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Abstract—To adapt to the increasing storage demands and
varying storage redundancy requirements, practical distributed
storage systems need to support storage scaling by relocating
currently stored data to different storage nodes. However, the
scaling process inevitably transfers substantial data traffic over
the network. Thus, minimizing the bandwidth cost of the scaling
process is critical in distributed settings. In this paper, we
show that optimal storage scaling is achievable in erasure-coded
distributed storage based on network coding, by allowing storage
nodes to send encoded data during scaling. We formally prove
the information-theoretically minimum scaling bandwidth. Based
on our theoretical findings, we also build a distributed storage
system prototype NCScale, which realizes network-coding-based
scaling while preserving the necessary properties for practical
deployment. Experiments on Amazon EC2 show that the scaling
time can be reduced by up to 50% over the state-of-the-art.

I. INTRODUCTION

Distributed storage systems provide a scalable platform for

storing massive data across a collection of storage nodes

(or servers). To provide reliability guarantees against node

failures, they commonly stripe data redundancy across nodes.

Erasure coding is one form of redundancy that significantly

achieves higher reliability than replication at the same storage

overhead [21], and has been widely adopted in production

distributed storage systems [8], [10], [19].

To accommodate the increasing storage demands, system

operators often regularly add new nodes to storage systems

to increase both storage space and service bandwidth. In this

case, storage systems need to re-distribute (erasure-coded)

data in existing storage nodes to maintain the balanced data

layout across all existing and newly added nodes. Furthermore,

system operators need to re-parameterize the right redundancy

level for erasure coding to adapt to different trade-offs of

storage efficiency, fault tolerance, access performance, and

management complexity. For example, storage systems can

reduce the repair cost by increasing storage redundancy [5],

or dynamically switch between erasure codes of different

redundancy levels for different workloads to balance between

access performance and fault tolerance [27].

This motivates us to study storage scaling, in which a

storage system relocates existing stored data to different nodes

and recomputes erasure-coded data based on the new data

layout. Since the scaling process inevitably triggers substantial

data transfers, we pose the following scaling problem, in which

we aim to minimize the scaling bandwidth (i.e., the amount

of transferred data during the scaling process). Note that the

scaling problem inherently differs from the classical repair
problem [5], which aims to minimize the amount of transferred

data for repairing lost data. Although both scaling and repair

problems aim to minimize bandwidth, they build on different

problem settings that lead to different analyses and findings.

In this paper, we study the scaling problem from both

theoretical and applied perspectives. Our contributions include:

• We prove the information-theoretically minimum scaling

bandwidth using the information flow graph model [3], [5].

To minimize the scaling bandwidth, we leverage the infor-

mation mixing nature of network coding [3], by allowing

storage nodes to send the combinations of both uncoded and

coded data that is currently being stored. Note that existing

scaling approaches (e.g., [11], [23], [24], [26], [28]) cannot

achieve the minimum scaling bandwidth. To our knowledge,

our work is the first formal study on applying network
coding to storage scaling.

• We design a distributed storage system called NCScale,

which realizes network-coding-based scaling by leveraging

the available computational resources of storage nodes.

NCScale achieves the minimum, or near-minimum, scal-

ing bandwidth depending on the parameter settings, while

preserving several properties that are necessary for practical

deployment (e.g., fault tolerance, balanced erasure-coded

data layout, and decentralized scaling).

• We have implemented a prototype of NCScale and conduct-

ed experiments on Amazon EC2. We show that NCScale
can reduce the scaling time of Scale-RS [11], a state-of-

the-art scaling approach for Reed-Solomon codes, by up to

50%. Also, we show that the empirical performance gain of

NCScale is consistent with our theoretical findings.

II. PROBLEM

We first present the basics of erasure coding. We then define

the scaling problem and provide a motivating example. Table I

summarizes the major notation used in this paper.

A. Erasure Coding Basics

Erasure coding is typically constructed by two configurable

parameters n and k, where k < n, as an (n, k) code as

follows. Specifically, we consider a distributed storage system

(e.g., HDFS [20]) that organizes data as fixed-size units called

blocks. For every group of k blocks, called data blocks, the

storage system encodes them into additional n− k equal-size

blocks, called parity blocks, such that any k out of the n
data and parity blocks suffice to reconstruct the original k
data blocks. We call the collection of the n data and parity

blocks a stripe, and the n blocks are stored in n different



TABLE I
MAJOR NOTATION USED IN THIS PAPER.

