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Abstract—Real-time characterization of traffic anomalies, such
as heavy hitters and heavy changers, is critical for the robustness
of operational networks, but its accuracy and scalability are chal-
lenged by the ever-increasing volume and diversity of network
traffic. We address this problem by leveraging parallelization. We
propose LD-Sketch, a data structure designed for accurate and
scalable traffic anomaly detection using distributed architectures.
LD-Sketch combines the classical counter-based and sketch-based
techniques, and performs detection in two phases: local detection,
which guarantees zero false negatives, and distributed detection,
which reduces false positives by aggregating multiple detection
results. We derive the error bounds and the space and time
complexity for LD-Sketch. We compare LD-Sketch with state-of-
the-art sketch-based techniques by conducting experiments on
traffic traces from a real-life 3G cellular data network. Our
results demonstrate the accuracy and scalability of LD-Sketch
over prior approaches.

I. INTRODUCTION

Characterizing traffic anomalies is important for adminis-

trators to maintain the robustness of a network. There are two

types of anomalies that are of particular interest: flows with

persistently large data volume (known as “heavy hitters”) and

flows with abrupt changes of data volume (known as “heavy

changers”), since they may imply the existence of denial-of-

service attacks, component failures, or service level agreement

violation. Traffic anomalies are detrimental to network robust-

ness and must be detected and suppressed in real-time.

However, today’s IP networks continuously grow in size and

complexity. Thus, characterizing traffic anomalies in real-time

becomes more challenging, particularly in two aspects:

• Enormous key space. The complexity of anomaly detec-

tion is overwhelmed by the number of keys being mon-

itored. For example, 5-tuple network flows are defined

by 104-bit keys (i.e., source/destination IP addresses,

source/destination ports, and protocols). Keeping track of

2104 flow keys can imply huge memory usage.

• Line-rate packet processing. Packet processing must keep

pace with the increasing line rate to meet the real-time

requirement. Conventional single-processor platforms no

longer provide enough computational power to achieve

this goal. To improve scalability, anomaly detection needs

to be performed on distributed packet streams in parallel.

However, providing both accuracy and scalability guaran-

tees becomes challenging when aggregating the detection

results from multiple sources.

Anomaly detection has been extensively studied in the con-

text of data streaming. To deal with the enormous key space,

counter-based techniques (e.g., [10], [16]–[18]) and sketch-

based techniques (e.g., [2], [3], [5]–[9], [11], [13], [14], [20])

propose space-efficient data structures for anomaly detection

and derive error bounds. The counter-based technique uses an

associative array to monitor frequent items and is designed

for heavy hitter detection; the sketch-based technique projects

data items into a subset of buckets in a summary called

sketch and is designed for both heavy hitter and heavy changer

detection. Although theoretically sound, such techniques are

mainly studied and evaluated in the single-processor paradigm.

With the emergence of distributed streaming architectures

(e.g., Flume [1], S4 [19], and Storm [21]), an open issue is

to seamlessly parallelize such techniques to achieve accurate

and scalable anomaly detection.

In this paper, we study the traffic anomaly detection problem

from both theoretical and implementation perspectives. We

propose LD-Sketch, a novel sketching design that combines

the counter-based and sketch-based techniques to accurately

and scalably detect heavy hitters and heavy changers using

distributed architectures. Its main idea is to augment a sketch

in which each bucket uses the counter-based technique to

keep track of anomaly candidates in an associative array. We

modify the counter-based technique to allow the associative

array to be dynamically expandable based on the current

number of anomaly candidates associated with the bucket. LD-

Sketch performs detection in two phases: (i) local detection,

which guarantees no false negatives and identify the anomaly

candidates (including true anomalies and false positives) in

a single compute node called worker, and (ii) distributed

detection, which reduces false positives (with a slight increase

in the false negative rate) by combining detection results from

multiple workers. Thus, not only do we exploit streaming

architectures to improve scalability, but we also use their

distributed nature to improve the detection accuracy.

In summary, we make the following contributions:

• We design LD-Sketch, which enables accurate and scal-

able detection of heavy hitters and heavy changers and

is seamlessly deployable in distributed architectures. We

derive the error bounds, space complexity, and time com-

plexity when LD-Sketch is used in both local detection

(i.e., using a single worker) and distributed detection (i.e.,

using multiple workers).

• We implement and compare LD-Sketch with state-of-the-978-1-4799-3360-0/14/$31.00 c© 2014 IEEE



TABLE I
MAJOR NOTATION USED IN THE PAPER.

Notation Meaning

Defined in Section II

p number of remote sites

q number of workers

[n] key domain

(x, vx) data item with key x and value vx

S(x) sum for key x in an epoch

D(x) difference for key x between two adjacent epochs

U total sum of all keys in an epoch

φ heavy key threshold

H maximum number of heavy keys

r number of rows in a sketch

w number of buckets in one row in a sketch

(i, j) the j-th bucket in row i, where 1≤ i≤r and 1≤j≤w

fi hash function {0, 1, . . . , n− 1} → {1, 2, · · · , w} for row i

Defined in Section III

Vi,j counter value of bucket (i, j) in the sketch

Ai,j associative array in bucket (i, j)

(Ai,j [x] denotes the counter value of key x)

li,j maximum length of array Ai,j

ei,j maximum error for keys in bucket (i, j)

T expansion parameter

k current expansion round (starting from zero)

Slow
i,j (x) lower estimated sum for key x in bucket (i, j)

S
up
i,j (x) upper estimated sum for key x in bucket (i, j)

Di,j(x) estimated difference for key x in bucket (i, j)

ε approximation parameter in local detection

δ upper bound of error probability

Defined in Section IV

γ approximation parameter in distributed detection

d number of workers to which a key is distributed

art sketch-based techniques by conducting trace-driven

experiments using traces from a real-life 3G cellular

network. We show that LD-Sketch achieves higher accu-

racy than other approaches, and improves accuracy and

scalability using multiple workers in a distributed setting.

