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Abstract— We consider an end-to-end approach of inferring
network faults that manifest in multiple protocol layers, with an
optimization goal of minimizing the expected cost of correcting all
faulty nodes. Instead of first checking the most likely faulty nodes
as in conventional fault localization problems, we prove that an
optimal strategy should start with checking one of the candidate
nodes, which are identified based on a potential function that we
develop. We propose several efficient heuristics for inferring the
best node to be checked in large-scale networks. By extensive
simulation, we show that we can infer the best node in at least
95%, and that checking first the candidate nodes rather than
the most likely faulty nodes can decrease the checking cost of
correcting all faulty nodes by up to 25%.

Index Terms— network management, network diagnosis and
correction, fault localization and repair, reliability engineering.

I. INTRODUCTION

Network components are prone to a variety of faults such
as packet loss, link cut, or node outage. To prevent the faulty
components from hindering network applications, it is impor-
tant to diagnose (i.e., detect and localize) the components that
are the root cause of network faults, as in [12], [13], [22].
However, it is also desirable to repair the faulty components
to enable them to return to their operational states. Therefore,
we seek to devise algorithms that accomplish effective network
fault correction, by which we mean not only to diagnose, but
also to repair all faulty components within a network.

To diagnose (but not repair) network faults, recent ap-
proaches like [2], [18], [25] use all network nodes to collabora-
tively achieve this. For instance, in hop-by-hop authentication
[2], each hop inspects packets received from its previous hop
and reports errors when packets are found to be corrupted.
While such a distributed infrastructure can accurately pin-
point network faults, deploying and maintaining numerous
monitoring points in a large-scale network introduces heavy
computational overhead in collecting network statistics [7] and
involves complicated administrative management [6].

The diagnosis procedure becomes even more challenging
when network faults can manifest in multiple protocol layers.
Figure 1 depicts a network (derived from [24]) that contains
components spanning different protocol layers. The failure
of any of these components can disrupt the communication
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Fig. 1. An example network that is composed of components across different
protocol layers.
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Fig. 2. The logical topology corresponding to Figure 1.

between the client and one (or both) of the servers, yet
pinpointing the faults is difficult because low-layer compo-
nents in general do not respond to high-layer probe messages.
Therefore, it is essential that a fault correction scheme can
diagnose faults across multiple protocol layers [22].

In order to simplify network management and support multi-
layer fault correction, we consider an end-to-end approach
which, using end-to-end measurements, infers components that
are probably faulty and need to be further checked so that
the actually faulty components can be repaired. Our solution
is inspired by [6], [7], [10], [16], which also use end-to-
end measurements to infer link statistics or the underlying
network topology. We extend this end-to-end approach to the
application of network fault management.

Our end-to-end inference approach can be characterized as
follows. We start with a routing tree topology as in [6], [7],
[10], [16], since a tree-based setting is justified in conventional
shortest-path routing such as OSPF [19], where each router
builds a shortest-path tree with itself as a root, as well as
in multicast routing, where a routing tree is built to connect
members in a multicast group. We first map each potentially
faulty physical component to a logical node. For example,
we can transform the physical topology in Figure 1 to a
logical tree as shown in Figure 2. Given the logical tree, we
monitor every (root-to-leaf) path that contains logical nodes.
If a path exhibits any “anomalous behavior” in data delivery,
then some “faulty” node on the path must be responsible. In
practice, the definition of an “anomalous behavior” depends
on specific applications (see Section II for details). Using the



2

path information collected at the application endpoints, we can
narrow down the space of possibly faulty components.

In the above end-to-end solution, one can tell whether a
path behaves anomalously, but cannot tell specifically which
and how many nodes on the path are faulty. To determine the
faulty nodes, we should check a sequence of nodes, and fix
any nodes that are found to be faulty. Given the anomalous
paths in a tree, our main goal is to infer the best node (or
the best set of nodes) that should be first checked so as to
minimize the expected cost of correcting all faulty nodes.

In this paper, we develop several surprising optimality
results for inferring the best node that should be first checked
by a network fault correction scheme, with an objective to
minimize the expected cost of correcting all faulty nodes. Our
contributions include the following:

• Unlike traditional network failure localization problems
(e.g., [12], [13], [22]), whose objective is to identify
the most likely faults, we show that checking first the
node that is most likely faulty or has the least checking
cost does not necessarily minimize the expected cost of
correcting all faulty nodes.

• We formally identify a subset of nodes termed candidate
nodes, one of which should be first checked in order
to minimize the expected cost of correcting all faulty
nodes. We develop a potential function that determines
the candidate nodes.

• Based on the potential function and candidate nodes
that we propose, we devise various heuristics for the
best node inference in a single tree and multiple trees,
where the latter forms a more general topology. We show
via simulation that the candidate node with the highest
potential value is in fact the best node that should be first
checked by an optimal strategy in at least 95% of time
under a special setting. In addition, we conduct simulation
using large-scale network topologies. As compared to the
strategies that first check the most likely faulty nodes,
we show that by first checking the candidate nodes,
the checking cost of correcting all faulty nodes can be
decreased by up to 25%.

The remainder of the paper is organized as follows. In
Section II, we formulate the network fault correction problem.
Section III demonstrates that naive strategies that are intu-
itively optimal are in fact not optimal in general. In Section IV,
we introduce a potential function for identifying the candidate
nodes and show the optimality results. In Section V, we
propose several heuristics for the best node inference. In
Section VI, we evaluate the proposed heuristics in large-
scale networks. In Section VII, we address how to deal with
inaccuracies in fault correction. We review related work in
Section VIII and conclude the paper in Section IX.

II. PROBLEM FORMULATION

In this section, we formulate our end-to-end inference
approach for a network fault correction scheme that diagnoses
and repairs all faulty nodes in a network at minimum expected
cost. Figure 3 summarizes the end-to-end inference approach.

We are interested in a routing tree that consists of potentially
faulty physical components, each of which is transformed to
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Fig. 3. End-to-end inference approach for a network fault correction scheme.

a logical node (see Figure 2). To obtain the components of a
routing tree, we can use the physical topology MIB [5], which
captures the interconnections of the physical devices residing
in the same administrative domain, or perform topology infer-
ence via standard tomography techniques (e.g., see [7], [10],
[20]). Other techniques of identifying physical components in
a given network have also been explored (e.g., see survey in
[22]). For those devices that cannot be specified, we aggregate
them into a single component, such as the router backbone
in Figure 1. This enables us to model the components that
are located in different administrative domains and cannot be
readily identified.

We define the logical tree as T = (N, {pi}, {ci}), where
N is the set of logical nodes, pi is the failure probability of
node i ∈ N , and ci is the checking cost of deciding if node
i ∈ N is faulty. In practice, the failure probabilities {pi} are
often characterized via statistical measurements of reliability
indexes [11], vulnerability modeling [9], or the inference of
link statistics [6], [16]. Here, we assume that node failures,
and hence the failure probabilities {pi}, are all independent.
Likewise, we can characterize the checking costs {ci} based
on the personnel hours and wages required for troubleshooting
problems or the costs of the test equipment. Note that the
checking costs can be highly varying. For instance, in Figure 1,
the costs of checking the T3 link and the router backbone can
be substantially higher than those of checking the client and
server machines.

In our analysis, we assume that pi and ci can be any values
in [0, 1] and [0,∞), respectively. For instance, if ci = 1 for all
i, then the total checking cost denotes the number of nodes that
have been checked. Also, depending on the fault definition,
the failure probabilities {pi} can be significantly small for
general failures (e.g., router malfunction) [12], but can also
be non-negligible if we are concerned with how likely a node
is compromised subject to worm or denial-of-service attacks.