Notation Descriptions
Defined in Section II

(n, k) erasure coding parameters

s number of new nodes after scaling

Xi ith existing node, where 1 ≤ i ≤ n
Yj jth new node after scaling, where 1 ≤ j ≤ s
D∗ a data block

P∗ a parity block before scaling

Q∗ a parity block after scaling

Defined in Section III
M original file size

β bandwidth from Xi (1 ≤ i ≤ n) to Yj (1 ≤ j ≤ s)

G information flow graph

S virtual source of G
T data collector of G
Λ capacity of a cut

Defined in Section IV
PG a group of nk(n+s) stripes for computing new parity blocks

DG a group of ns(n+s) stripes for generating parity delta blocks

Dw wth set of s data blocks of an existing node Xw mod n in
DG, where 1 ≤ w ≤ nk(n+ s) and w′ = �w

n
�

Δi,j parity delta block generated in node Xi for updating a parity
block in Xj , where 1 ≤ i, j ≤ n

nodes to tolerate any n − k failures (either node failures

or lost blocks). A storage system contains multiple stripes,

which are independently encoded. The code construction has

two properties: (i) maximum distance separable (MDS), i.e.,

the fault tolerance is achieved through minimum storage

redundancy, and (ii) systematic, i.e., the k data blocks are kept

in a stripe for direct access. Reed-Solomon codes [18] are one

well-known example of erasure codes that can achieve both

MDS and systematic properties, and have been adopted by

production systems (e.g., [8], [13]).

Most practical erasure codes (e.g., Reed-Solomon codes)

are linear codes, in which each parity block is formed by

a linear combination of the data blocks in the same stripe

based on Galois Field arithmetic. In this paper, we focus on

Vandermonde-based Reed-Solomon codes [15], whose encod-

ing operations are based on an (n − k) × k Vandermonde

matrix [Vi,j ](n−k)×k, where 1 ≤ i ≤ n − k, 1 ≤ j ≤ k, and

Vi,j = ji−1. For example, in a (4, 2) code, we can compute

two parity blocks, denoted by P1 and P2, through a linear

combination of two data blocks, denoted by D1 and D2, over

the Galois Field as follows:[
P1

P2

]
=

[
1 1
1 2

] [
D1

D2

]
. (1)

Suppose that we now scale from the (4, 2) code to the (6, 4)
code with two new data blocks D3 and D4. Then the two new

parity blocks, denoted by P ′
1 and P ′

2, can be computed as:

[
P ′
1

P ′
2

]
=

[
1 1 1 1
1 2 4 8

]⎡⎢⎣
D1

D2

D3

D4

⎤
⎥⎦ =

[
P1

P2

]
+

[
1 1
4 8

] [
D3

D4

]
. (2)

Note that the Vandermonde matrix for the (4, 2) code is a

sub-matrix of the Vandermonde matrix for the (6, 4) code. We

see that each new parity block can be computed by adding an

existing parity block with a parity delta block, which is a linear

combination of the new data blocks only. In general, this holds

for Vandermonde-based Reed-Solomon codes if we scale from

an (n, k) code to an (n′, k′) code, where n−k = n′−k′. We

leverage this feature in our scaling design.

While erasure coding incurs much less redundancy than

replication [21], it is known to trigger a significant amount

of transferred data when repairing a failure. For example,

Reed-Solomon codes need to retrieve k blocks to repair a lost

block. Thus, extensive studies focus on the repair problem (see

survey [6]), which aims to minimize the repair bandwidth and

hence improve the repair performance. In particular, based on

network coding [3], regenerating codes [5] are special erasure

codes that provably achieve the optimal trade-off between

repair bandwidth and storage redundancy, by allowing non-

failed nodes to encode their stored data during repair. On

the other hand, our work applies network coding to storage
scaling, which fundamentally differs from the repair problem.

B. Scaling

We now formalize the scaling problem.

(n, k, s)-scaling: For any s > 0, we transform (n, k)-coded

blocks stored in n existing nodes into (n + s, k + s)-coded

blocks that will be stored in n + s nodes, including the

n existing nodes and s new nodes, such that the following

properties are achieved:

• P1 (MDS and systematic): The new (n+ s, k + s)-coded

stripe remains MDS and systematic, while tolerating the

same number of n− k failures as the original (n, k)-coded

stripe.

• P2 (Uniform data and parity distributions): The respec-

tive proportions of data and parity blocks across multiple

stripes should be evenly distributed across nodes before and

after scaling. This ensures parity updates are load-balanced

across nodes (assuming a uniform access pattern).

• P3 (Decentralized scaling): The scaling operation can be

done without involving a centralized entity for coordination.

This eliminates any single point of failure or bottleneck.

• Goal: We aim to minimize the scaling bandwidth, defined as

the amount of transferred data during the scaling operation,

while preserving all properties P1–P3, which are critical for

practical deployment of erasure-coded storage.

We fix the number of tolerable failures (i.e., n− k) before

and after scaling, as in existing scaling approaches for RAID

(e.g., [23], [24], [28]) and distributed storage (e.g., [11], [26]),

and we do not consider the variants of the scaling problem for

varying n−k [17]. We also discuss how we address s<0 (i.e.,

scale-down) in Section IV-E.

We address the scaling problem via network coding. We

motivate this via an example of (3, 2, 1)-scaling shown in

Figure 1. Let Xi be the ith existing node of a stripe before

scaling, where 1 ≤ i ≤ n, and Yj be the jth new node after

scaling, where 1 ≤ j ≤ s. Also, let D∗, P∗, and Q∗ be a data

block, a parity block before scaling, and a parity block after

scaling, respectively, for some index number ∗.
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Fig. 1. Scale-RS vs. network-coding-based scaling in (3,2,1)-scaling (i.e.,
from the (3, 2) code to the (4, 3) code). Scale-RS needs to transfer a total
of eight blocks to X3 and Y1, while network-coding-based scaling transfers
only four blocks to Y1. Note that blocks in each node need not be stored in
a contiguous manner in distributed storage systems.

