
SpreadSketch: Toward Invertible and Network-Wide
Detection of Superspreaders

Lu Tang1, Qun Huang2, and Patrick P. C. Lee1
1Department of Computer Science and Engineering, The Chinese University of Hong Kong

2State Key Lab of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

Abstract—Superspreaders (i.e., hosts with numerous distinct
connections) remain severe threats to production networks. How
to accurately detect superspreaders in real-time at scale remains
a non-trivial yet challenging issue. We present SpreadSketch, an
invertible sketch data structure for network-wide superspreader
detection with the theoretical guarantees on memory space,
performance, and accuracy. SpreadSketch tracks candidate super-
spreaders and embeds estimated fan-outs in binary hash strings
inside small and static memory space, such that multiple
SpreadSketch instances can be merged to provide a network-
wide measurement view for recovering superspreaders and their
estimated fan-outs. We present formal theoretical analysis on
SpreadSketch in terms of space and time complexities as well as
error bounds. Trace-driven evaluation shows that SpreadSketch
achieves higher accuracy and performance over state-of-the-art
sketches. Furthermore, we prototype SpreadSketch in P4 and
show its feasible deployment in commodity hardware switches.

I. INTRODUCTION

Identifying superspreaders (i.e., hosts with a large number of
distinct connections) in real-time is crucial in various network
management tasks, including hot-spot localization in peer-to-
peer networks [32] and detection of malicious attacks (e.g.,
DDoS attacks [11], port scanning [8], and worm propagation
[33]). For example, superspreaders may refer to the infected
hosts that connect to many other hosts for worm propagation
[33], or the servers overwhelmed by a botnet of zombie hosts
under DDoS attacks [11]. Despite many efforts in superspreader
detection over decades, superspreaders (e.g., DDoS attacks)
remain widespread in modern production networks [11].

One challenge of superspreader detection is that super-
spreaders are distributed by nature, as their myriad connections
may span the entire network. A superspreader may appear
with only a small number of connections at a measurement
point (e.g., end-host or switch), but its aggregation across
multiple measurement points may have a significant number
of connections. Thus, it is essential to detect superspreaders in
real-time at scale, based on a network-wide view aggregated
from multiple measurement points [27]. A simple network-
wide detection approach is to maintain complete per-flow states
[28], [30], yet the memory consumption becomes prohibitive
in large-scale networks when a surge of active flows appear in
short timescales (e.g., under DDoS attacks).

The necessity of network-wide superspreader detection
motivates us to explore compact data structures that enable
memory-efficient measurement with provable accuracy guaran-
tees. In particular, we focus on invertible sketches, the summary

Qun Huang is now affiliated with Peking University

data structures that count the number of distinct connections
using fixed-size memory footprints with bounded errors, while
supporting the fast recovery of all superspreaders from the
data structures only (i.e., invertibility). Invertible sketches are
particularly critical for network-wide measurement, in which
we can aggregate multiple invertible sketches (which retain the
superspreader information) from various measurement points
across the network in order to recover all superspreaders in
a network-wide view. However, existing invertible sketches
for superspreader detection (e.g., [7], [14], [24], [26], [36],
[42]), often face different performance challenges. They either
incur high memory access overhead that slows down packet
processing, or incur high computational overhead that delays
the recovery of superspreaders (Section II-C). Thus, we pose
the following question: Can we design an invertible sketch
for network-wide superspreader detection that simultaneously
achieves (i) memory efficiency, (ii) high packet processing and
superspreader detection performance, as well as (iii) high
detection accuracy?