Each node in a logical tree T can be classified as faulty or
non-faulty, depending on how we first define whether a (root-
to-leaf) path exhibits any “anomalous behavior”. In practice,
such a definition varies across applications. For instance, in
Figure 1, packets can be dropped or delayed when the T3 link
loses synchronization and produces noise bursts [24]. We can
then say that a path behaves anomalously if it fails to deliver
a number of correct packets within a time window, and that
some node on the path is faulty if it causes severe packet
loss and delay. As stated in Section I, the inference approach
only knows whether a path is anomalous, but does not know
specifically which and how many nodes on the path are faulty.
To help our discussion, each node in T is referred to as bad
if it is faulty, or as good otherwise. We say a path is bad if it
contains at least one bad node, and is otherwise good. Also,
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Fig. 4. Given a logical tree, we retain only the bad paths and indicate any
good node. Since path 〈1, 4, 8〉 is a good path, it is known that nodes 1, 4,
and 8 are good. Nodes 4 and 8 can be pruned from the tree, and node 1 can
be indicated as good. The resulting set of bad paths will lead to a bad tree.

we call T a bad tree if every path in the tree is a bad path.
A node can exhibit the same or different behaviors on all

paths upon which it lies. In the latter case, we can assume
that all paths are independent and hence each path must
be inspected individually1. However, it is more common to
have hard failures (e.g., power outage or machine shutdown)
reflected on all paths that contain faulty nodes. Thus, we
assume that the behavior of each node is the same on all paths
upon which the node lies. With this assumption, if a node lies
on at least one good path, then it is a good node. Note that
a good node may still lie on one or more bad paths, but this
only means each such bad path contains some other bad node.

Given a logical tree T , we determine whether a path is
good or bad via end-to-end measurements that are carried out
between the root and leaf nodes of T . For example, the root
can send probes to the leaf nodes, from which we collect the
measurement results. Since a good path contains only good
nodes that need not be checked, we only need to focus on the
bad paths in T . Also, any node that lies on both good and bad
paths is indicated to be good. To illustrate, Figure 4 shows
how to retain only the bad paths in T and indicate the good
nodes. The resulting set of bad paths will then form a bad
tree. With a slight abuse of notation, we denote this bad tree
by T as well.

We then pass the bad tree T to the inference algorithm,
which determines, from the set of nodes that are not indicated
as good, the “best” node (or the “best” set of nodes) to be
checked, and repaired if necessary.

Before formalizing the notion of “best”, we first state our
optimization goal, namely, to minimize the expected cost of
correcting all faulty nodes in a given bad tree T . Suppose
that using end-to-end measurements to determine bad paths
incurs negligible cost. Thus, the correction cost has two main
components: the cost of checking all nodes and the cost
of repairing all faulty nodes. However, we do not consider
the repair cost since all faulty nodes have to be recovered
eventually, and any successful repair strategy has the same
cost of repairing all faulty nodes. As a result, by cost, we
here refer to the checking cost only.

Because of our optimization goal, we can focus on the
sequential case where we check one node at a time, since
checking multiple nodes simultaneously does not improve
the expected checking cost, even though it reduces the time
required to repair all bad nodes on all bad paths. As a

1If each path is treated independently, we can apply the optimal strategy
as shown in Corollary 1 in Section IV-B.

result, our theoretical analysis assumes that the inference
algorithm returns only a single best node, while we evaluate
via simulation the impact of inferring and checking multiple
nodes in Section VI.

With the optimization goal, we select the “best” node based
on a diagnosis sequence S = 〈l1, l2, · · · , l|N |〉, defined as the
order of nodes to be examined given a bad tree T . When node
li is examined, it is either checked or skipped. If node li lies
on bad paths only, we cannot tell whether it is good or bad.
In this case, we have to check node li, and repair it if it is
determined to be bad. On the other hand, if node li lies on a
good path, it is known to be a good node and does not need to
be checked. In this case, we say we skip node li. After node
li has been checked or skipped, it is known to be good. Thus,
given a bad tree T , the expected (checking) cost with respect
to S is:
|N |
∑

i=1

cli Pr(node li is checked
∣

∣

bad tree T , and nodes l1, · · ·,
li−1 known to be good

).

We detail in Appendix I-B the calculation of the expected cost
of a diagnosis sequence. A diagnosis sequence S is said to be
optimal if its expected cost is minimum among all possible
diagnosis sequences. Therefore, among all the nodes in a bad
tree T , we formally define the best node as the first node
in an optimal diagnosis sequence for T . In other words, the
best node should be the node to be first checked in order to
minimize the expected cost of correcting all faulty nodes.

We point out that the optimal decision of the inference
algorithm is derived from the current topology. The decision
will be revised for a new topology when the faults are actually
checked and repaired. In spite of this, the topology may still
change between the time of identifying the physical topology
and performing the inference algorithm. However, as stated in
[20], topology change occurs in a coarse time scale (on the
order of minutes and hours). Thus, as long as the network fault
correction scheme has its monitoring period bounded within
a few minutes, the topology should remain fairly stable. In
Section VII, we address how to incorporate into our inference
algorithm the false alarms resulting from inaccurate modeling
of physical components.

A straightforward way to implement the inference algorithm
is based on the brute-force approach as shown in Algorithm 1,
which enumerates all possible diagnosis sequences in order to
determine the best node. However, the brute-force approach
has factorial complexity Θ(|N |3|N |!) (note that as shown in
Appendix I-B, the complexity of finding the expected cost of
a diagnosis sequence is Θ(|N |3)). Therefore, in the following
sections, we seek to answer the following question: Given a
bad tree T , how can the inference algorithm determine the
best node in polynomial time?

III. NAIVE HEURISTICS FOR THE INFERENCE ALGORITHM

Intuitively, the best node returned by the inference algorithm
could be either the node that has the highest conditional failure
probability given a bad tree T (see Appendix I-A for its
calculation, whose complexity is Θ(|N |2)), or the node that
has the least checking cost. In this section, we show that these
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Algorithm 1 Brute-force inference algorithm
Input: Bad tree T = (N, {pi}, {ci})

1: S∗ = φ, c∗ = ∞
2: for all diagnosis sequence S do
3: compute c = the expected cost of S
4: if c < c∗ then
5: S∗ = S, c∗ = c
6: return the first node in S∗

naive choices do not necessarily minimize the expected cost
of correcting all faulty nodes.

We first give a simple counter-example that disproves the
above naive choices. Figure 5 illustrates a bad tree rooted at
node 1 and the corresponding failure probabilities {pi} and
checking costs {ci}. As verified by the brute-force approach
in Algorithm 1, the best node is node 2, where a possible
optimal diagnosis sequence is 〈2, 1, 3, 4〉 and has expected
cost 1.044. However, node 2 is neither the node with the
highest conditional failure probability nor the node with the
least checking cost.

1

2

3 4

T
i pi ci Conditional pi

1 0.1 1 0.6586
2 0.05 0.3 0.3293
3 0.08 0.2 0.1214
4 0.1 0.1 0.1405

Fig. 5. A counter-example of showing the best node (which is node 2) is
not the one chosen by the naive choices. The conditional probability pi given
a bad tree is computed as shown in Appendix I-A.

To further understand the performance of the naive choices,
we evaluate two naive heuristics for the inference algorithm:
(i) Naive-Prob, which returns the node with the highest con-
ditional failure probability, and (ii) Naive-Cost, which returns
the node with the least checking cost. We compare their
performance to that of the brute-force inference algorithm
in Algorithm 1 using a special small-scale setting where a
bad tree comprises only two bad paths (e.g., see Figures 2
and 5). Such a setting is to describe a scenario where most
routing paths are disjoint and at most two paths share the same
physical components.