We first consider Scale-RS [11] (see Figure 1(a)), which

applies scaling to Reed-Solomon codes for general (n, k).
Scale-RS performs scaling in two steps. The first step is

data block migration, which relocates some data blocks from

existing nodes to new nodes. For example, from Figure 1(a),

the data blocks D5, D6, D11, and D12 are relocated to the

new node Y1. The second step is parity block updates, which

compute parity delta blocks in the nodes that hold the relocated

data blocks and send them to the nodes that hold the parity

blocks for reconstructing new parity blocks. For example, from

Figure 1(a), the data blocks D5, D6, D11, and D12 are used

to compute the parity delta blocks, which are then sent to

node X3, where the parity blocks are stored. X3 forms the

new parity blocks Q1, Q2, Q3, and Q4, respectively. In this

example, Scale-RS needs to transfer eight blocks. Note that

property P2 is violated here, since the parity blocks are stored

in a dedicated node.

We now consider how network-coding-based scaling can

reduce the scaling bandwidth, as shown in Figure 1(b). Our

key idea is to couple the steps of both data block migration

and parity block updates, by allowing each existing node to

perform local computations before relocating blocks. Specif-

ically, each parity block before scaling is computed as the

XOR operations of the data blocks in the same row as in

RAID-5 [14]; for example, P1 = D1 ⊕ D2, where ⊕ is the

XOR operator. During scaling, X1 can locally compute the

new parity block Q1 = P1 ⊕ D9. Similarly, X2 and X3

can compute the new parity blocks Q2 = P2 ⊕ D12 and

Q3 = P3 ⊕D10, respectively. Also, X1 also locally computes

Q4 = P4 ⊕D11. Now, the scaling process relocates D9, D10,

D12, and the locally computed Q4 to the new node Y1. Thus,

we now only need to transfer four blocks, and this amount is

provably minimum (see Section III). In addition, all properties

P1–P3 are satisfied.

Our idea is that unlike Scale-RS, in which data blocks and

their encoded outputs (i.e., parity delta blocks) are transferred,

we now make existing storage nodes send the encoded outputs

of both data blocks and parity blocks. Since parity blocks

are linear combinations of data blocks, we now include more

information in the encoded outputs, thereby allowing less

scaling bandwidth without losing information. This in fact

follows the information mixing nature of network coding [3].

III. ANALYSIS

We analyze (n, k, s)-scaling using the information flow

graph model [3], [5]. We derive the lower bound of the

scaling bandwidth, and show that the lower bound is tight

by proving that there exist random linear codes whose scaling

bandwidth matches the lower bound for general (n, k, s). Note

that random linear codes are non-systematic, in which each

stripe contains coded blocks only (i.e., P1 is violated). In

Section IV, we address all P1–P3 in our scaling design.

A. Information Flow Graph Model

To comply with the information flow graph model in the

literature (e.g., [5]), we assume that erasure coding operates

on a per-file basis. Specifically, in order to encode a data file

of size M , we divide it into k blocks of size M
k each, encode

the k blocks into n blocks of the same size, and distribute the

n blocks across n nodes. Then the (n, k, s)-scaling process

for the data file can be decomposed into four steps:

1) Each existing node Xi (1 ≤ i ≤ n) encodes its stored data

of size M
k into some encoded data.

2) Each new node Yj (1 ≤ j ≤ s) downloads the encoded

data from each Xi (1 ≤ i ≤ n).

3) Each existing node Xi (1 ≤ i ≤ n) deletes M
k − M

k+s units

of its stored data and only stores data of size M
k+s .

4) Each new node Yj (1 ≤ j ≤ s) encodes all its downloaded

data into the stored data of size M
k+s .

Let β denote the bandwidth between any existing node Xi to

any new node Yj ; in other words, each Yj downloads at most

β units of encoded data from Xi. To minimize the scaling

bandwidth, our goal is to minimize β, while ensuring that the

data file can be reconstructed from any k nodes.

We construct an information flow graph G for (n, k, s)-
scaling as follows (see Figure 2):

Nodes in G:
• We add a virtual source S and a data collector T as the

source and destination nodes of G, respectively.

• Each existing storage node Xi (1 ≤ i ≤ n) is represented

by (i) an input node Xin
i , (ii) a middle node Xmid

i , (iii) an

output node Xout
i , (iv) a directed edge Xin

i → Xmid
i with

capacity M
k , i.e., the amount of data stored in Xi before

scaling, and (v) a directed edge Xmid
i → Xout

i with capacity
M
k+s , i.e., the amount of data stored in Xi after scaling.

• Each new storage node Yj (1 ≤ j ≤ s) is represented by

(i) an input node Y in
j , (ii) an output node Y out

j , and (iii)

a directed edge Y in
j → Y out

j with capacity M
k+s , i.e., the

amount of data stored in node Yj .