The rest of the paper proceeds as follows. Section II formu-

lates the heavy hitter/changer detection problem. Sections III

and IV describe and analyze the local and distributed detection

procedures of LD-Sketch, respectively. Section V presents

our trace-driven evaluation results. Section VI reviews related

work, and finally Section VII concludes the paper.

II. PROBLEM FORMULATION

We formulate the problem of heavy hitter/changer detection

(which we collectively call heavy key detection). Table I

summarizes the major notation in this paper.

A. Heavy Key Detection in a Distributed Architecture

We first describe the distributed architecture, as shown in

Figure 1, on which our heavy key detection problem is for-

mulated. Our architecture is based on that of [4]. Specifically,

we consider an architecture with p ≥ 1 remote sites and q ≥ 1
workers. A remote site is the source of a data stream, while

a worker performs heavy key detection based on the streams

Remote Site 1 . . .

Data Source

Remote Site 2 Remote Site p

Worker 1 Worker 2 Worker q. . .

Data Source Data Source

Fig. 1. Distributed architecture for heavy key detection.

from multiple remote sites. The architecture has a bipartite

structure, in which each remote site can connect to all workers,

while there is no communication among the remote sites and

among the workers.

We periodically perform heavy key detection on the ordered

streams of data items from the p remote sites, and we refer to

each time period of detection as an epoch. Each data item is

represented by a tuple (x, vx), where x is the key drawn from

a domain [n] = {0, 1, · · · , n− 1} of size n and vx is a value

associated with x. For example, in network traffic monitoring,

x may refer to a 5-tuple flow, and vx may refer to the byte

counts of the flow. In each epoch, let S(x) be the sum of

values of key x, and D(x) be the absolute difference of S(x)
of key x in the current epoch and in the last epoch. Also, let

U =
∑

x∈[n] S(x) be the total sum of all keys in the epoch.

Our primary goal is to detect the heavy keys whose sums or

differences exceed an absolute-value threshold φ in an epoch.

Specifically, a heavy hitter is a key x whose S(x) ≥ φ, and

a heavy changer is a key x whose difference D(x) ≥ φ. For

ease of presentation, we use the same threshold φ for both

types of heavy keys, although it can be defined differently.

Let H be the maximum number of heavy keys. Thus, for

heavy hitter detection, H = U
φ

; for heavy changer detection,

H = 2U
φ

(i.e., twice the maximum number of heavy hitters

in each epoch). Our space and time complexity results are

expressed in terms of H , as in prior studies in the literature.

A heavy key detection algorithm typically consists of two

procedures: the update procedure, which includes the value of

each arriving data item into a data structure, and the detection

procedure, which examines the data structure at the end of each

epoch and reports the heavy keys. A good heavy key detection

algorithm should introduce (i) small fractions of false positives

(i.e., non-heavy keys being treated as heavy keys) and false

negatives (i.e., true heavy keys that are not reported), (ii) low

space usage of the data structure, and (iii) low time complexity

of both update and detection procedures.

B. Counter-based and Sketch-based Techniques

We describe two main classes of techniques that identify the

heavy keys using space-efficient data structures: the counter-

based and sketch-based techniques.

1) Counter-based Technique: The counter-based technique

aims to keep individual counters for a subset of keys. For some

performance parameter l, an associative array A with at most

l − 1 key-value counters is defined. Suppose that we have a

stream of data items {(x, vx)} and vx = 1 for all x. If x is

in A, its counter value A[x] is incremented by one; otherwise,

if there are empty counters, a new counter is allocated for x
with value initialized to one; if no counter is available, each of



other existing counters has its value decremented by one. We

remove a key from A if its counter value is zero. The value

of each counter remaining in A approximates the true sum of

the corresponding key. Lemma 1 shows the error bound of the

estimated value [18].

Lemma 1. Consider a stream of data items {(x, vx)} and

vx = 1. In the counter-based technique, if x is kept in A, then

A[x] ≤ S(x) ≤ A[x]+ U
l

; if x is not in A, its estimated value

is set to zero and 0 ≤ S(x) ≤ U
l

.

The counter-based technique can identify all heavy hitters

(without false negatives) with threshold exceeding φ = U
l

by

checking if a key has a positive counter value in the associative

array. False positives may exist if some non-heavy hitters

remain in the array and are not removed by the end of the

epoch. To the best of our knowledge, it remains an open issue

how the counter-based technique is applied to heavy changer

detection, mainly because the associative array is not linear

and we cannot combine two arrays of two epochs to describe

the differences of data items.

2) Sketch-based Techniques: Sketch-based techniques pro-

cess a data stream in sub-linear space, and can be used to

identify both heavy hitters and heavy changers. A sketch is

a small summary data structure projected from a large set.

Specifically, we consider a sketch with r rows. Each row i
(1 ≤ i ≤ r) is associated with w buckets and an independent

2-universal hash function fi that hashes a key to one of the

w buckets. We denote the j-th bucket (1 ≤ j ≤ w) in row i
by (i, j). Each bucket (i, j) is associated with a counter value

Vi,j initialized at zero. For each data item (x, vx), the update

procedure hashes key x to one of the buckets in each of the

r rows, and increments the counter value by vx. By Markov’s

inequality, we have the following lemma:

Lemma 2. In sketch-based techniques, Pr{Vi,j ≥ ν} ≤ U
wν

for any sufficient large ν > U
w

.