Our evaluation setup is described as follows. For a fixed
number of nodes |N |, we randomly generate 200 bad trees,
each of which comprises two bad paths such that the position
of the only non-leaf node that has two child nodes is randomly
chosen. Since, as stated in Section II, pi and ci can be any
values in [0, 1] and [0,∞), respectively, we arbitrarily choose
three distributions for our evaluation: (a) pi ∼ U(0, 1) and
ci = 1, (b) pi = 0.1 and ci ∼ U(0, 1), as well as (c)
pi ∼ U(0, 1) and ci ∼ U(0, 1), where U(u1, u2) denotes the
uniform distribution between u1 and u2.

Figure 6 illustrates the proportions of instances (out of 200)
in which Naive-Prob and Naive-Cost return correctly a best
node (which may not be unique, if any one of the best nodes
can be first checked to give the minimum cost). Depending
on the distributions of pi and ci, the proportion of instances
where the best choice is made can be as low as 10% for
both Naive-Prob and Naive-Cost (see Figures 6(a) and 6(b)).
Also, when pi and ci are both randomly chosen, both naive

approaches select the best node in only less than 75% of time
(see Figure 6(c)).

IV. CANDIDATE NODES

Instead of the naive choices described in the previous
section, we show in this section that we should first check a
candidate node, which is selected based on the maximization
of a potential function as described below.

We first give the notation and definitions that we will use.
Given a tree T , we define ancestors of node i to be the nodes
(not including node i) on the path from the root of T to node
i, and descendants of node i to be the nodes that have node i

as one of their ancestors. Let T be the event that T is a bad
tree, and Xi be the event that node i is a bad node. Let Ai be
the event that the ancestors of node i are all good. If node r is
the root node, then we let Ar be always true and Pr(Ar) = 1.

A. Definitions of a Candidate Node and Potential

Definition 1: The potential of node i in a tree T is defined
as the value returned by the potential function:

φ(i, T ) =
Pr(T |Xi,Ai)pi

ci(1 − pi)
.

Intuitively, the best node should be a node with a high
potential, since such a node in general has a small checking
cost, a large failure probability, and a large likelihood of
leading to a bad tree. Note that the term pi

ci(1−pi)
denotes the

potential of a node for a single-bad-path case (see Corollary 1
and [11]). Therefore, the potential function φ(i, T ) is to
combine the potential of a single path (i.e., pi

ci(1−pi)
) and the

likelihood of having a bad tree with respect to the tree topology
(i.e., Pr(T |Xi,Ai)). The potential function is derived based
on the optimality results presented in the following subsection.

The potential of node i can be obtained by first computing
Pr(T |Xi,Ai) = Pr(T | pi = 1, pj = 0 ∀j ∈ Ai), where Ai is
the set of ancestors of node i. As shown in Appendix I-A, we
can compute the potential of a node in Θ(|N |2) time.

Definition 2: For each path W in a tree T , we select a
single node i to be a candidate node if node i lies on W and
its potential φ(i, T ) is the highest among all the nodes on W .
If more than one node on W has the highest potential, then
we choose the one that is closest to the root node of T as the
candidate node.

We can view the selection of candidate nodes as a mapping
function that returns a single candidate node given W and
T . Note that it is possible for a path in T to have multiple
candidate nodes that correspond to different paths in T .

B. Optimality Results

We now state the main optimality result as follows. In the
interest of space, the proofs are detailed in Appendix II.

Theorem 1: Given a bad tree T , there always exists an
optimal diagnosis sequence that starts with a candidate node.

In other words, the best node returned by our inference
approach should be one of the candidate nodes.

In some special cases, we can identify the best node from a
set of candidate nodes, as shown in the following corollaries.
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Fig. 6. Proportions of instances in which Naive-Prob and Naive-Cost return a correct best node.

5 6

1

2

3 4

T
i pi ci φ(i, T )
1 0.4 1 0.67
2 0.4 1 0.67
3 0.9 1 8.46
4 0.9 0.9 9.9
5 0.9 1 8.46
6 0.4 1 0.66

Fig. 7. Counter-example 1.

Corollary 1: Given a bad tree T which is a single path, the
best node is the one with the maximum pi

ci(1−pi)
.

Remark: Corollary 1 implies that the optimal diagnosis
sequence is in non-increasing order of pi

ci(1−pi)
. This conforms

to the result in [11].
In general, whether a node is the best depends on the failure

probabilities {pi}, the checking costs {ci}, as well as the tree
topology T . In spite of this, there are cases where the most
likely faulty node is in fact the best node.

Corollary 2: Given a bad tree T , if every node i has pi = p

and ci = c, where p and c are some fixed constants, then the
best node is the root node of T .

Remark: If T is a bad tree, then the root node r is also
the node that has the maximum conditional failure probability
since Pr(Xr|T ) = p

Pr(T ) ≥ Pr(T |Xi)p
Pr(T ) = Pr(Xi|T ) for every

node i.
Corollary 3: Consider a two-level tree T whose root node

is attached to |N | − 1 leaf nodes. If T is a bad tree and every
node i has ci = c for some constant c, the best node is the
one with the maximum conditional failure probability.

C. Why Selecting the Best Node from Candidate Nodes is
Difficult?

While we have proved that one of the candidate nodes is
the best node, we have not yet identified which candidate node
should be selected as the best node in the general case. We
show that deciding the best node is non-trivial using several
counter-examples that violate our intuition. In the following
discussion, the optimality results are verified by the brute-
force inference algorithm in Algorithm 1.

Counter-example 1: Given a bad tree, the best node is not
the one with the highest potential. Figure 7 shows a bad
tree T in which the candidate nodes are nodes 3 and 4.
Although node 4 has the highest potential, node 3 is the best
node (so is node 5). A possible optimal diagnosis sequence is

1

2 3

T
i pi ci φ(i, T )
1 0.1 1 0.111
2 0.9 1 7.2
3 0.8 1 3.6

Fig. 8. Counter-example 2.

〈3, 5, 1, 2, 4, 6〉, whose expected cost 4.309, while the expected
cost of any diagnosis sequence that starts with node 4 is at
least 4.344.

Counter-example 2: Checking simultaneously all candidate
nodes in a bad tree does not minimize the expected cost
of correcting all faulty nodes. Figure 8 illustrates a bad
tree T that has nodes 2 and 3 as the candidate nodes. To
check simultaneously all candidate nodes, we can construct
a diagnosis sequence S = 〈2, 3, 1〉, whose expected cost is
given by 2.134. However, the optimal diagnosis sequence is
S∗ = 〈2, 1, 3〉, whose expected cost is 2.107.

To explain this counter-example, note that after node 2
has been checked, we have a new tree T ′ = (N, {pi|p2 =
0}, {ci}), where setting p2 = 0 is to indicate that node 2
is now known to be good (see Section II). The potentials of
nodes 1 and 3 in T ′ are respectively φ(1, T ′) = 0.111 and
φ(3, T ′) = 0. Thus, node 1 is the only candidate node in T ′,
and it must be the next node to check.

Counter-example 3: The best node for a bad tree is not
necessarily the best node for a subtree. Consider a bad tree T

in Figure 9. The best node is node 7, and the optimal diagnosis
sequence is 〈7, 1, 2, 4, 3, 5, 6〉. However, for the subtree T ′

rooted at node 3, if it is a bad tree, then the best node is
node 4, and the optimal diagnosis sequence is 〈4, 3, 7, 5, 6〉.
The reason is that the subtree T ′, when residing in T , may or
may not be a bad tree. Even if we have found the best node in
T , the best node can still vary if we know that subtree T ′ is a
bad tree. Therefore, we cannot determine the optimal solution
to a problem by first solving for the optimal solutions to the
subproblems, and this makes the best node inference difficult.