We present SpreadSketch, an invertible sketch for network-
wide superspreader detection with the theoretical guarantees on
memory space, performance, and accuracy. SpreadSketch maps
each observed connection (e.g., a source-destination pair) to a
binary hash string that estimates the fan-out (i.e., number of
distinct connections) of the host based on the length of the most
significant zero bits (as in Probabilistic Counting [13]). It tracks
candidate superspreaders in a fixed-size table of buckets, such
that multiple SpreadSketch instances can be merged to provide
a network-wide view for recovering all superspreaders and
their estimated fan-outs. In particular, SpreadSketch maintains
its sketch with small and static memory allocation and requires
only simple computations (e.g., multiplications, shifts, and
hashing). Such features not only improve packet processing
performance (without dynamic memory allocation), but also
enable SpreadSketch to be feasibly deployed in both software
and hardware and serve as a building block in current network-
wide measurement systems [17], [18], [23], [27], [29], [39],
[42]. In summary, this paper makes the following contributions:

• We design SpreadSketch, a new invertible sketch data
structure for network-wide superspreader detection with
memory space, performance, and accuracy guarantees.

• We present formal theoretical analysis on SpreadSketch,
including its space complexity, update and detection time
complexities, as well as error bounds on superspreader
detection and fan-out estimation.

• We show via trace-driven evaluation that SpreadSketch
achieves higher detection accuracy, higher update throughput,
and lower detection time than state-of-the-art sketches.

• We prototype SpreadSketch in P4 [3] and compile it in the
Barefoot Tofino chipset [1]. We present microbenchmark
results on SpreadSketch to justify its feasible deployment in
commodity hardware switches.
The source code of our SpreadSketch prototype is available

at: http://adslab.cse.cuhk.edu.hk/software/spreadsketch.

II. BACKGROUND AND RELATED WORK

A. Superspreader Detection

We consider the processing of a stream of packets, each
of which is denoted as a source-destination pair (x, y) and is
allowed to be processed only once. The source x can refer
to any combination of packet header fields that identify the
source of the packet, such as the source IP address, or the pair
of source IP address and port; similar definitions apply to the
destination y. We assume that both source x and destination y
are the unique keys that are drawn from a key space represented
as an integer domain [n] = {0, 1, · · · , n− 1}; in other words,
a key can be represented in dlog2 ne bits. Note that each (x, y)
can appear multiple times in a packet stream.

We formulate the superspreader detection problem as follows.
We conduct superspreader detection at regular time intervals
called epochs. We define the fan-out of a source as the
number of distinct destinations to which the source connects
over an epoch. We say that a source is a superspreader
if its fan-out exceeds a pre-defined threshold. Formally, let
φ (0 < φ < 1) be a pre-defined fractional threshold for
distinguishing superspreaders from a packet stream. A source
x is a superspreader if S(x) ≥ φS , where S(x) is the fan-out
of x and S is the total fan-out of all sources appearing in
the epoch. In practice, we can obtain S with distinct counting
(e.g., [9], [12], [13], [37]) that accurately estimates the number
of distinct source-destination pairs with small memory space.
We assume that both the epoch length and the threshold are
manually configured by network administrators.

We can also symmetrically estimate the number of distinct
sources with which a destination is connected over an epoch,
and a superspreader refers to a destination that is connected
by many distinct sources (e.g., under DDoS attacks). Without
loss of generality, we use the term “superspreader” to refer to
superspreader sources throughout the paper.

B. Design Requirements

Given the resource constraints of tracking all active flows in
large-scale networks (Section I), our primary goal is to design
a practical sketch data structure for superspreader detection,
with the following design requirements.
• Invertibility: The sketch itself can readily return all super-

spreaders and their fan-outs at the end of an epoch.
• Network-wide detection: We can deploy the sketch at

multiple measurement points (e.g., end-hosts or switches)
across the network to perform network-wide superspreader
detection. Specifically, we can aggregate the local results at

multiple measurement points as if all network traffic was
measured at a big measurement point [27].

• Small and static memory usage: The sketch incurs small
memory footprints, which are essential for the deployment in
both software and hardware [18]. Also, its memory resources
can be statically allocated in advance to avoid dynamic
memory management overhead [34].

• High detection accuracy: The sketch achieves high detec-
tion accuracy with small memory footprints and provable
error bounds. Note that the accuracy guarantees should be
preserved even in the worst-case scenarios, such as malicious
attacks or traffic bursts.

• Fast updates and detection: The sketch supports high-speed
per-packet updates. For example, a fully utilized 10 Gb/s link
with 64-byte packets implies that the sketch can be updated
with at least 14.88 million packets per second. Also, the
sketch should detect and return all superspreaders in real-time
to quickly react to any possibly ongoing attacks.