Edges in G:
• We add a directed edge S → Xin

i for every i (1 ≤ i ≤ n)

with an infinite capacity for data distribution.
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Fig. 2. Information flow graph G for (n, k, s)-scaling.

• We add a directed edge Xmid
i → Y in

j for every i (1 ≤ i ≤
n) and j (1 ≤ j ≤ s) with capacity β.

• We select any k output nodes and add a directed edge

from each of them to T with an infinite capacity for data

reconstruction.

The following lemma states the necessary condition of the

lower bound of β.

Lemma 1. β must be at least M
n(k+s) .

Proof: Clearly, each new storage node Yj (1 ≤ j ≤ s) must

receive at least M
k+s units of data from all existing storage

nodes Xi’s (1 ≤ i ≤ n) over the links with capacity β each.

Thus, we have nβ ≥ M
k+s . The lemma follows.

B. Existence

To show the lower bound in Lemma 1 is tight, we first

analyze the capacities of all possible min-cuts of G. A cut is

a set of directed edges, such that any path from S to T must

have at least one edge in the cut. A min-cut is the cut that has

the minimum sum of capacities of all its edges. Due to the

MDS property, there are
(
n+s
k+s

)
possible data collectors. Thus,

the number of variants of G, and hence the number of possible

min-cuts, are also
(
n+s
k+s

)
.

Lemma 2. Suppose that β is equal to its lower bound M
n(k+s) .

Then the capacity of each possible min-cut of G is at least M .

Proof: Let (C, C̄) be some cut of G, where S ∈ C and T ∈ C̄.

Here, we do not consider the cuts that have an edge directed

either from S or to T , since such an edge has an infinite

capacity. For the remaining cuts, we can classify the storage

nodes into four types based on the nodes in C̄:

• Type 1: Both Xmid
i and Xout

i are in C̄ for some i ∈ [1, n];
• Type 2: Only Xout

i is in C̄ for some i ∈ [1, n];
• Type 3: Only Y out

j is in C̄ for some j ∈ [1, s]; and

• Type 4: Both Y in
j and Y out

j are in C̄ for some j ∈ [1, s].

We now derive the capacity of each possible cut for each

data collector. Suppose that T connects to ti nodes of Type i,
where 1 ≤ i ≤ 4, for data reconstruction, such that:

t1 + t2 + t3 + t4 = k + s. (3)

Let Λ(t1, t2, t3, t4) denote the capacity of a cut. We derive Λ
as follows:

• Each storage node of Type 1 contributes M
k to Λ;

• Each storage node of Type 2 contributes M
k+s to Λ;

• Each storage node of Type 3 contributes M
k+s to Λ; and

• Each storage node of Type 4 contributes (n− t1)β to Λ.

Figure 2 illustrates the details. Thus, we have:

Λ = t1 · M
k

+ t2 · M

k + s
+ t3 · M

k + s
+ t4 · (n− t1)β. (4)

By Lemma 1 and Equation (3), we reduce Equation (4) to:

Λ ≥ M +M · t1 · (n · s− k · t4)
k(k + s)n

. (5)

Since n > k and s ≥ t4 (Type 4 only has new storage

nodes), the right hand side of Equation (5) must be at least

M . The lemma holds.

Lemma 3 ([5]). If the capacity of each possible min-cut of G
is at least the original file size M , there exists a random linear
network coding scheme guaranteeing that T can reconstruct
the original file for any connection choice, with a probability
that can be driven arbitrarily high by increasing the field size.

Theorem 1. For (n, k, s)-scaling and an original file of size
M , there exists an optimal functional scaling scheme, such that
β is minimized at M

n(k+s) while the MDS property of tolerating
any n− k failures is preserved.

Proof: It follows from immediately Lemmas 2 and 3.

Theorem 1 implies that optimal scaling occurs when the

amount of transferred data to the new nodes is equal to the

size of the data being stored in new nodes. Thus, we have the

following corollary.

Corollary 1. For distributed storage systems that organize
data in fixed-size blocks, the minimum scaling bandwidth is s
blocks per new stripe formed for any (n, k, s)-scaling.

IV. NCSCALE

We present NCScale, a distributed storage system that real-

izes network-coding-based storage scaling. NCScale satisfies

properties P1–P3 (see Section II-B) and achieves the mini-

mum, or near-minimum, scaling bandwidth (see Section III).

A. Main Idea

NCScale operates on (systematic) Reed-Solomon codes

[18], such that all blocks before and after scaling are still en-

coded by Reed-Solomon codes. Before scaling, each existing
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Fig. 3. Scaling in NCScale. Note that (3, 2, 1)-scaling achieves the minimum scaling bandwidth (see Corollary 1), while (4, 2, 2)-scaling does not.

node independently computes parity delta blocks, which are

then merged with existing parity blocks to form new parity

blocks for the new stripes after scaling. Finally, NCScale
sends some of the data blocks and new parity blocks to the

new nodes, while ensuring that the new stripes have uniform

distributions of data and parity blocks across nodes.