D. Evaluation of Candidate-based Heuristics

Given the difficulty of finding the best node among a set
of candidate nodes, we evaluate the performance of three
candidate-based heuristics that approximate the best node
selection of the inference algorithm. These heuristics are: (1)
Cand-Prob, which selects the candidate node with the highest
conditional failure probability given a bad tree, (2) Cand-Cost,
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i pi ci

1 0.939 1
2 0.806 1
3 0.042 1
4 0.979 1
5 0.326 1
6 0.992 1
7 0.997 1

Fig. 9. Counter-example 3.

which selects the candidate node with the least checking cost,
and (3) Cand-Pot, which selects the candidate node with the
highest potential. Our evaluation setting is the same as that
in Section III, i.e., we determine the proportion of instances
(out of 200) in which a candidate-based heuristic selects a best
node for a given two-path bad tree of size |N | under different
distributions of pi and ci.

Figure 10 plots the results. Comparing the results to those
in Figure 6, we find that all candidate-based heuristics are
more likely to make the best choice than the naive ones. In
particular, Cand-Pot outperforms all naive and candidate-based
heuristics. In most cases, the candidate node with the highest
potential is actually the best node in at least 95% of time.

E. Complexity of Finding the Node with Maximum Potential

Since the computation of the potential of a node needs
Θ(|N |2) time (see Section IV-A), the complexity of Cand-Pot,
which searches among all nodes for the one with the highest
potential, is Θ(|N |3). This may lead to the scalability issue
when the network grows. However, in most cases, the bad tree
is only a subset of the entire routing tree. Hence, the bad tree
that is parsed by Cand-Pot is likely to be within a manageable
size in general.

V. HEURISTICS FOR THE INFERENCE ALGORITHM

While the brute-force inference algorithm (see Algorithm 1)
returns the best node, its factorial complexity prohibits its use
in large-scale networks. Thus, we propose three classes of
efficient heuristics for the inference algorithm that are suitable
for large-scale networks. Each class of heuristics consists of
two approaches: one that considers the most likely faulty nodes
and one that considers the candidate nodes.

A. Single Node Inference for a Single Tree

We consider two heuristics Naive-Prob (see Section III) and
Cand-Pot (see Section IV), which respectively return the node
that is most likely faulty given a bad tree and the candidate
node with the highest potential.

B. Multiple Node Inference for a Single Tree

Instead of sequentially checking one node at a time, we can
also infer and check multiple nodes in parallel so as to reduce
the time needed to repair all bad nodes.

We first extend Naive-Prob to Pa-Naive-Prob (where “Pa”
stands for “parallel”), which returns the most likely faulty
subset Ipnp of nodes that cover all the bad paths in a given bad

tree T , i.e., Ipnp = arg maxI Pr(XI |T ), where T is the event
that T is a bad tree, and XI is the event that the subset I of
nodes are all bad and cover all bad paths in T . Since Pr(T |XI)
is one, it is equivalent to evaluate Ipnp = arg maxI Pr(XI) =
arg maxI

∏

i∈I pi. We can determine Ipnp using Algorithm 2,
whose complexity is Θ(|N |).

Algorithm 2 Pa-Naive-Prob
Input: a bad tree T = (N, {pi}, {ci})

1: for all node i ∈ N in reverse breadth-first-search order do
2: if node i is a leaf node then
3: s(i) = pi; mark node i /* s(i) denotes the score of i */
4: else if node i is a non-leaf node then
5: if pi >

∏

j∈Ci
s(j) then /* Ci = set of child nodes of i */

6: s(i) = pi; mark node i
7: else
8: s(i) =

∏

j∈Ci
s(j)

9: Ipnp = φ; Q = φ; enqueue root node of T to Q
10: while Q 6= φ do
11: dequeue node i from Q
12: if node i is marked then
13: Ipnp = Ipnp ∪ {i}
14: else
15: enqueue all child nodes of i to Q
16: return Ipnp

We also implement a candidate-based heuristic for inferring
multiple nodes termed Pa-Cand, which returns the minimum-
sized subset Ipc of candidate nodes that cover all bad paths in a
bad tree. The algorithm of finding Ipc is shown in Algorithm 3,
whose complexity is Θ(|N |3) due to the search of candidate
nodes.

Algorithm 3 Pa-Cand
Input: a bad tree T = (N, {pi}, {ci})

1: determine the set of candidate nodes in T
2: Ipc = φ; Q = φ; enqueue root node of T to Q
3: while Q 6= φ do
4: dequeue node i from Q
5: if node i is a candidate node then
6: Ipc = Ipc ∪ {i}
7: else
8: enqueue all child nodes of i to Q
9: return Ipc

C. Multiple Node Inference for Multiple Trees

A limitation of the above heuristics is that a single logical
tree only includes a subset of physical components in the
entire network. In order to cover more physical components,
it is important to conduct the inference algorithm on multiple
bad trees, which collectively form a directed acyclic graph.
In general, finding a minimum subset of nodes that cover a
general set of paths can be viewed as a set-cover problem,
which is NP-hard [8]. Therefore, we consider two simple
heuristics termed Mt-Pa-Naive-Prob and Mt-Pa-Cand (where
“Mt” stands for “multiple trees”), which respectively call Pa-
Naive-Prob and Pa-Cand independently on each of the bad
trees and return the union of the results.
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(a) pi ∼ U(0, 1), ci = 1 (b) pi = 0.1, ci ∼ U(0, 1) (c) pi ∼ U(0, 1), ci ∼ U(0, 1)

Fig. 10. Proportions of correct instances in which Cand-Prob, Cand-Cost, and Cand-Pot, start with a best node.

VI. EXPERIMENTS IN LARGE-SCALE NETWORKS

In this section, we evaluate via simulation the heuristics
described in Section V in correcting faulty nodes in large-
scale networks.

A. Experimental Setup

We consider the router-level Barábasi-Albert model [3] with
200 routers and 397 links. We use the BRITE generator [17]
to construct 10 topologies with random node placement and
random link weights. Each topology is further assigned 20 sets
of parameters using different seeds, leading to a total of 200
instances. To demonstrate how to repair faults across different
layers, we are interested in monitoring routers as well as links.
In each of the instances, each router and link is assigned a
failure probability pi and a checking cost ci based on three
distributions: (a) pi ∼ U(0, 0.2) and ci = 1, (b) pi = 0.1 and
ci ∼ U(0, 1), as well as (c) pi ∼ U(0, 0.2) and ci ∼ U(0, 1),
where U(u1, u2), as defined in Section III, denotes the uniform
distribution between u1 and u2.

To construct a logical tree from a physical topology (see
Section II), we first create a shortest-path tree rooted at a
randomly selected router based on the given link weights, and
then randomly choose from the shortest-path tree a subset of K

paths to be included in the logical tree. Our experiments will
study the results with different values of K. For the heuristics
that have multiple logical trees, we simply repeat the logical
tree construction by selecting a random subset of routers to
be the roots of the logical trees. Finding the efficient set of
trees that cover all network components has been considered
in [1], [4] and is beyond the scope of this paper.

Given a single or multiple logical trees, we simulate the
faults by letting each router and link fail independently with
its assigned failure probability. To ensure that the inference
algorithm is actually executed, we require that at least one
bad node resides in a logical tree. Given a logical tree, we first
retain only the bad paths and form a bad tree. We then check
the node (or nodes) returned from the inference algorithm
that is implemented using different heuristics. For any located
bad node, we “repair” it by switching it to a good node.
We repeatedly update the set of bad paths and execute the
inference algorithm until all bad nodes are repaired.