The sketch-based technique can identify all heavy hitters

(without false negatives) with threshold exceeding φ by check-

ing if the corresponding buckets of all r rows have values

exceeding φ. False positives may exist if non-heavy hitters are

hashed to the buckets with values above the threshold in all

rows. For heavy changer detection, we compute the differences

of counter values of each bucket in the two sketches in

two adjacent epochs. By the linear property of a sketch, the

difference of each bucket is also the sum of the differences of

the keys hashed to the bucket. If a key has differences in the

corresponding buckets of all r rows (or a subset of them [5])

exceeding φ, it is reported as a heavy changer. False negatives

may also exist in heavy changer detection, for example, when

a heavy changer with a positive change greater than φ and

another heavy changer with a negative change less than −φ
are hashed to the same bucket.

C. Our Approach: Overview

This work proposes LD-Sketch, a design that leverages the

distributed architecture to achieve accurate and scalable heavy

Key x

w buckets

r rows

Bucket (i, j) Vi,j
ei,j

(key, value) . . . empty

Maximum Size: li,j

Ai,j

Hash Functions

(key, value)

Fig. 2. Structure of LD-Sketch.

key detection. It follows a sketching design that combines the

classical counter-based and sketch-based techniques. It builds

on two phases: local detection and distributed detection, which

we describe in Sections III and IV, respectively.

III. LOCAL DETECTION

We present the local detection approach of LD-Sketch that

aims to identify the heavy hitters and heavy changers in a

single worker. We also analyze the error bounds, space com-

plexity, and time complexity of the local detection approach.

A. Data Structure

We first describe the data structure of LD-Sketch, as shown

in Figure 2. An LD-Sketch is composed of r rows with w
buckets each. Each bucket (i, j) (where 1 ≤ i ≤ r and

1 ≤ j ≤ w) corresponds to the j-th bucket in row i,
and is associated with a counter value Vi,j , which will be

incremented by vx for every incoming key x. We augment

each bucket (i, j) with three additional components, including:

(i) Ai,j , which denotes the associative array used in counter-

based detection, (ii) li,j , which denotes the maximum length

of Ai,j , and (iii) ei,j , which denotes the maximum estimation

error for the true sums of the keys hashed to bucket (i, j).
Our main idea is to use Ai,j to keep track of the heavy key

candidates that are hashed to the bucket (i, j). Thus, when

we restore all heavy keys in the detection procedure, we only

inspect the tracked heavy key candidates in all Ai,j’s, and this

significantly improves the accuracy and performance of our

heavy key detection. One new extension to the counter-based

technique of [18] is that we dynamically increase li,j (i.e., the

maximum size of Ai,j) as Vi,j increases. We call this approach

dynamical expansion. We define an expansion parameter T
as a function of the threshold φ (see Section III-B), and the

current expansion round k = bVi,j/T c ≥ 0, such that when

k is incremented, we increase li,j . We assume that T > vx
for any data item x, so k is incremented by at most one for

each new data item x. The dynamic expansion approach trades

memory for accuracy, i.e., by keeping track of more high-

valued keys, we can restore the heavy keys more accurately.

Algorithm 1 details how we update a data item to an

LD-Sketch. Initially, Vi,j , li,j , and ei,j are set to zero and

Ai,j is empty for each bucket (i, j) (where 1 ≤ i ≤ r and

1 ≤ j ≤ w). For a data item (x, vx), we hash the key to

some bucket (i, j) via a hash function fi for each row i, and



Algorithm 1 LD-Sketch Update Algorithm

Input: data item (x, vx); expansion parameter T
1: function UPDATEBUCKET(x, vx, i, j)
2: Vi,j = Vi,j + vx
3: if x ∈ Ai,j then
4: Ai,j [x] = Ai,j [x] + vx
5: else if Ai,j has less than li,j counters then
6: Insert x to Ai,j and set Ai,j [x] = vx
7: else
8: k = bVi,j/T c
9: if (k + 1)(k + 2)− 1 ≤ li,j then

10: ê = min(vx,miny∈Ai,j Ai,j [y])
11: ei,j = ei,j + ê
12: for all key y ∈ Ai,j do
13: Ai,j [y] = Ai,j [y]− ê
14: if Ai,j [y] ≤ 0 then
15: Remove y from Ai,j

16: end if
17: end for
18: if vx > ê then
19: Insert x to Ai,j and set Li,j(x) = vx − ê
20: end if
21: else . li,j < (k + 1)(k + 2)− 1
22: add (k + 1)(k + 2)− 1− li,j new counters to Ai,j

23: li,j = (k + 1)(k + 2)− 1
24: Insert x to Ai,j and set Ai,j [x] = vx
25: end if
26: end if
27: end function
28:

29: procedure UPDATE

30: for data item (x, vx) do
31: for row i = 1, 2, . . . , r do
32: j = fi(x)
33: UPDATEBUCKET(x, vx, i, j)
34: end for
35: end for
36: end procedure

call the function UPDATEBUCKET. In essence, the function

UPDATEBUCKET builds on the counter-based technique, with

an extension of enabling dynamic expansion. Specifically, let

us consider bucket (i, j). If key x is in Ai,j , we increment the

counter Ai,j [x] (Line 4); or if Ai,j is not yet full, we insert x
to Ai,j (Line 6). Otherwise, if Ai,j is full, we either decrement

the keys in Ai,j or expand Ai,j . We consider both cases below.

We first describe how we decrement the keys (Lines 10-

20), and the steps are similar to the original counter-based

technique [18]. The decrement value ê is chosen to be the

minimum of vx and the minimum value of Ai,j (Line 10).

We first add ê to ei,j (which will be used in the detection

procedure) (Line 11). Then we decrement all keys in Ai,j by

ê and remove the keys whose values are no more than zero

(Lines 12-17). If vx is not completely decremented, the residue

vx − ê can be inserted to Ai,j , given that the some key must

have been removed (Lines 18-20).