NCScale can achieve the minimum scaling bandwidth

when n − k = 1 (i.e., each stripe has one parity block). In

this case, the new parity block of each stripe can be computed

locally from the parity delta block generated from the same

node. In other words, the blocks that are sent over the network

by NCScale are only those that will be stored in the new

nodes. From Corollary 1, the scaling bandwidth of NCScale
matches the optimal point. Figure 3(a) shows an example of

(3, 2, 1)-scaling in NCScale.

On the other hand, NCScale cannot achieve the optimal

point for n− k > 1 (i.e., each stripe has more than one parity

block). Each existing node now not only generates a parity

delta block for locally computing a new parity block, but also

sends parity delta blocks for computing new parity blocks of

the same stripe in different nodes. Nevertheless, the number

of parity delta blocks that are sent to other nodes remains

limited, as we only use one parity delta block to update each

new parity block (see Section IV-C for details). Figure 3(b)

shows an example of (4, 2, 2)-scaling in NCScale.

One constraint of NCScale is that its current algorithmic

design requires s ≤ n
n−k−1 ; if n−k = 1, s can be of any value

(see Section IV-C). Nevertheless, we believe that the range of

s is sufficiently large in practice, as n is often much larger

than n− k to limit the amount of storage redundancy.

B. Preliminaries

We now provide definitions for NCScale in (n, k, s)-
scaling and summarize the steps of NCScale. We also present

the scaling bandwidth of NCScale.

To perform scaling, NCScale operates on a collection of

n(k+ s)(n+ s) stripes in n nodes that have nk(k+ s)(n+ s)
data blocks in total. We assume that the nodes that hold the

parity blocks in a stripe are circularly rotated across stripes

[16], so as to keep the uniform distributions of data and parity

blocks over the n nodes; formally, the n − k parity blocks

of the wth stripe are stored in Xi, · · ·X(i+n−k−1) mod n for

some w ≥ 1 and i = w mod n. After scaling, NCScale forms

nk(n+ s) stripes over n+ s nodes, with the same number of

nk(k + s)(n+ s) data blocks in total.

NCScale classifies the n(k + s)(n + s) stripes into two

groups. The first group, denoted by PG, contains the first

nk(n+s) stripes, in which their parity blocks will be updated

from parity delta blocks to form new parity blocks. The second

group, denoted by DG, contains the remaining ns(n + s)
stripes, in which we use their data blocks to generate parity

delta blocks for updating the parity blocks in PG. Note that

the number of stripes in PG is also equal to the number of

stripes after scaling.

Parity delta blocks are formed by the linear combinations of

the new data blocks in a stripe based on a Vandermonde matrix

(see Section II-A). Let Δi,j be a parity delta block generated

from an existing node Xi for updating a parity block in an

existing node Xj , where 1 ≤ i, j ≤ n (when i = j, the new

parity block is computed locally). NCScale ensures that for

each of the nk(n+s) stripes in PG, the n−k parity blocks of



Algorithm 1 Prepare

1: PG = first nk(n+ s) stripes
2: DG = next ns(n+ s) stripes
3: for w = 1 to nk(n+ s) do
4: Dw = w′th set of s data blocks of Xw mod n in DG,

where w′ = �w
n
�

5: end for

the new stripe can be computed from parity delta blocks that

are all generated by the same node. One of the parity blocks

can retrieve a parity delta block locally, while the remaining

n− k − 1 parity blocks need to retrieve a total of n− k − 1
parity delta blocks over the network. In other words, there

will be a total of nk(n + s)(n − k − 1) parity delta blocks

transferred over the network.

In addition, NCScale sends nk(n + s) × s blocks to the

s new nodes. In general, the scaling bandwidth of NCScale
per new stripe formed after scaling is:

nk(n+ s)(n− k − 1 + s)

nk(n+ s)
= n− k − 1 + s. (6)

C. Algorithmic Details

We now present the algorithmic details of (n, k, s)-scaling

in NCScale. Figure 3 illustrates the algorithmic steps.

• Prepare: NCScale prepares the sets of data and parity

blocks to be processed in the scaling process, as shown

in Algorithm 1. It first identifies the groups PG and DG
(lines 1-2). It then divides the data blocks in DG into different

sets Dw’s, where 1 ≤ w ≤ nk(n+s) (lines 3-5), by collecting

and adding s data blocks from X1 to Xn into Dw in a round-

robin fashion. Specifically, DG has ns(n + s) stripes, and

hence nsk(n + s) data blocks, in total. We divide the data

blocks of each existing node Xi (1 ≤ i ≤ n) in DG into

k(n + s) sets of s data blocks, and add the w′th set of s
data blocks of each existing node Xw mod n into Dw, where

“mod” denotes the modulo operator and w′ = �w
n 	 (line 4).

• Compute, Send, and Delete: After preparation, NCScale
computes new parity blocks for the new stripes, sends blocks

to the s new nodes, and deletes obsolete blocks in existing

nodes. Algorithm 2 shows the details. NCScale operates

across all nk(n+s) stripes in PG. To compute the new parity

blocks, each existing node Xi (1 ≤ i ≤ n) operates on the wth

stripe for i = w mod n (line 2). Recall that the parity blocks

are stored in Xi, · · · , X(i+n−k−1) mod n. For 1 ≤ j ≤ n − k
and j′ = (j+w−1) mod n, Xi computes a parity delta block

Δi,j′ and sends it to Xj′ , which adds Δi,j′ to the jth parity

block of the wth stripe in PG (lines 3-7). Note that when

j = 1, Xi updates the parity block locally.