Due to the large network size, we cannot apply the brute-
force inference algorithm in Algorithm 1 to determine the
proportion of correct identification as in Sections III and IV.

Therefore, our experiments mainly focus on two metrics to
evaluate our heuristics:

• Total checking cost, the sum of costs of checking the node
(or nodes) returned by the inference algorithm until all
bad nodes are repaired.

• Number of rounds, the number of times the inference
algorithm is executed until all bad nodes are repaired.

B. Experimental Results

In the following results, each data point is averaged over
200 instances and is plotted with its 95% confidence interval.

Experiment 1 (Comparison of single-tree-based heuris-
tics): Figure 11 shows the performance of Naive-Prob, Cand-
Pot, Pa-Naive-Prob, and Pa-Cand versus K, the number of
paths that are included in a logical tree. As K increases,
more nodes are being monitored, and hence the total checking
costs of all heuristics increase as well. We note that the
distributions of pi and ci can influence the difference between
the total checking costs of the naive heuristics (i.e., Naive-
Prob and Pa-Naive-Prob) and candidate-based heuristics (i.e.,
Cand-Pot and Pa-Cand). When pi is varied and ci is fixed (see
Figure 11(a)), both naive and candidate-based heuristics have
nearly identical total checking cost. However, the candidate-
based heuristics reduce the total checking costs of the naive
heuristics by 21-25% when pi is fixed and ci is varied (see
Figure 11(b)), and by 9-11% when both pi and ci are varied
(see Figure 11(c)). This demonstrates the competence of the
candidate-based heuristics when the physical components have
varying checking costs (see Section II).

We also note that Naive-Prob and Cand-Pot, the sequential
heuristics that infer one node at a time, take more rounds
to execute the inference algorithm as K grows. On the
other hand, Pa-Naive-Prob and Pa-Cand, which return multiple
nodes at a time, significantly reduce the number of rounds ,
while only slightly increasing the total checking cost (by less
than 1% in general) as compared to their respective sequential
heuristics. Furthermore, both Pa-Naive-Prob and Pa-Cand take
a similar number of rounds to execute the inference algorithm,
with less than one round of difference.

Experiment 2 (Comparison of multi-tree-based heuris-
tics): Figure 12 illustrates the performance of Mt-Pa-Naive-
Prob and Mt-Pa-Cand with respect to the number of logical
trees, where we fix K = 20 in each logical tree. Similar to
Experiment 1, Mt-Pa-Cand can reduce the total checking cost
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Fig. 11. Experiment 1: Comparison of Naive-Prob, Cand-Pot, Pa-Naive-Prob, and Pa-Cand in terms of the total checking cost (see (a) to (c)) and the number
of rounds (see (d) to (f)), where K = 5, 10, 15, 20, 25, and 30. For clarity of presentation, data points are shifted slightly on x-axis.
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Fig. 13. Incorporating inaccuracies in the logical tree construction.

of Mt-Pa-Naive-Prob, for example, by 17-21% when pi is fixed
and ci is varied (see Figure 12(b)). Also, both Mt-Pa-Naive-
Prob and Mt-Pa-Cand call the inference algorithm with about
the same number of rounds.

Summary: We show that the candidate-based heuristics
can decrease the total checking cost of the naive heuristics
that focus on most likely faults, especially when the physical
components have varying checking costs. Also, multiple node
inference can speed up the fault correction process, with only
a slight increase in the total checking cost as compared to
single node inference.

VII. INCORPORATING INACCURACIES

It is possible that the end-to-end measurements of our
inference approach are inaccurate in distinguishing between
good and bad paths, for example, due to errors in modeling
physical components and defining anomalous behaviors (see
Section II). In [12], [22], such inaccuracies are considered and
augmented in a Bayesian belief network that is tailored for
fault localization. In this section, we study how to incorporate
inaccuracies into our inference approach.

We focus on two particular types of inaccuracies: false
positive alarm, in which a good path is incorrectly determined
to be a bad path, and false negative alarm, in which a
bad node is incorrectly determined to be good node. False
positive alarms can be caused by the presence of other faulty
physical components that have not been included in the path
construction, while false negative alarms can occur when some
nodes experience different types of faults that are not described
by the anomalous behavior that is being considered.

We incorporate false positive and negative alarms into the
logical tree construction (see Section II) as shown in Figure 13.
To model the false positive alarm of a path, we include an
alarm node i as the leaf node of the path, where pi now refers
to the probability of triggering a false positive alarm on that
path. If a candidate-based heuristic is used for the best node
inference, then we set ci to be a sufficiently large value so that
the alarm node has a very small potential and all other nodes
that correspond to physical components will be examined first.
On the other hand, to model the false negative alarm of a node
j that corresponds to a physical component, we replace the
failure probability of node j with pj(1− qj), where pj is the
original failure probability of node j, and qj is the probability
of triggering a false negative alarm on node j.

VIII. RELATED WORK

Fault diagnosis is an important topic in network manage-
ment (see survey in [21]). For example, the codebook approach
[24] and the Bayesian approach [14] consider a deterministic

setting where network faults are equally likely to occur. To
address probabilistic faults, [12], [13], [22] seek to localize the
most probable subset of faults given the observed symptoms.
Katzela and Schwartz [13] show that such a problem is
generally NP-hard. In view of this, Steinder and Sethi [22]
formulate the problem based on bipartite belief networks and
propose efficient techniques on localizing end-to-end multi-
layer failures. Kandula et al. [12] propose to infer the most
likely faulty IP links with the assumption of significantly small
failure probabilities. All these schemes focus on localizing
faults. In this paper, in addition to probabilistic fault localiza-
tion, we take the subsequent step of repairing faults as well.
We show that checking first the most likely faults does not
give optimal results in general.

Fault correction has also been studied extensively in relia-
bility engineering (see survey in [15]). The work that is closest
to ours is in [11], [23], whose objective is also to minimize
the cost of correcting all faulty units. However, the optimality
assumes a series system, which is equivalent to a single path
in a network setting. In contrast, we consider a routing tree
whose paths are shared and dependent.

IX. CONCLUSIONS

We presented the optimality results for an end-to-end ap-
proach to diagnose and repair multi-layer network faults at
minimum expected cost. We showed that checking first the
node that is most likely faulty or has the least checking cost
does not necessarily minimize the expected cost of correcting
all faulty nodes. Instead, we constructed a potential function
for identifying the candidate nodes, one of which should be
first checked by an optimal strategy. Due to the difficulty
of finding the best node from the set of candidate nodes,
we proposed several efficient heuristics that are suitable for
correcting fault nodes in large-scale networks. We showed that
the candidate node with the highest potential is actually the
best node in at least 95% of time, and that checking first the
candidate nodes can reduce the cost of correcting faulty nodes
as compared to checking first the most likely faulty nodes.

REFERENCES

[1] M. Adler, T. Bu, R. Sitaraman, and D. Towsley. Tree Layout for Internal
Network Characterizations in Multicast Networks. In Proc. of NGC’01,
2001.

[2] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly
Secure and Efficient Routing. In Proc. of IEEE INFOCOM, March 2004.
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APPENDIX I
CALCULATION OF TWO QUANTITIES

A. Conditional Failure Probabilities

To compute the conditional failure probability of a node
given a bad tree T , we first denote the nodes in T by 1 to |N |
in breadth-first-search order. Let Ti be the subtree rooted at
node i, for 1 ≤ i ≤ |N |. Thus, T = T1. Let Ci be the set such
that k ∈ Ci if node k is a child of node i. Let Xi be the event
that node i is bad (i.e., Pr(Xi) = pi). Let Ti be the event that
subtree Ti is bad. Thus, the conditional failure probability of
node i given a bad tree T is:

Pr(Xi|T1) =
Pr(T1|Xi)pi

Pr(T1)
(by Bayes’ rule),

where

Pr(Ti) = pi + (1 − pi)
∏

k∈Ci
Pr(Tk), ∀ i ∈ [1, |N |],

Pr(Ti|Xj) =

{

Pr(Ti), if i > j
1, if i = j

pi + (1 − pi)
∏

k∈Ci
Pr(Tk|Xj), if i < j.

