to
have a malicious remote host. Moreover, the probability that a
remote host collides with the same set of other hosts in all m
hash tables decreases exponentially as m increases. Thus, the
probability that a benign host has all its super nodes flagged
malicious becomes very small. As a result, we can decrease
(exponentially) the false positive ratio by increasing m.

By using m hash tables of size n, we can bound the total
memory size to be O(mn), while maintaining a small false
positive ratio.

B. Attacks using Spoofed Addresses

Although attacks from spoofed address have been shown to
be unpopular [28], attackers may still send malicious traffic
using spoofed addresses. In this case, they not only hide
their real origins, but also trick the detection mechanism to
make wrong decisions. For instance, if an attacker always
spoofs the same address for all attack traffic, the detection
mechanism will identify the spoofed address as malicious
and then block traffic coming from the spoofed address. This
is only a problem when the spoofed address belongs to an
active remote host that has legitimate communication with the
mobiles.

There have been studies (e.g., [13]) on identifying and
filtering packets with spoofed addresses that we may employ
before applying the detection algorithm. In future work, we
analyze how to extend our detection mechanism to address
spoofing attacks as well.

C. Reaction Mechanism

In response to an identified malicious remote host, one
possibility is to filter the subsequent traffic originated from that
remote host. On the other hand, we may choose not to take any
action since we can endure the presence of a signaling attack
as long as the signaling load is within a sustainable level. This
reduces the chance of blocking legitimate hosts that are falsely
marked malicious (see Section V-B).

As the signaling load rises above a threshold, we may start
blocking identified attackers that generate the most signaling
load until the signaling load decreases to below the threshold.
By doing so, we only take necessary actions to protect the
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control plane from being overloaded while minimizing the
chance to penalize legitimate remote hosts.

VII. RELATED WORK

In this section, we review the related work on defending
DoS attacks in both wireline and wireless networks.

Traditional DoS attacks are flooding-based such that an
attacker generates high-rate, high-volume data traffic so as
to deplete network resources using overwhelming data traf-
fic. A number of defense mechanisms have been proposed
for wireline networks, such as the pushback and traceback
mechanisms [12], [22], [23]. Another class of DoS attacks
is based on the low-rate, high-volume TCP attack [16], in
which an attacker periodically generates high-volume packet
bursts in order to force all TCP flows to repeatedly enter the
retransmission timeout state. In this paper, we describe a low-
rate, low-volume signaling attack that targets 3G or equivalent
wireless infrastructures. Unlike the low-rate TCP attack, the
signaling attack does not necessarily have any periodic pattern.

The flooding-based DoS attack is a common threat to
both wireline and wireless networks. Other forms of DoS at-
tacks that specifically target wireless networks include packet-
forwarding disruption [3], [10], base-station impersonation
[19], control-channel congestion via a sufficient number of
SMS messages [7], and depletion of mobile batteries [21]. In
particular, the DoS attack in [7] saturates the control channels
for SMS communication, while that in [21] keeps a mobile in
a high-battery-consumption state. Both of the attacks, similar
to ours, can be achieved with low-volume attack traffic. On
the other hand, the signaling attack considered in this paper
exploits the heavy signaling overhead in 3G wireless networks.

Statistical online detection schemes have been studied by
[14], [27] for countering DoS attacks. Specifically, [14] fo-
cuses on detecting malicious connection attempts based on
Wald’s test [26]. However, this detection scheme requires a
priori probability distributions for the benign and malicious
behaviors. In contrast, [27] propose a non-parametric CUSUM
test to detect flooding-based DoS attacks based on periodic
sampling. In this paper, we propose a different CUSUM-based
method that is suitable for detecting the low-rate signaling
attack and ensure that no attacker can intelligently escape from
our detection mechanism.

VIII. CONCLUSIONS

We have presented a new DoS attack, called signaling
attack, which targets 3G wireless networks. This attack works
by exploiting the heavy-weight nature of signaling in 3G
wireless networks. We have shown via trace-driven simulation
that the signaling attack can substantially overload a wireless
infrastructure using only minimal traffic. Because of its low-
rate, low-volume property, the signaling attack can evade
the detection of traditional counter-DoS systems. In view of
this, we have proposed a statistical CUSUM-based detection
mechanism to defend against the signaling attack. Using real-
world traces, we have shown that our detection mechanism can
identify the source of a signaling attack in a timely manner
before the damage becomes aggravated, while producing very

few false positives. In addition, our detection mechanism is
robust as it depends solely on the additional signaling load
and based on any assumed attack strategy.
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