After computing the new parity blocks, NCScale sends

blocks to the new nodes (lines 8-12). We find that if w ≤
nk(n − s(n − k − 1)), Xi sends all s data blocks in Dw

to the s new nodes; otherwise, Xi sends the locally updated

parity block and any s − 1 data blocks in Dw to the s new

nodes (we assume that the parity block is rotated over the s
nodes across different stripes to evenly place the parity blocks).

For example, Figure 3 shows that the last step of scaling is

Algorithm 2 Compute, Send, and Delete

1: for w = 1 to nk(n+ s) do
2: i = w mod n
3: for j = 1 to n− k do
4: j′ = (j + w − 1) mod n
5: Xi generates Δi,j′ from the s data blocks in Dw for the

jth parity block in the wth stripe of PG
6: Xi sends Δi,j′ to Xj′ , which adds Δi,j′ to the jth parity

block in the wth stripe of PG
7: end for
8: if w ≤ nk(n− s(n− k − 1)) then
9: Xi sends all s data blocks in Dw to the s new nodes

10: else
11: Xi sends the locally updated parity block and any

s− 1 data blocks in Dw to the s new nodes
12: end if
13: Xi deletes all obsolete blocks
14: end for

split into two cases. Finally, Xi deletes all obsolete blocks,

including the blocks that are sent to the new nodes and the

parity blocks in DG (line 13). By doing so, we can guarantee

uniform distributions of data and parity blocks after scaling

(see Section IV-D).

Remark: Algorithm 2 requires s ≤ n
n−k−1 , so that the right

side of the inequality in line 8 is a positive number.

D. Proof of Correctness

Theorem 2. NCScale preserves P1–P3 after scaling.

Proof: Consider P1. According to Algorithm 2, the k + s
data blocks in the wth new stripe, where 1 ≤ w ≤ nk(n +
s), are composed of the k data blocks of the wth existing

stripe in PG and s data blocks in Dw. Each new parity block

is computed by adding (i) the existing parity block of the

wth stripe and (ii) the parity delta block that is formed by

the linear combinations of the s data blocks in Dw. Due to

the property of the Vandermonde matrix (see Section II-A),

the new parity blocks become encoded by Vandermonde-based

Reed-Solomon codes over k+s data blocks. Thus, both MDS

and systematic properties are maintained. P1 holds.

Consider P2. We count the number of parity blocks stored in

each node after scaling. Algorithm 2 moves nk(n+s)−nk(n−
s(n−k−1)) = nks(n−k) parity blocks from existing nodes

to the s new nodes (line 11). Thus, each of the s new nodes

has 1
s · nks(n− k) = nk(n− k) parity blocks, while each of

the n existing nodes has 1
n ·(nk(n+s)(n−k)−nks(n−k)) =

nk(n− k) parity blocks. Thus, all n+ s nodes have the same

number of parity blocks (and hence data blocks). P2 holds.

Consider P3. According to Algorithm 2, each existing

node Xi can independently generate and send parity delta

blocks of the wth stripe, simply by checking if i is equal

to w mod n. No centralized coordination across all existing

nodes is necessary. P3 holds.

E. Discussion

We thus far focus on the scale-up operation of adding new

nodes (s > 0). For scale-down (s < 0), we reverse the steps

pclee
Highlight
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The correct subscript should be "((w-1) mod n) + 1".
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Fig. 4. Numerical results of scaling bandwidth (in units of blocks) per new
stripe formed after scaling.

in Algorithm 2, by relocating data blocks in s nodes and

distributing them to n nodes, computing parity delta blocks,

and updating the parity blocks in PG. Also, we need to

reconstruct new parity blocks for the stripes in DG. We do

not claim the optimality of the scale-down case, and we pose

it as future work.

V. EVALUATION

In this section, we present evaluation results of NCScale.

We compare it with Scale-RS [11], which represents the state-

of-the-art scaling scheme for Reed-Solomon codes in distribut-

ed storage systems. We conduct both numerical analysis and

cloud experiments, and aim to address two key questions: (i)

Can NCScale improve the scaling performance by mitigating

the scaling bandwidth? (ii) Is the empirical performance of

NCScale consistent with the numerical results?

A. Numerical Analysis

In our numerical analysis, we calculate the scaling band-

width as the total number of blocks transferred during scaling

normalized to the total number of stripes after scaling. We

summarize the numerical results below:

• Optimal: The information-theoretically minimum scaling

bandwidth is given by s blocks (per new stripe) for any

(n, k) (see Corollary 1).

• Scale-RS: To form a new stripe after scaling, Scale-RS first

sends s data blocks from existing nodes to s new nodes for

data block migration, followed by n− k parity delta blocks

for parity block updates (see Figure 1(a) for an example).

Thus, the scaling bandwidth of Scale-RS is s+n−k blocks

(per new stripe).