The idea here is that subtree Ti is a bad tree if (i) node i

is bad or (ii) node i is good and each of its child subtrees is
a bad tree. Using dynamic programming [8], we can compute
the conditional failure probability of a node in Θ(|N |2) time.

B. Expected Cost of a Diagnosis Sequence

Let S = 〈l1, l2, · · · , l|N |〉 be a diagnosis sequence on T =
(N, {pi}, {ci}). Let T be the event that T is a bad tree. Let
T D

li
be the event that the subtree rooted at node li is a bad tree

after nodes l1, · · · , li−1 have been examined (i.e., checked or
skipped). Let AD

li
be the event that every ancestor j of node li,

such that j ∈ {li+1, · · · , l|N |} (i.e., node j is examined after
node li), is a good node.

When node li is to be examined, nodes l1, · · · , li−1 are
known to be good nodes. To account for the presence of any
known good node i in a bad tree T during the calculation, we
can set its failure probability pi = 0. Thus,

Pr(T D
li

) = Pr(Tli |pl1 = · · · = pli−1
= 0), and

Pr(AD
li

) = Pr(Ali |pl1 = · · · = pli−1
= 0),

where Tli is the event that the subtree rooted at node li is bad,
and Ali is the event that all ancestors of node li are good.

If the subtree rooted at node li remains a bad tree or at least
one of the ancestors of node li is a bad node, then node li
still lies on bad paths only and it has to be checked. Thus,

Pr(node li is checked
∣

∣T , nodes l1, · · ·, li−1 known to be good)

=Pr(T D
li

∪ AD
li
|T ).

Suppose that T is a bad tree. Thus, the expected cost of S

given that T is a bad tree is:
∑n

i=1
cli Pr(T D

li
∪ AD

li
|T )

=
∑n

i=1
cli

[

1 − Pr(T D
li

∩ AD
li

∣

∣T )
]

=
∑n

i=1
cli

[

1 − Pr(AD
li

∣

∣T ) + Pr(T D
li

∩ AD
li

∣

∣T )
]

=
∑n

i=1
cli

[

1 −
Pr(T

∣

∣AD
li

) Pr(AD
li

)

Pr(T )
+

Pr(T

∣

∣T D
li

,AD
li

) Pr(T D
li

) Pr(AD
li

)

Pr(T )

]

.

Note that T D
li

depends on node li and its descendants, while
AD

li
depends on the ancestors of node li. Thus, T D

li
and AD

li

are independent. We can obtain Pr(T
∣

∣AD
li

) by setting pj = 0
for every ancestor j of node li such that j ∈ {li+1, · · · , l|N |}.
and computing Pr(T ) using the modified failure probabilities.
We can compute Pr(T

∣

∣T D
li

,AD
li

) in the same way, except
that we additionally set pli = 1 for the event T D

li
. Also,

we can compute Pr(T D
li

) and Pr(AD
li

) as previously stated.
Computing Pr(T ) takes Θ(|N |2) time. Thus, the complexity
of computing the expected cost is Θ(|N |3).

APPENDIX II
PROOFS

Part of the notation used in the proofs is defined in Sec-
tion IV. In addition, we say nodes i and j are ancestrally
related if node i is either an ancestor or descendant of node
j (i.e., there exists a path in T that covers both nodes i

and j), or ancestrally unrelated otherwise. To illustrate the
ancestral relationships within a tree, we use the tree in Figure 5
as an example. Node 1 (resp. node 3) is an ancestor (resp.
descendant) of node 3 (resp. node 1). Node 3 is ancestrally
related to node 1, but is ancestrally unrelated to node 4.

Sketch of Proof of Theorem 1: Consider two diagnosis
sequences Sj = 〈j, k, l3, · · · l|N |〉 and Sk = 〈k, j, l3, · · · , l|N |〉.
If nodes j and k are ancestrally unrelated, then both Sj and Sk

have the same expected cost since having checked one node
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has no impact on whether we will check another node on a
different path.

On the other hand, if nodes j and k are ancestrally related,
then given that T is a bad tree and that node j (resp. k)
has been checked in Sj (resp. Sk), we skip node k (resp.
j) and save cost ck (resp. cj) if and only if checking node j

(resp. k) reveals a good path in T . This requires the following
conditions to hold: (i) node j (resp. k) is bad, (ii) node k

(resp. j) is good, and (iii) there exists a path Wjk containing
nodes j and k such that all nodes other than nodes j and k

on Wjk are good. Let Wjk be the event that condition (iii)
holds. Note that Wjk are independent of Xj and Xk since Wjk

corresponds to the nodes other than nodes j and k. Thus,

E[cost of Sj |T ] − E[cost of Sk|T ]

= −ck Pr(Xj ,Xk,Wjk|T ) + cj Pr(Xj ,Xk,Wjk|T )

= 1
Pr(T )

[

− ck Pr(T |Xj ,Xk,Wjk) Pr(Xj ,Xk,Wjk) +

cj Pr(T |Xj ,Xk,Wjk) Pr(Xj ,Xk,Wjk)
]

(by Bayes’ rule)

=
cjck Pr(Xj) Pr(Xk) Pr(Wjk)

Pr(T )

[

−
Pr(T |Xj ,Xk,Wjk) Pr(Xj)

cj Pr(Xj)
+

Pr(T |Xj ,Xk,Wjk) Pr(Xk)

ck Pr(Xk)

]

(since Xj , Xk, and Wjk are independent)

=
cjck Pr(Wjk) Pr(Xj) Pr(Xk)

Pr(T ) [−φ(j, T ) + φ(k, T )] · · · (*).

To understand (*), without loss of generality, let node j be
an ancestor of node k. The event Wjk implies that all ancestors
of node j are good, and the event Wjk∩Xj implies that all an-
cestors of node k (including node j) are good. Given that node
j (resp. node k) is bad, whether its descendants are good has
no impact on Pr(T |Xj ,Aj) (resp. Pr(T |Xk,Ak)). Therefore,
Pr(T |Xj ,Aj) = Pr(T |Xj ,Xk,Wjk) and Pr(T |Xk,Ak) =
Pr(T |Xj ,Xk,Wjk).

From (*), in order that node j should be checked before
node k, the expected cost of Sj should be no greater than
that of Sk, or equivalently, φ(j, T ) ≥ φ(k, T ). Therefore, it is
intuitive to first check a node with high potential.

Proof of Corollary 1: Note that if T is a single path, then
Pr(T |Xi,Ai) = 1 for all i. Thus, the best node will be the
only candidate node whose potential is maxi

pi

ci(1−pi)
.

Proof of Corollary 2: Let node r be the root node. Then
Pr(T |Xr,Ar) = 1. Thus, its potential φ(r, T ) is no less than
that of any other non-root node in T . Therefore, node r is the
only candidate node in T and is hence the best node to be
first checked.

Proof of Corollary 3: Consider a two-level tree T whose
root node r is attached to |N | − 1 nodes. If node r has
the maximum conditional failure probability given that T

is a bad tree, then for every leaf node i 6= r, we have

Pr(Xr|T ) ≥ Pr(Xi|T ) ⇔ pr

Pr(T ) ≥
prpi+(1−pr)

∏

j 6=r
pj

Pr(T ) ⇔

pr

c(1−pr) ≥

∏

j 6=r
pj

c(1−pi)
⇔ φ(r, T ) ≥ φ(i, T ). Thus, the root node

also has the maximum potential, implying that it is the only
candidate node. By Theorem 1, it is also the best node.