We next describe the dynamic expansion of Ai,j (Lines

22-24). We keep track of the current expansion round k =
bVi,j/T c (Line 8). We set li,j = (k + 1)(k + 2) − 1. When

Ai,j is full, if li,j < (k+1)(k+2)− 1, which happens when

k is incremented (by at most one as stated above), then we

add new counters to Ai,j .

We use LD-Sketch to estimate the true sum S(x) of each

key x. Here, LD-Sketch produces a pair of estimates for each

key x and each bucket (i, j): the lower estimate Slow
i,j (x)

and the upper estimate Sup
i,j (x). If x is in Ai,j , we set

Slow
i,j (x) = Ai,j [x]; otherwise Slow

i,j (x) = 0. Also, we set

Sup
i,j (x) = Slow

i,j (x) + ei,j .

B. Heavy Key Detection

We now explain how we identify heavy hitters and heavy

changers using LD-Sketch.

For heavy hitter detection, we use a single LD-Sketch with

expansion parameter T = φ. At the end of each epoch, we

examine every bucket (i, j) in the sketch. We identify every

bucket (i, j) with Vi,j ≥ φ, and examine the keys kept in Ai,j .

A key x is reported as a heavy hitter if Sup
i,j (x) ≥ φ for all

row i, where 1 ≤ i ≤ r, and j = fi(x).
For heavy changer detection, we maintain two LD-Sketches

for two adjacent epochs. Both sketches set the expansion

parameter T = εφ, where ε ∈ (0, 1] denotes the approximation

parameter that bounds the error rates. At the end of the

second epoch, we identify every bucket (i, j) with Vi,j ≥ φ
in at least one epoch, and examine the keys of Ai,j in

both sketches. We obtain the lower and upper estimates in

the first epoch and those in the second epoch, denoted by

Slow,1
i,j (x), Sup,1

i,j (x), Slow,2
i,j (x), and Sup,2

i,j (x), respectively.

The estimated change is given by Di,j(x) = max{Sup,1
i,j (x)−

Slow,2
i,j (x), Sup,2

i,j (x) − Slow,1
i,j (x)}. A key x is reported as a

heavy changer if Di,j(x) ≥ φ for all row i, where 1 ≤ i ≤ r,

and j = fi(x).

C. Analysis

In this section, we present a theoretical analysis of the

local detection of LD-Sketch as described in Section III-B. We

analyze the error rates, space complexity, and time complexity.

First, Lemmas 3 and 4 describe the range of the estimated

sum of a key.

Lemma 3. Slow
i,j (x) ≤ S(x) ≤ Sup

i,j (x) for every key x and

bucket (i, j).

Proof: From Algorithm 1, S(x) ≥ Ai,j [x] = Slow
i,j (x)

since Ai,j [x] is never incremented due to other items not

belonging to x. Also, Ai,j [x] is decremented by at most ei,j ,

so Ai,j [x] ≥ S(x)− ei,j and hence S(x) ≤ Sup
i,j (x).

Lemma 4. For bucket (i, j), if kT ≤ Vi,j < (k + 1)T ,

S(x) ≤ Slow
i,j (x) + (

k + 1

k + 2
)T.

Sup
i,j (x) ≤ (

k + 1

k + 2
)T + (1−

1

(k + 1)(k + 2)
)S(x).

Proof: By Lemma 3, S(x) ≤ Slow
i,j (x) + ei,j . In each

expansion round κ (0 ≤ κ ≤ k), Ai,j contains li,j = (κ +
1)(κ + 2) − 1 counters, so ei,j is incremented by at most

T
li,j+1 = T

(κ+1)(κ+2) (by Lemma 1 [18]). Thus, before the



expansion round k + 1, ei,j is at most
∑k

κ=0
T

(κ+1)(κ+2) =
∑k

κ=0(
1

κ+1 − 1
κ+2 )T = (k+1

k+2 )T .

For Sup
i,j (x), let e′i,j = S(x) − Slow

i,j (x) be the decrements

of Ai,j [x]. Thus, ei,j − e′i,j corresponds to the decrements of

Ai,j [y] for any y 6= x when Ai,j [x] is not decremented, and

is contributed by the values Vi,j − S(x). Note that ei,j − e′i,j
achieves maximum if Vi,j−S(x) > kT , and its value is at most
∑k−1

κ=0
T

(κ+1)(κ+2) +
Vi,j−S(x)−kT

(k+1)(k+2) ≤ ( k
k+1 )T + T−S(x)

(k+1)(k+2) =

(k+1
k+2 )T − S(x)

(k+1)(k+2) . Since Sup
i,j (x) = Slow

i,j (x) + ei,j =

S(x) + (ei,j − e′i,j). The results follow.

Based on the range of the estimated sum of a key, Lemma 5

argues that our local detection has zero false negatives.

Lemma 5. Using LD-Sketch, if key x has S(x) ≥ φ, it must

be reported as a heavy hitter; if x has D(x) ≥ φ, it must be

reported as a heavy changer.

Proof: By Lemma 4, if S(x) ≥ φ, then for any bucket

(i, j) associated with x, we must have Ai,j [x] = Slow
i,j (x) >

S(x) − T ≥ 0 (note that T = φ for heavy hitter detection

and T = εφ for heavy changer detection). For heavy changer

detection, if D(x) ≥ φ, there must be at least one epoch where

S(x) ≥ 0. Therefore, x must be kept in the associative array

of its corresponding buckets.

By Lemma 3, we know S(x) ≤ Sup
i,j for every bucket (i, j).

If S(x) ≥ φ, then Sup
i,j (x) ≥ φ, so x must be reported as a

heavy hitter. Also, D(x) ≤ Di,j(x) for every bucket (i, j).
If D(x) ≥ φ, then Di,j(x) ≥ φ, so x must be reported as a

heavy changer.