• NCScale: From Equation (6), the scaling bandwidth of

NCScale is s+ n− k − 1 blocks (per new stripe).

Figure 4 shows the numerical results of scaling bandwidth

(in units of blocks) per new stripe formed after scaling. Here,

we focus on s = 1 and s = 2, and vary (n, k). In summary,

the percentage reduction of scaling bandwidth of NCScale

TABLE II
EXPERIMENT 1: TIME BREAKDOWN OF NCSCALE FOR

(n, k, s) = (6, 4, 2) AND BLOCK SIZE 64 MB.

Steps

Compute Send Delete

200 Mb/s 0.093s 21.89s 0.0040s

500 Mb/s 0.090s 8.70s 0.0040s

1 Gb/s 0.094s 4.33s 0.0039s

2 Gb/s 0.095s 2.17s 0.0040s

over Scale-RS is higher for smaller n − k or smaller s. For

example, for (6, 5, 1), the reduction is 50%, while for (6, 4, 1)
and (6, 5, 2), the reduction is 33.3%. NCScale matches the

optimal point when n − k = 1, and deviates more from the

optimal point when n−k increases (e.g., by three blocks more

for (6, 2, 2)). Nevertheless, NCScale always has less scaling

bandwidth than Scale-RS by one block (per new stripe).

B. Cloud Experiments

We implemented NCScale as a distributed storage system

prototype and evaluated its scaling performance in real-world

environments. NCScale is mostly written in Java, while the

coding operations of Reed-Solomon codes are written in C++

based on Intel ISA-L [2]. We also implemented Scale-RS

based on our NCScale prototype for fair comparisons under

the same implementation settings. Each storage node runs

as a server process. In both of our NCScale and Scale-RS

implementations, the storage nodes perform the scaling steps

independently and in parallel.

Setup: We conduct our experiments on Amazon EC2 [1].

We configure a number of m4.4xlarge instances located

in the US East (North Virginia) region. The number of

instances varies across experiments (see details below), and the

maximum is 14. Each instance represents an existing storage

node (before scaling) or a new storage node (after scaling).

To evaluate the impact of bandwidth on scaling, we configure

a dedicated instance that acts a gateway, such that any traffic

between every pair of instances must traverse the gateway. We

then use the Linux traffic control command tc to control the

outgoing bandwidth of the gateway. In our experiments, we

vary the gateway bandwidth from 200 Mb/s up to 2 Gb/s.

Methodology: We measure the scaling time per 1 GB of data

blocks (64 MB each by default). Recall that NCScale operates

on collections of n(k+s)(n+s) stripes (see Section IV-B). In

each run of experiments, depending on the values of (n, k, s),
we generate around 1,000 data blocks (and the corresponding

parity blocks), so as to obtain a sufficient number of collections

of stripes for stable scaling performance. We report the average

results of each experiment over five runs. We do not plot the

deviations, as they are very small across different runs.

Experiment 1 (Time breakdown): We first provide a break-

down of the scaling time and identify the bottlenecked step

in scaling. We decompose Algorithm 2 into three steps that

are carried out by existing nodes: (i) compute, which refers to

the generation of parity delta blocks and computation of new

parity blocks, (ii) send, which refers to the transfers of blocks



14.8

29.42

11.16

21.98

8.71

17.48

0

10

20

30

40

(3,2,1) (4,3,1) (5,4,1)

Sc
al

in
g 

tim
e 

(s
/G

B)
Scale−RS NCScale

6.22

12.16

4.49

8.93

3.5

7.08

0

4

8

12

16

(3,2,1) (4,3,1) (5,4,1)

Sc
al

in
g 

tim
e 

(s
/G

B)

Scale−RS NCScale

3.22

6.31

2.24

4.45

1.77

3.53

0

2

4

6

8

(3,2,1) (4,3,1) (5,4,1)

Sc
al

in
g 

tim
e 

(s
/G

B)

Scale−RS NCScale

1.85

3.69

1.17

2.35

0.91

1.81

0

1

2

3

4

5

(3,2,1) (4,3,1) (5,4,1)

Sc
al

in
g 

tim
e 

(s
/G

B)

Scale−RS NCScale

(a) 200 Mb/s, s = 1 (b) 500 Mb/s, s = 1 (c) 1 Gb/s, s = 1 (d) 2 Gb/s, s = 1

34.02

45.09

26.2

35.24

22.13

29.62

0

10

20

30

40

50

60

(4,2,2) (5,3,2) (6,4,2)

Sc
al

in
g 

tim
e 

(s
/G

B)

Scale−RS NCScale

14.17

18.5

10.54

14.21

8.81

11.79

0

5

10

15

20

(4,2,2) (5,3,2) (6,4,2)

Sc
al

in
g 

tim
e 

(s
/G

B)

Scale−RS NCScale

7.96

10.27

5.4

7.35

4.45

6

0

5

10

(4,2,2) (5,3,2) (6,4,2)

Sc
al

in
g 

tim
e 

(s
/G

B)

Scale−RS NCScale

4.11

5.42

3.17

4.28

2.35

3.13

0

2

4

6

(4,2,2) (5,3,2) (6,4,2)