C. Limitations of Existing Approaches
While superspreader detection has been extensively studied

in the literature, we argue that no existing approaches can
address all design requirements in Section II-B.
Per-source tracking. Traditional intrusion detection systems
(e.g., Snort [28] and FlowScan [30]) maintain all active
connections for each source to identify any port scans or DDoS
attacks. To improve memory efficiency, Estan et al. [9] propose
a small triggered bitmap that counts only the sources with
high fan-outs. However, per-source tracking incurs tremendous
resource usage, especially for high-speed links that contain
numerous active flows.
Sampling. To limit packet processing overhead, hash-based
flow sampling [5], [19], [35] is proposed to monitor (deter-
ministically) only a fraction of flows whose hashed flow IDs
are less than some pre-specified threshold (i.e., the sampling
probability). Thus, the superspreaders are likely to be sampled
as they have high fan-outs. However, sampling inherently has
low detection accuracy in short timescales [23]. Also, some
approaches [5], [19] maintain sampled flows in chained hash
tables, which have high memory access overhead over the
linked lists of buckets.
Streaming. Various streaming algorithms are designed for
superspreader detection. Zhao et al. [43] combine sampling
(which filters hosts with small flow counts) and streaming
(which estimates the fan-out of each sampled source). Some
approaches [22], [41] estimate the fan-outs of sources in tight
memory space by sharing counter bits among sources. The
above solutions design compact data structures that fit in fast
memory (e.g., SRAM) for fan-out estimation. However, such
data structures are non-invertible and cannot directly return all
superspreaders from only the data structures in fast memory.
Sketches. Sketches are summary data structures that track all
packets in fixed-size memory footprints. Several sketches in
the literature aim for superspreader detection and also address
invertibility by design.

Distinct-Count Sketch [14] extends the idea of Probabilistic
Counting [13] to track the fan-outs. To track the list of

superspreaders, it also maintains a counter for every bit of
a source-destination pair, thereby resulting in high memory
usage and access overhead.

Some approaches encode the superspreader information
into a sketch, and later enumerate the entire source key
space to recover the candidate superspreaders. Connection
Degree Sketch [36] reconstructs host addresses associated
with large fan-outs based on the Chinese Remainder Theorem.
Vector Bloom Filter [24] improves update efficiency via
bit-extraction hashing, which extracts bits directly from the
source ID. However, the computational overhead of recovering
superspreaders is significant for very large key space.

Several studies propose cascaded sketches, whose idea is to
combine existing invertible frequency-based sketches (i.e., the
sketches that return high-frequency keys) and distinct counting,
so as to recover all source keys with high fan-outs. Count-
Min-Heap [7] extends Count-Min sketch [6] with an external
heap for tracking superspreaders and associates each bucket
with a distinct counter (e.g., [9], [12], [13], [37]). OpenSketch
[42] combines Reversible Sketch [31] with bitmap algorithms
[9], while Liu et al. [26] combine Fast Sketch [25] with
the optimal distinct counter [20], for superspreader detection.
However, existing invertible frequency-based sketches generally
have high processing overhead [34]: the external heap of the
Count-Min-Heap incurs high memory access overhead for
heap updates, while Reversible Sketch and Fast Sketch incur
an update overhead that grows linearly with the key size.

D. Other Related Work

Detecting heavy hitters. Recent studies (e.g., [4], [15], [34])
focus on detecting heavy hitters (i.e., the sources whose frequen-
cies exceed a pre-defined threshold). Superspreader detection
can be viewed as a special case of heavy hitter detection
by identifying the sources with many distinct connections.
However, existing heavy hitter detection solutions cannot be
directly applied to superspreader detection as they cannot
distinguish duplicate connections in packet streams.
General network-wide measurement. Network-wide mea-
surement systems [17], [18], [23], [27], [29], [39], [42] propose
unified frameworks for general measurement tasks, and some of
them [17], [27], [29], [42] also address superspreader detection.
Our proposed sketch design (Section III) can be a building
block of the above network-wide measurement systems.
Stealthy spreaders. Some variants of the superspreader de-
tection problem are covered in the literature. Yoon et al. [40]
design a random aging streaming filter to find stealthy spreaders
that send low-rate malicious packets. Xiao et al. [38] and Zhou
et al. [44] study the estimation of persistent fan-outs over
a number of epochs. Huang et al. [16] further address the
estimation of the k-persistent fan-outs that appear in at least
k out of a fixed number of epochs. The above problems are
different with ours, and we pose them as future work.