Lemmas 6 and 7 discuss the false positive rates of heavy

hitter detection and heavy changer detection, respectively.

Lemma 6. For key x with S(x) < φ, it is reported as a heavy

hitter with probability at most ( U
wφ

)r.

Proof: In heavy hitter detection, we set T = φ. For key

x with S(x) < φ, there always exists an integer k ≥ 0 such

that S(x) < φ

k+2− 1
k+1

. If Vi,j < (k + 1)φ, by Lemma 4,

Sup
i,j (x) < (k+1

k+2 )φ + (1 − 1
(k+1)(k+2) )S(x) = (k+1

k+2 )φ + (1 −
1

(k+1)(k+2) )
φ

k+2− 1
k+1

= φ. So x is not reported as a heavy

hitter. On the other hand, x is reported as a heavy hitter only

if Vi,j ≥ (k+1)φ for all row i. By Lemma 2, the probability

that Vi,j ≥ (k + 1)φ is at most ( U
w(k+1)φ ). Since the r hash

functions are independent, the probability that x is reported as

a heavy hitter is ( U
w(k+1)φ )

r ≤ ( U
wφ

)r.

Lemma 7. For key x with D(x) < (1− ε)φ, it is reported as

a heavy changer with probability at most ( 2U
wεφ

)r.

Proof: For heavy changer detection, we set T = εφ. For

key x with D(x) < (1 − ε)φ, there always exits an integer

k ≥ 0 such that D(x) < (1− 2ε(k+1
k+2 ))φ. If Vi,j < (k + 1)εφ

in two sketches, by Lemma 4, the error of S(x) in each epoch

is at most k+1
k+2T . So the estimated change is less than (1 −

2(k+1
k+2 )ε)φ+ 2k+1

k+2εφ ≤ φ, implying that x is not reported as

a heavy changer.

Key x is reported as a heavy changer only if Vi,j ≥ (k+1)εφ

in at least one sketch. The probability of Vi,j ≥ (k+1)εφ in at

least one sketch is at most 2U
w(k+1)εφ . Since the r hash functions

are independent, the probability that x is reported as a heavy

changer is at most ( 2U
w(k+1)εφ )

r ≤ ( 2U
wεφ

)r.

We now discuss the space complexity of LD-Sketch.

Lemma 8 shows the worst-cast expectation of li,j .

Lemma 8. The expected value of li,j is given by E[li,j ] =

O( U2

w2T 2 ).

Proof: In the worst case, the associative array Ai,j is

expanded as large as possible, so li,j = O(k2) = O((
Vi,j

T
)2).

Then we consider E[V 2
i,j ], where E[V 2

i,j ] = E[Vi,j ]
2 +

V ar[Vi,j ].
Let Yx be an indicator variable such that Yx = 1 if key x

is hashed to bucket (i, j), or Yx = 0 otherwise. Thus, Vi,j =∑
x∈[n] S(x)Yx. Given that the keys are uniformly hashed to

the buckets, we have E[Yx] = 1/w and V ar[Yx] = w−1
w2 .

Thus, E[Vi,j ] =
U
w

.

Also, since all keys are hashed independently, V ar[Vi,j ] =
V ar[

∑
x∈[n] S(x)Yx] = w−1

w2

∑
x∈[n] (S(x))

2
. Since w is

much smaller than the number of available keys n, we

have w
∑

x∈[n] (S(x))
2

< (
∑

x∈[n] S(x))
2 = U2. Hence

V ar[Vi,j ] = O(w−1
w3 U2).

Thus, combining the two terms, E[li,j ] = O( U2

w2T 2 ).
By Lemma 8, the expected space of an LD-Sketch is the

total size of all buckets of the sketch and all associative arrays,

and is given by O(rw(1 + li,j)) = O(r(w + U2

wT 2 )).
Finally, we examine the time complexity of both update and

detection procedures. To update a data item, we update r buck-

ets of the sketch, and for each bucket (i, j), we perform li,j
operations of the associative array. Thus, the time complexity

for updating a data item is O(r(1 + li,j)) = O(r(1 + U2

w2T 2 )).
For the detection procedure, we enumerate all buckets in an

LD-Sketch and the associative arrays. The time complexity of

detection is O(rw(1 + li,j)) = O(r(w + U2

wT 2 )).
We now propose the parameter selection of LD-Sketch. As

stated above, we set T = φ and T = εφ for heavy hitter and

heavy changer detection, respectively. We express our results

in terms of H , where H = U
φ

for heavy hitter detection and

H = 2U
φ

for heavy changer detection (see Section II-A). The

selection of r and w takes two parameters ε and δ as inputs,

similar to the work [8]. For heavy hitter detection, LD-Sketch

selects w = 2H, r = log 1
δ

. For heavy changer detection, LD-

Sketch selects w = 2H
ε

and r = log 1
δ

.

With the above lemmas and the selected parameters w, r
and T , Theorems 1 and 2 summarize the error bounds, space

complexity, and time complexity of LD-Sketch in heavy hitter

and heavy changer detection, respectively.

Theorem 1. Consider an LD-Sketch with w = 2H, r = log 1
δ

and T = φ. It reports all heavy hitters. A non-heavy hitter

is reported with probability at most δ. The expected space is

O(H log 1
δ
). The expected time complexity of updating a data

item is O(log 1
δ
), and that of detection is O(H log 1

δ
).

Theorem 2. Consider two LD-Sketches with w = 2H
ε
, r =



TABLE II
COMPARISON OF EXISTING WORKS WITH LD-SKETCH.