On the other hand, suppose that some leaf node k 6= r has
the maximum conditional failure probability. Suppose the con-
trary that the optimal diagnosis sequence S∗ does not start with
node k. Hence, let S∗ = 〈l1, l2, · · · , lj−1, k, lj+1, · · · , l|N |〉.

We want to show that moving node k to the front of S∗ does
not increase the expected cost of S∗. We consider two cases:

• Case 1: Node l1 is the root node r. Consider the diagnosis
sequence S′ = 〈k, r, l2, · · · , lj−1, lj+1, · · · , l|N |〉. Note
that for any node lm, where m = 2, · · · , j − 1, j +
1, · · · , |N |, if it is checked (resp. skipped) in S∗, it will
also be checked (resp. skipped) in S ′, and vice versa.
Thus, we skip node r (resp. k) in S ′ (resp. S∗) and
save cost c if and only if node r (resp. k) is good.
The difference between the expected cost in S ′ and S∗

is E[cost of S′|T ] − E[cost of S∗|T ] = −cPr(Xr|T ) +
cPr(Xk|T ) ≤ 0, since Pr(Xk|T ) is maximum.

• Case 2: Node l1 6= r is a leaf node. In S∗, we claim
that node l2 is the root node r. After l1 is checked,
the next node in S∗ will be a candidate node in T ′ =
(N, {pi|pl1 = 0}, {ci}). Since every leaf node in T ′

has zero potential, the root node r is the only candidate
node, and hence l2 = r. We then construct a diagno-
sis sequence S′′ = 〈k, r, l1, l3, · · · , lj−1, lj+1, · · · , l|N |〉.
Similar to Case 1, the difference of the expected cost
in S′′ and S∗ is E[cost of S′′|T ] − E[cost of S∗|T ] =
−cPr(Xl1 |T ) + cPr(Xk|T ) ≤ 0, since Pr(Xk|T ) is
maximum.

Since there exists a diagnosis sequence that starts with node
k and has no greater expected cost than does S∗, node k is a
best node.

APPENDIX III
FORMAL PROOF OF THEOREM 1

In this section, we provide a formal proof of Theorem 1.
We first prove the following property.

Property 1: For any pair of non-root nodes i and j in a tree
T , suppose that a non-root node k is an ancestor of both i and
j. Then φ(i, T ) ≥ φ(j, T ) if and only if φ(i, Tk) ≥ φ(j, Tk).

Proof: We define Bi to be the sibling set of node i such
that b ∈ Bi if node b is either a sibling of node i or a
sibling of one of the ancestors of node i. It follows that
Pr(T |Xi,Ai) =

∏

b∈Bi
Pr(Tb). Thus, by dividing both sides

of φ(i, T ) ≥ φ(j, T ) by Pr(T |Xk,Ak) =
∏

b∈Bk
Pr(Tb) (note

that Bk ⊂ Bi), we have φ(i, Tk) ≥ φ(j, Tk). Based on the
similar arguments, the converse is trivially true.

Remark: If node i is a candidate node in a tree T , then it
is also a candidate node in a subtree Tk, where node k is an
ancestor of node i.

A. Proof of Theorem 1

Note that the definitions of “potential” and “candidate
nodes” do not assume that a given logical tree T is a bad tree.
In this proof, we consider a general logical tree T , which may
or may not be a bad tree. Thus, the proof should hold for three
cases: (i) it is conditioned on T , the event that T is a bad tree
(i.e, each path in T must be bad), (ii) it is conditioned on T ,
the event that T is not a bad tree (i.e., some path in T must
be good), and (iii) it is unconditional (i.e., each path in T can
be either good or bad).

We prove by induction on n that for any tree T with
n ≥ 1 nodes that have positive failure probabilities, i.e.,
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T = (N, {pi|pi > 0}, ci) and |N | = n, there always exists an
optimal diagnosis sequence that starts with a candidate node,
regardless of if T is or is not a bad tree.

Base case: If n = 1, then the single node in the only
diagnosis sequence is clearly a candidate node.

Induction hypothesis: There exists an optimal diagnosis
sequence that starts with a candidate node for any routing tree
T with no more than h ≥ 1 nodes that have positive failure
probabilities, regardless of if T is or is not a bad tree.

Induction step: Consider a tree T = (N, {pi}, {ci}) with
n = h + 1 nodes. We first consider the case where T is
conditioned on being a bad tree.

Given a bad tree T , suppose the contrary that an optimal
diagnosis sequence Sj = 〈j, k, l3, · · · , ln〉 starts with a non-
candidate node j. After node j has been examined, T is
reduced to T ′ = (N, {pi|pj = 0}, {ci}). By induction
hypothesis, the next node k in Sj is a candidate node in T ′,
which may or may not be a bad tree. We swap nodes j and
k and form Sk = 〈k, j, l3, · · · , ln〉. We consider the following
three cases.

Case 1: Node k is ancestrally unrelated to node j (i.e., nei-
ther an ancestor or a descendant of j). Consider a path W that
contains node k but not node j such that φ(k, T ′) ≥ φ(k̂, T ′)

for any node k̂ on W . Note that φ(k, T ) = Pr(Tm)

Pr(Tm|Xj)
φ(k, T ′),

where m is an element of the sibling set Bk (see the proof
of Property 1) such that node m is an ancestor of node
j but not of node k. If node k̂ is a common ancestor of
both nodes j and k, then φ(k̂, T ) = φ(k̂, T ′). Otherwise,
φ(k̂, T ) = M ′′′φ(k̂, T ′). Since M ′′′ > 1, φ(k, T ) ≥ φ(k̂, T )
for any node k̂ on W . Thus, node k remains a candidate node
in T . Furthermore, both Sj and Sk have the same expected cost
since checking one node has no impact on whether another
node has been checked if both nodes are ancestrally unrelated.
Therefore, Sk, which starts with a candidate node k in T , is
an optimal diagnosis sequence.

Case 2: Node k is a descendant of node j. It implies that
every path that covers node k must also cover node j. Since
node k is a candidate node in T ′, there exists a path W that
contains nodes j and k such that φ(k, T ′) ≥ φ(k̂, T ′) for any
node k̂ 6= j on W . Note that checking node j (i.e., setting
pj = 0) does not change Pr(T |Xk,Ak) and Pr(T |X

k̂
,A

k̂
),

and hence both φ(k, T ) and φ(k̂, T ) remain unchanged. It
follows that φ(k, T ) ≥ φ(k̂, T ). As node j lies on path W

in T and is not a candidate node, node k must be a candidate
node for the path W in T .

The difference d between the expected costs of Sj and Sk

lies on the first two nodes. Let Dj and Dk be the events that we
check nodes j and k, respectively, and that the complements
Dj and Dk are the events that we skip nodes j and k,
respectively. Thus, d is given by:

d = E[cost of Sj |T ] − E[cost of Sk|T ]
= cj Pr(Dj |T ) + ck Pr(Dk|Dj , T )−

ck Pr(Dk|T ) − cj Pr(Dj |Dk, T ),

where Pr(Dk|Dj , T ) (resp. Pr(Dj |Dk, T )) is the probability
that node k (resp. j) will be checked given that node j (resp.
k) has been checked first and T is a bad tree.