III. SPREADSKETCH DESIGN

SpreadSketch is a novel sketch data structure for super-
spreader detection that addresses all design requirements in

0

25

50

75

100

0 25 50 75 100
Top percentage (%)

C
u
m

u
la

ti
ve

 p

e
rc

e
n
ta

g
e
 (

%
)

CAIDA16

CAIDA18

CAIDA19

Fig. 1. Cumulative fan-out ratios of the top-percentages of sources (i.e., the
sum of fan-outs of the top-percentage of sources over the total fan-outs of all
sources) for three real-world IP traces.

Section II-B. It takes a clean-slate approach that incorporates
invertibility and network-wide detection by design, while
providing the theoretical guarantees on memory space, perfor-
mance, and accuracy (Section IV).

A. Main Idea

SpreadSketch is a non-trivial extension of the classical Count-
Min Sketch [6]. Count-Min Sketch is initialized with multiple
rows of buckets, each of which is associated with a general
integer counter. For each item in a stream, Count-Min Sketch
hashes the item key into a bucket in each row and increments
the associated counter by the item value. It provides an estimate
for the value sum of an item key using the minimum counter
value of all buckets hashed by the item key.

SpreadSketch augments Count-Min Sketch by associating
each bucket with a distinct counter, a small fixed-size data
structure that counts the distinct items of a stream (e.g., [9],
[12], [13], [37]). Also, each bucket of SpreadSketch tracks the
key of a candidate superspreader that is estimated to have the
most fan-outs among all sources that are hashed to the bucket.
SpreadSketch’s design is motivated by two observations.
Highly skewed fan-out distributions. Fan-out distributions
in practice are highly skewed, in which a small fraction of
sources have significantly higher fan-outs than the remaining
majority of sources. Figure 1 plots the cumulative fan-out
ratios of the top-percentage of sources (sorted by fan-outs in
descending order) for three real-world IP traces (see Section V
for trace details). We observe different degrees of skewness of
different traces. For example, the top 1% of sources account
for over 60% of total fan-outs in the most skewed CAIDA19;
the top 10% of sources account for over 67% of total fan-
outs in the moderately skewed CAIDA18; the top 10% of
sources account for over 38% of total fan-outs for the least
skewed CAIDA16. Thus, it is highly likely that the fan-out
of each bucket of SpreadSketch is dominated by at most one
superspreader, while we use multiple buckets to mitigate the
hash collisions of multiple superspreaders into the same bucket.
Accurate fan-out estimation via hash strings. Inspired by
Probabilistic Counting [13], we can construct a binary hash
string of 0’s and 1’s by hashing each source-destination pair.
We then use the hash string to estimate the fan-out of a source.
Suppose that the hash string is uniformly generated in the form
of 0l1∗, where l (called the level) denotes the length of the
most significant 0-bits and ∗ represents arbitrary bits. Then on
average 1/2l+1 of distinct pairs have the pattern 0l1∗. In other

� buckets

� rows

Bucket �(�, �)

A table of buckets

�*,+:	total fan-out in �(�, �)

�*,+:	candidate superspreader

�*,+:	maximum level observed

�*,+ �*,+ �*,+

Fig. 2. Data structure of SpreadSketch.

words, the level l provides a rough estimation of the number
of distinct pairs. Given that each bucket is likely hashed by
at most one superspreader (see above), it can track the source
with the largest level as the candidate superspreader.