Method Space Update Time Detect Time

Count-Min [9] O(H
ε
log 1

δ
) O(log 1

δ
) O(n)

Combinatorial Group Testing [8] O(H
ε
logn log 1

δ
) O(logn log 1

δ
) O(H

ε
logn log 1

δ
)

Reversible Sketch [20] O( lognΘ(1)

log logn
) O(logn) O(H

ε
n

3
log log n log logn)

SeqHash [2] O(H
ε
logn log 1

δ
) O(logn log 1

δ
) O(H

ε
logn log 1

δ
)

Fast Sketch [14] O(H
ε
log 1

δ
log nε

H log 1
δ

) O(log 1
δ
log nε

H log 1
δ

) O(H
ε
log3 1

δ
log nε

H log 1
δ

)

LD-Sketch O(H
ε
log 1

δ
) O(log 1

δ
) O(H

ε
log 1

δ
)

log 1
δ

and T = εφ. They report all heavy changers. A non-

heavy changer with difference less than (1 − ε)φ is reported

with probability at most δ. The expected space complexity is

O(H
ε
log 1

δ
). The expected time complexity of updating a data

item is log 1
δ

, and that of detection is O(H
ε
log 1

δ
).

D. Comparison with Other Sketch-Based Techniques

We compare LD-Sketch with state-of-the-art techniques.

In the interest of space, we only consider heavy changer

detection. We focus on the sketch-based techniques, which

provide error bounds with two parameters: 0 < ε ≤ 1 and

0 < δ < 1, such that the keys with true difference outside the

range [(1− ε)φ, (1 + ε)φ)] are detected with error probability

at most δ. Note that LD-Sketch guarantees zero false negatives

for heavy changer detection.

Table II lists the space and time complexity of heavy

changer detection for different approaches, in terms of φ,

ε, δ, and H . Count-Min consumes O(H
ε
log 1

δ
) of memory

but requires O(n) time to recover heavy keys. Combinatorial

Group Testing, Reversible Sketch, SeqHash, and Fast Sketch

aims to reduce the detection time, but they all have a log n
term in the memory complexity to keep track of the heavy

keys inside the sketch structure, so that the heavy keys can

be recovered from the sketch structure. On the other hand,

LD-Sketch has the same memory complexity as Count-Min

by keeping the heavy key candidates in the associative arrays,

while its update and detection time complexity is comparable

to other approaches.

IV. DISTRIBUTED DETECTION

In this section, we elaborate how we perform heavy key

detection in a distributed architecture via LD-Sketch.

A. Design

We design our distributed scheme as follows. We deploy an

LD-Sketch in each of the q workers. Then we partition the

data stream in each of the p remote sites using a two-step

approach. First, for a data item (x, vx), a remote site hashes

key x to a set of d (1 ≤ d ≤ q) workers for some design

parameter d. This selection is deterministic in the sense that

the same set of d workers will always be selected for all data

items with the same key x. Second, the remote site uniformly

selects one of the d workers and forwards it the data item. The

partitioning functions in both steps are identical in all remote

sites. Since each of the d workers receives on average 1/d of

the total value for each key, we set the heavy key threshold

to be (1− γ)φ
d

for some approximation parameter 0 ≤ γ < 1.

Finally, if a key is reported as a heavy key by all the d workers,

then we report the key as a heavy key in our final results.

The design parameter d in our distributed scheme deter-

mines the accuracy of heavy key detection. As d increases,

the false positive rate decreases until some turning point is

reached. We also introduce a small false negative rate, since

some of the d workers may receive less than (1− γ)φ
d

of the

total value if the partition is not perfectly even. We study the

impact of d on the accuracy in the next subsection.

B. Analysis

We conduct theoretical analysis on LD-Sketch in a dis-

tributed setting. Our results are derived from those in Sec-

tion III by choosing new parameters for the distributed scheme.

We first consider the space and time complexity. Suppose

that each LD-Sketch has r rows and w buckets. For the total

sum U and the threshold φ in local detection, we replace

them with U
q

and (1− γ)φ
d

, respectively. We assume that the

worker selection for each data item is independent. By similar

arguments in Lemma 8, the expectation of the term U2 in

the space and time complexity can be replaced with O(U
2

q2
),

assuming that q is far smaller than the number of available

keys n. Using the above arguments, the space complexity

is O(r(w + U2

wT 2q2
)). The time complexity of the update

procedure is O(r(1 + U2

w2T 2q2
)), and that of the detection

procedure is O(r(w+ U2

wT 2q2
)). We set T = (1−γ)φ

d
for heavy

hitter detection and T = (1−γ) εφ
d

for heavy changer detection.

Since 1 ≤ d ≤ q and γ is typically small, we actually reduce

both the space and time complexity of local detection.

For the false positive rate, it can be derived from Lemmas 6

and 7 by replacing U and φ with U
q

and (1−γ)φ
d

, respectively.

Note that the distributed scheme further reduces the false

positive rate since a non-heavy key needs to be reported by

all d workers. Thus, the corresponding false positive rate is

at most ( dU
qw(1−γ)φ )

rd for heavy hitter detection and at most

( 2dU
qw(1−γ)εφ )

rd for heavy changer detection.

We illustrate how the false positive rate varies with different

values of d. As a case study, we pick φ = 0.001U , so there are

at most H = U
φ

= 1000 heavy hitters and H = 2U
φ

= 2000
heavy changers (see Section II-A). We fix γ = 0, ε = 0.5,

r = 5, and w = 4500. Figures 3(a) and 3(b) show the upper

bounds of the false positive rate for heavy hitter and heavy

changer detection, respectively. Note that the upper bound of

the false positive rate can be viewed as the function (cd)rd, for
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Fig. 3. False positive rate of distributed scheme versus d.

some constant c. As d increases, if log(cd) < −1, the upper

bound of the false positive rate decreases; if log(cd) > −1, the

upper bound increases exponentially, as shown in Figure 3(b).

For the false negative rate, Lemma 9 shows that it can be

bounded in a distributed setting.