Now, suppose that Tj , denoting the subtree rooted at node
j, is not a bad tree. Then node j will be checked if and only
if at least one ancestor of node j is a bad node, regardless
of whether node k has been checked. Also, node j must be
a good node, and thus first checking node j does not alter
the likelihood of whether node k will be checked. Therefore,
given that Tj is not a bad tree, d equals zero.

Thus, we can condition on Tj , denoting the event that Tj is
a bad tree. Note that if Tj is a bad tree, then both nodes j and
k must be checked, i.e., Pr(Dj |Tj , T ) = Pr(Dk|Tj , T ) = 1.
As a result, d is reduced to:

d= Pr(Tj)
[

cj(1 − Pr(Dj |Dk, Tj , T )) − ck(1 − Pr(Dk|Dj , Tj , T ))
]

= Pr(Tj)
[

cj Pr(Dj |Dk, Tj , T ) − ck Pr(Dk|Dj , Tj , T )
]

.

Given that Tj is a bad tree and that node j (resp. k) has been
checked in Sj (resp. Sk), we skip node k (resp. j) and save cost
ck (resp. cj) if and only if checking node j (resp. k) reveals a
good path in T . This requires the following conditions to hold:
(i) node j (resp. k) is bad, (ii) node k (resp. j) is good, and
(iii) there exists a path Wjk containing nodes j and k such
that all nodes other than nodes j and k on Wjk are good. Let
Wjk be the event that condition (iii) holds (note that Wjk are
independent of Xj and Xk since Wjk refers to the nodes other
than nodes j and k). Thus,

d = Pr(Tj)
[

cj Pr(Xk,Xj ,Wjk|Tj , T ) − ck Pr(Xj ,Xk,Wjk|Tj , T )
]

= cj Pr(Xk,Xj ,Wjk, Tj |T ) − ck Pr(Xj ,Xk,Wjk, Tj |T )

= 1
Pr(T )

[

cj Pr(T |Xk,Xj ,Wjk, Tj) Pr(Xk,Xj ,Wjk, Tj)−

ck Pr(T |Xj ,Xk,Wjk, Tj) Pr(Xj ,Xk,Wjk, Tj)
]

(by Bayes’ rule).

We claim that Pr(T |Xj ,Aj) = Pr(T |Xk,Xj ,Wjk, Tj) =
Pr(T |Xj ,Xk,Wjk, Tj), since the event Wjk ∩Tj implies that
the ancestors of nodes j are all good and that every path that
contains node j is a bad path, as does the event Xj ∩Aj . This
holds regardless of whether node k, which is a descendant of
node j, is good or bad. Thus, d becomes:

d = M
[

cj Pr(Xk,Xj ,Wjk, Tj) − ck Pr(Xj ,Xk,Wjk, Tj)
]

(where M =
Pr(T |Xk,Xj ,Wjk,Tj)

Pr(T )
=

Pr(T |Xj ,Xk,Wjk,Tj)

Pr(T )
)

= M ′
[

cj Pr(Tj |Xk,Xj ,Wjk) Pr(Xk,Xj ,Wjk)−

ck Pr(Tj |Xj ,Xk,Wjk) Pr(Xj ,Xk,Wjk)
]

(where M ′ = M
Pr(Tj)

, and by Bayes’ rule)

= M ′′
[

Pr(Tj |Xk,Xj ,Wjk) Pr(Xk)

ck Pr(Xk)
−

Pr(Tj |Xj ,Xk,Wjk) Pr(Xj)

cj Pr(Xj)

]

(where M ′′ = M ′cjck Pr(Wjk) Pr(Xj) Pr(Xk), and note
that Xj , Xk, and Wjk are independent))

= M ′′ [φ(k, Tj) − φ(j, Tj)] . · · · (*)

To understand (*), recall that node j is an ancestor of
node k. The event Wjk ∩ Xj implies that all ancestors
(including node j) of node k are good and that there exists
a path whose nodes below node k are all good. Given
that node k is bad, whether the descendants of node k are
good nodes has no effect when evaluating Pr(T |Xk,Ak).
Thus, Pr(Tj |Xk,Xj ,Wjk) = Pr(Tj |Xk,Ak). In addition,
Pr(Tj |Xj ,Xk,Wjk) = Pr(Tj |Xj ,Aj), which equals one.

Since node k is a candidate node in T , φ(k, T ) ≥ φ(j, T ).
By Property 1, φ(k, Tj) ≥ φ(j, Tj). It follows that d ≥ 0, and
hence Sk, which starts with a candidate node k in T , has no
higher expected cost than does Sj .
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Case 3: Node k is an ancestor of node j. If node k is
a candidate node in T ′ with respect to a path that contains
node j, then we apply Case 2, except that we condition on
Tk instead on Tj , where Tk denotes the event that Tk is a bad
tree. We can show that node k is a candidate node in T and
that Sk has no higher expected cost than does Sj .

However, if node k is not a candidate node in T ′ with
respect to any path that contains node j, it is possible that node
k has a smaller potential (with respect to T ) than does node
j. In this case, we scan Sj = 〈j, · · · , li−1, li, · · ·〉 and pick the
first node li that satisfies either one of the following: (i) node
li is a candidate node with respect to a path that covers node j

(and hence is ancestrally related to node j), or (ii) node li is a
candidate node that is ancestrally unrelated to node j and it has
a higher potential than do its ancestors when they are checked
(note that checking the ancestors of node li does not change
the potential of node li, and that these ancestors can be the
candidate nodes with respect to other paths that do not contain
node li). We then swap node li with its previous node li−1 in
Sj . If condition (i) is satisfied, then there are three cases: (a)
node li−1 is ancestrally unrelated to node li, in which case
swapping nodes li−1 and li does not change the expected cost
of Sj , (b) node li−1 is ancestrally related to node li but not
node j, or (c) node li−1 is ancestrally related to both nodes li
and j. In (b), node li−1 has to be a descendant of node li, but
this is not possible because node li−1, which is a candidate
node when it is checked, has a higher potential than does li
and will be picked first by (ii). In (c), node li−1 cannot be a
candidate node with respect to any path that covers all nodes
li−1, li, and j (or it has to be picked first), and thus node li has
a higher potential than does node li−1 before li−1 is checked.
Case 2 shows that swapping nodes li and li−1 does not reduce
the expected cost of Sj . On the other hand, if condition (ii)
is satisfied, then node li−1 cannot be a descendant of node
li, or node li−1 has to be picked first (whose reason is the
same as (b) in condition (i) above). Therefore, we have two
cases: (a) node li−1 is ancestrally unrelated to node li, or (b)
node li is a descendant of node li−1 and has a higher potential
than does li−1 when node li−1 is checked. Again, Case 1 and
Case 2 show that swapping node li−1 and li does not reduce
the expected cost of Sj . By repeatedly swapping node li with
its previous nodes in Sj , we can move node li to the front
of Sj , without increasing the expected cost of Sj . Also, since
li is always swapped with its ancestors or the nodes that are
ancestrally unrelated, from Case 1 and Case 2, node li remains
a candidate node in T .

Cases 1 to 3 of the induction step imply that Sk, which first
tests a candidate node, has no higher expected cost than does
Sj . Note that the analysis above has been conditioned on the
event T that T is a bad tree. Suppose that we now condition
on the event T that T is not a bad tree. In the induction step,
we simply replace the event T with T , and the arguments
still hold (note that in Case 2, our arguments are based on Tj

and Tj rather than T ). On the other hand, if we consider the
unconditional case in which neither T nor T is given, then
we can still apply the above arguments, except that we replace
M by one in Case 2 of the induction step.

By induction, given a routing tree T , there always exists an

optimal diagnosis sequence that starts with a candidate node,
regardless of if T is or is not a routing tree. Since the theorem
only assumes a bad tree, it immediately follows.