Sc
al

in
g 

tim
e 

(s
/G

B)

Scale−RS NCScale

(e) 200 Mb/s, s = 2 (f) 500 Mb/s, s = 2 (g) 1 Gb/s, s = 2 (h) 2 Gb/s, s = 2

Fig. 5. Experiment 2: Scaling time (per GB of data blocks), in seconds/GB, under different gateway bandwidth settings.
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data blocks), in seconds/GB, versus s.

during the scaling process, and (iii) delete, which describes

the deletion of obsolete blocks after scaling. Since all existing

nodes perform scaling in parallel, we pick the one that finishes

last and obtain its time breakdown. Here, we consider (6, 4, 2)-
scaling. We fix the block size as 64 MB and vary the gateway

bandwidth from 200 Mb/s to 2 Gb/s.

Table II shows the breakdown. We observe that the send

time dominates (over 95% of the overall time), especially when

the available network bandwidth is limited (while the compute

and delete times stay fairly constant). This justifies our goal

of minimizing the scaling bandwidth to improve the overall

scaling performance.

Experiment 2 (Impact of bandwidth): We now compare

NCScale and Scale-RS under different gateway bandwidth

settings. Figure 5 shows the scaling time results, in which the

block size is fixed as 64 MB. We find that the empirical results

are consistent with the numerical ones (see Figure 4) in all

cases, mainly because the scaling performance is dominated

by the send time. Take (6, 4, 2)-scaling for example. From

the numerical results (see Figure 4), NCScale incurs 25.0%

less scaling bandwidth than Scale-RS (i.e., three versus four

blocks, respectively), while in our experiments, Scale-RS

incurs 25.29%, 25.28%, 25.83%, and 24.92% more scaling

time than NCScale when the gateway bandwidth is 200 Mb/s,

500 Mb/s, 1 Gb/s, and 2 Gb/s, respectively (see Figures 5(e)-

5(h)). Note that the scaling time increases with the redundancy
n
k (e.g., (3, 2, 1) has higher scaling time than (4, 3, 1) and

(5, 4, 1)). The reason is that the number of stripes per GB of

data blocks also increases with the amount of redundancy, so

more blocks are transferred during scaling.

Experiment 3 (Impact of block size): We study the scaling

time versus the block size. We fix the gateway bandwidth as

1 Gb/s and vary the block size from 1 MB to 64 MB. Figure 6

shows the results. We see that the scaling times of NCScale
and Scale-RS are fairly stable across different block sizes, and

NCScale still shows performance gains over Scale-RS.

Experiment 4 (Impact of s): Finally, we study the scaling

time versus s (the number of new nodes). Here, we fix the

gateway bandwidth as 1 Gb/s and the block size as 64 MB. We

also fix (n, k) = (9, 6), which is a default setting in production

[13]. Figure 7 shows the results. Both NCScale and Scale-RS

need to transfer more blocks as s increases, and the difference

of their scaling times decreases. Overall, NCScale reduces

the scaling time of Scale-RS by 11.5-24.6%.

VI. RELATED WORK

Scaling approaches have been proposed for RAID-0 (i.e., no

fault tolerance) [29], [32], RAID-5 (i.e., single fault tolerance)



[9], [23], [30], [31], and RAID-6 [24], [25], [28] (i.e., double

fault tolerance). Such scaling approaches focus on minimizing

data block migration and parity block updates (e.g., GSR [23]

for RAID-5, and MDS-Frame [24] and RS6 [28] for RAID-6),

while keeping the same RAID configuration and tolerating the

same number of failures. However, they are tailored for RAID

arrays and cannot tolerate more than two failures.

The most closely related work to ours is Scale-RS [11],

which addresses the scaling problem in distributed storage

systems that employ Reed-Solomon codes [18] to provide

tolerance against a general number of failures. Wu et al. [26]

apply scaling for Cauchy Reed-Solomon codes [4], but use a

centralized node to coordinate the scaling process. In contrast,

both Scale-RS and NCScale perform scaling in a decentral-

ized manner. However, existing RAID scaling approaches and

Scale-RS cannot minimize the scaling bandwidth.

Some studies address the efficient transitions between re-

dundancy schemes. AutoRAID [22] leverages access patterns

to switch between replication for hot data and RAID-5 for

cold data. DiskReduce [7] and EAR [12] address the transition

replication to erasure coding in HDFS [20]. HACFS [27]

extends HDFS to support switching between two erasure codes

to trade between storage redundancy and access performance.

Rai et al. [17] present adaptive erasure codes for switching

between the erasure coding parameters (n, k), but they only

describe a few scaling cases without formal analysis. Our work

emphasizes how network coding can help achieve the optimal-

ity of storage scaling, using both analysis and implementation.

VII. CONCLUSIONS

We study how network coding is applied to storage scaling

from both theoretical and applied perspectives. We prove

the minimum scaling bandwidth via the information flow

graph model. We further build NCScale, which implements

network-coding-based scaling for distributed storage. Both

numerical analysis and cloud experiments demonstrate the

scaling efficiency of NCScale.
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