Lemma 9. For a heavy key x, it will be missed at probability

at most 1− (1− e−
φ
2dγ

2

)d.

Proof: Let X be the random variable of the sum of values

of the heavy key x received by a worker. We first consider

heavy hitter detection. Note that E(X) = S(x)
d

≥ φ
d

. By Cher-

noff bound, Pr{X < (1 − γ)φ
d
} < e−

E(X)
2 (1−(1−γ) dφ

E(X)
)2 ≤

e−
φ
2dγ

2

. This is also the probability of missing the key in a

single worker. Thus, the probability of missing the key in at

least one worker is at most 1− (1− e−
φ
2dγ

2

)d.

For heavy changer detection, we denote X as the difference

of the heavy key x. Since E(X) ≥ φ
d

. We can apply the same

results as above.

Finally, we propose the parameter selection for the dis-

tributed scheme. The selection involves H , φ, ε, δ, and

γ as inputs. For heavy hitter detection, LD-Sketch selects

w = 2dH
(1−γ)q , r = log 1

dδ
, and T = (1−γ)φ

d
; for heavy

changer detection, it selects w = 2dH
(1−γ)qε , r = log 1

dδ
, and

T = (1−γ)εφ
d

. With the selected parameters, the following

theorems summarize the error bounds, space complexity, and

time complexity of the distributed scheme of LD-Sketch.

Theorem 3. Consider an LD-Sketch with w = 2dH
(1−γ)q ,

r = log 1
dδ

, and T = (1−γ)φ
d

. A heavy hitter is missed with

probability at most 1−(1−e−
φ
2dγ

2

)d, while a non-heavy hitter

with the true sum less than (1−γ)φ is reported with probability

at most δ. The expected space complexity is O( dH
q(1−γ) log

1
dδ
).

The expected time complexity of updating a data item is

O(log 1
dδ
), and that of detection is O( dH

q(1−γ) log
1
dδ
).

Theorem 4. Consider two LD-Sketches with w = 2dH
(1−γ)qε ,

r = log 1
dδ

, and T = (1−γ)εφ
d

. A heavy changer is missed

with probability at most 1− (1−e−
φ
2dγ

2

)d, while a non-heavy

changer with the true difference less than (1 − γ)(1 − ε)φ
is reported with probability at most δ. The expected space

complexity is O( dH
q(1−γ)ε log

1
dδ
). The expected time complexity

of updating a data item is log 1
dδ

, and that of detection is

O( dH
q(1−γ)ε log

1
dδ
).

V. EXPERIMENTS

In this section, we present results based on trace-driven

experiments. Our goal is to demonstrate the accuracy and

scalability of LD-Sketch in a distributed setting.

Implementation. We implement a distributed streaming

architecture in C++ with remote sites and workers, each of

which runs as a software process. To eliminate network I/O

overhead in our evaluation, we deploy our architecture in

a multi-core testbed, where a remote site and a worker is

connected via an in-memory ring buffer. We implement LD-

Sketch in each worker.

Testbed and evaluation methodologies. Our testbed is a

multi-core server with 12 physical 2.93GHz CPU cores and

50GB RAM. The server runs Linux 2.6.32. We compile our

code using GCC 4.6 with the -O3 option.

We run our evaluation on real IP packet header traces

from a commercial 3G UMTS network in mainland China

in December 2010 (the same traces as in prior work [12]).

We select the most heavy-loaded six hours of traces for

our evaluation. The traces contain 1.1 billion packets that

account for a total of around 600GB of traffic. We configure

p = 3 remote sites and a number of q workers (varied in our

experiments). We divide the traces into three sub-traces in a

round-robin manner, and each sub-trace is replayed by one of

the three remote sites. Each data item corresponds to a packet,

where the key is set as the 64-bit source and destination IP

address pair and the value is set as the IP payload size. We set

the epoch length for heavy key detection as 10 minutes, while

we also verify the results for different epoch lengths and make

consistent observations. Our results are averaged over all 36

epochs of the six-hour traces.

We compare LD-Sketch with several state-of-the-art sketch-

based techniques, including Combinational Group Testing

(CGT) [8], SeqHash [2], and Fast Sketch [14] in both heavy

hitter and heavy changer detection. We do not consider the

counter-based technique, which only supports heavy hitter

detection (see Section II-B). Note that all the above sketch-

based techniques, except LD-Sketch, are only designed for

local detection (i.e., using one worker).

Metrics. We consider the following metrics:

• Recall: It is the ratio of the number of true heavy keys

returned to the actual number of true heavy keys. A higher

recall means a lower false negative rate.

• Precision: It is the ratio of the number of true heavy keys

returned to the total number of all heavy keys returned

(including true heavy keys and false positives). A higher

precision means a lower false positive rate.

• Update throughput: It is the total IP payload size divided

by the total time to update the data items. Before mea-

surements, we load the traces to memory to eliminate

disk overhead. We also bind the worker processes to CPU

cores to avoid context switching.

In the interest of space, we do not present the throughput

results of the detection procedure. Our experience is that the

detection time is significantly less than that of updating all
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Fig. 4. Experiment 1 (Accuracy for local detection).

data items in one epoch.

Experiment 1 (Accuracy for local detection). In this

experiment, we compare different detection approaches by

configuring them with the same amount of memory. We fix

M = 106 counters in the data structure for each approach. For

CGT, SeqHash, and Fast Sketch, we fix δ = 1
4 and allocate

the M counters to the buckets accordingly. For LD-Sketch,

we estimate the length of an associated array to be the upper

bound 2 U2

w2T 2 (see Section III) and set w that satisfies the

memory requirement.

Figure 4 shows the results. We see that all CGT, SeqHash,

and Fast Sketch have low recall (see Figures 4(a) and 4(c)),

because they need more memory to recover all heavy keys

(see Table II). With insufficient memory, they have high false

negative rates. Fast Sketch has low precision, since it identifies

heavy quotients (i.e., prefixes of heavy keys) and may return

many false positives that match the quotients. On the other

hand, LD-Sketch uses associative arrays to keep track of

frequent items, and have recall exactly equal to 100%. Its

precision is as low as 80% (when φ = 1MB). However, we can

increase its precision with distributed detection (see below).

Experiment 2 (Accuracy for distributed detection of

LD-Sketch). We now study the accuracy of LD-Sketch using

distributed detection. We deploy LD-Sketch in q = 5 workers,

each of which is configured with M
q

counters for heavy

hitter detection and 2M
q

for heavy changer detection, where

M = 106 as in Experiment 1. We fix γ = 0 and vary both d
and φ. Other parameters are the same as in Experiment 1.

Figure 5 shows the results of different values of d. When

d = 1, the result is similar to the local detection in Ex-

periment 1. When d > 1, the heavy hitters can be detected

with 100% recall and precision. For heavy changers, choosing

d = 2 improves the precision of local detection algorithm from

76% to 97% for threshold 1MB, and choosing d = 3 can even

achieve 100% of precision. However, false negatives will be

introduced when d > 1 since we may not partition the data
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items of a key evenly across the workers. Nevertheless, our

evaluation shows that the false negative rate is less than 2%,

which we believe is acceptable in practice.

Experiment 3 (Update throughput). Finally, we measure

the update throughput using a single worker (local detection)

and multiple workers (distributed detection). The parameters

are same as in Experiment 1.

Figure 6(a) presents the update throughput versus the thresh-

old φ when a single worker is used. The throughput changes

marginally as the threshold grows. Note that the main bottle-

neck of the sketch-based algorithms is the hash operations, and

the number of hash operations remains the same as it depends

on the fixed parameter δ. Thus, the throughput is similar for all

φ. From the figure, SeqHash is the slowest because it employs

multiple sketches, in which the hash operations slow down the

overall throughput. LD-Sketch, CGT and Fast Sketch perform

the same number of hash operations, but LD-Sketch requires

more time to update the associative array. When φ = 1MB, it

archives only 72% and 63% the throughput of CGT and Fast

Sketch, respectively.

Nevertheless, we can boost the throughput of LD-Sketch

via parallelization. Figure 6(b) shows the update throughput of

LD-Sketch using multiple workers. We see that the throughput

increases almost linearly as the number of worker grows.

When using five workers, LD-Sketch can reach over 20Gb/s

of throughput. This shows the scalability of LD-Sketch in a

distributed architecture.



Summary of results. LD-Sketch achieves higher accuracy

than many other sketch-based algorithms for heavy key de-

tection. A trade-off is that the speed of LD-Sketch is slightly

slower than other sketch-based algorithms. Using distributed

detection improves the precision of LD-Sketch significantly

while losing no more than 2% recall, and in the meantime,

increases the update throughput.

VI. RELATED WORK

Counter-based techniques. The Misra-Gries algorithm [18]

maintains an associative array of counters and keeps tracks of

frequent items (see Section II-B). Lossy Counting [16] extends

the Misra-Gries algorithm by tracking the estimation error

for each key. Space-Saving [17] improves the time and space

efficiency with some specialized data structure. Probabilistic

Lossy Counting [10] provides probabilistic guarantees on

accuracy and consumes less memory by allowing errors in

Lossy Counting. The above algorithms only work for heavy

hitter detection, but do not address heavy changer detection.

Sketch-based techniques. Count-Sketch [3], [5] and Count-

Min [9] are two well-known sketch algorithms for frequency

estimation. The two algorithms differ in space requirement

and error bounds. A comprehensive study [6] shows that both

algorithms have similar performance in practice. Sketches have

been used in heavy hitter detection (e.g., [11]) and heavy

changer detection (e.g., [13]).

Some studies propose to efficiently restore heavy keys.

Cormode et al. [7] consider a hierarchical structure of keys and

formalize the problem of finding hierarchical heavy hitters.

Deltoids [8] exploits group testing to construct heavy keys

from the extra information of buckets. Reversible Sketch

[20] generalizes this approach by searching smaller divided

keys and constructing heavy keys from the searched results.

SeqHash [2] constructs a sequence of subspaces and searches

each subspace based on the results of prior ones. Fast Sketch

[14] optimizes the space and time complexity of group testing

by a quotient technique. Group testing assumes that there is

exactly one heavy key in a bucket. It leads to a high false

negative rate when multiple heavy keys are hashed to the same

bucket due to constrained memory, as shown in our evaluation.

In contrast, LD-Sketch queries the heavy key candidates in the

buckets and guarantees no false negatives.

Distributed detection. Cormode et al. [4] exploit the linear

property of sketches for distributed detection, and reduce I/O

using a prediction model. Manjhi et al. [15] organize all

workers into a tree structure, in which each level has its

own error parameter to control the detection accuracy. Yi et

al. [22] address the worst-case communication complexity in

distributed streaming. However, the above studies only address

heavy hitter detection, while the distributed detection of LD-

Sketch addresses heavy changer detection as well.

VII. CONCLUSIONS

We present LD-Sketch, a novel distributed sketching design

that aims to achieve real-time detection of traffic anomalies,

including heavy hitters and heavy changers, in today’s IP

networks. It combines the classical counter-based and sketch-

based techniques, and leverages parallelization of the emerging

distributed streaming architectures to achieve both accurate

and scalable detection. It is composed of local detection and

distributed detection, and for both components we derive the

error bounds, space complexity, and time complexity. We

show via extensive trace-driven experiments that LD-Sketch

provides more accurate detection than existing sketch-based

techniques, and has both accuracy and scalability improve-

ments in a distributed setting.
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