Also, we can combine the hash strings of a particular source
from multiple measurement points and find the candidate
(network-wide) superspreader in each bucket. Even though a
superspreader has a small fan-out at each single measurement
point, as long as its total fan-out dominates its hashed buckets,
we can still identify it via its combined hash string with a
high probability. We show how we leverage this property for
tracking candidate superspreaders in SpreadSketch in network-
wide detection (Section III-F).

B. Data Structure

Figure 2 shows the data structure of SpreadSketch, which
comprises r rows with w buckets each. Let B(i, j) be the
bucket at the i-th row and the j-th column, where 1 ≤ i ≤ r
and 1 ≤ j ≤ w. Each bucket B(i, j) consists of three fields:
(i) Vi,j , which is the distinct counter that counts the sum of
fan-outs of all sources hashed to the bucket (let |Vi,j | denote
the value stored in Vi,j); (ii) Ki,j , which stores the key of
the current candidate source that has the maximum level in
the bucket; and (iii) Li,j , which stores the current maximum
level observed in the bucket. Note that we can pre-allocate
static memory space for SpreadSketch in advance before the
measurement starts.

In addition, SpreadSketch is associated with two sets of hash
functions: (i) r pairwise-independent hash functions, denoted
by h1, h2, · · · , hr, such that hi (1 ≤ i ≤ r) hashes a source
key into one of the w buckets in row i; and (ii) the global hash
function h∗, which transforms each source-destination pair into
a hash string that closely resembles truly uniform independent
bits. Note that h∗ can be realized via many practical hash
schemes (e.g., standard multiplicative hashing) whose outputs
are indistinguishable from truly random bits [12], [21].

C. Basic Operations

SpreadSketch supports two basic operations (Figure 3): (i)
Update, which updates a source-destination pair (x, y) into the
sketch; and (ii) Query, which returns the estimated fan-out of
an input source key x.

The Update operation (Lines 1-9 of Figure 3) is invoked
for each arrival of (x, y) in a packet stream. We initialize the
variables of all buckets of SpreadSketch to zeros. Upon the
arrival of (x, y), we first compute the hash string of (x, y) via

1: procedure UPDATE(x, y)
2: l← length of most significant 0-bits of h∗(x, y)
3: for i = 1 to r do
4: COUNT(Vi,hi(x), x, y)
5: if Li,hi(x) ≤ l then
6: (Ki,hi(x), Li,hi(x))← (x, l)
7: end if
8: end for
9: end procedure

10: procedure QUERY(x)
11: return Ŝ(x)← min1≤i≤r{|Vi,hi(x)|}
12: end procedure
13: procedure COUNT(V, x, y)
14: l← length of most significant 0-bits of h∗(x, y)
15: if l < c− 1 then
16: p← h∗(x, y) mod b
17: V [l][p]← 1
18: else
19: p← h∗(x, y) mod b′

20: V [c− 1][p]← 1
21: end if
22: end procedure
23: procedure MERGE(q)
24: for i = 1 to r do
25: for j = 1 to w do
26: Vi,j ← V 1

i,j ∪ V 2
i,j · · · ∪ V q

i,j

27: Ki,j ← Kk∗
i,j , where k∗ = argmax1≤k≤q{Lk

i,j}
28: Li,j = max1≤k≤q{Lk

i,j}
29: end for
30: end for
31: end procedure

Fig. 3. Main operations of SpreadSketch.

the hash function h∗ and obtain the level l of the hash string
(i.e., the length of the most significant 0-bits). For each row i
(1 ≤ i ≤ r), we hash the source x into the bucket B(i, hi(x))
and increment the distinct counter Vi,hi(x). We also compare l
with the current maximum level Li,hi(x): if Li,hi(x) ≤ l, then
we replace Ki,hi(x) with x and update Li,hi(x) to l, meaning
that x is now the source with the maximum level among all
sources hashed to the bucket.

The Query operation (Lines 10-12 of Figure 3) is invoked
for a given input source x. We extract the value of each distinct
counter associated with x for 1 ≤ i ≤ r (denoted by |Vi,hi(x)|).
We return the minimum value of all the distinct counters as
the estimated fan-out of x (denoted by Ŝ(x)).

D. Distinct Counters

Both Update and Query operations of SpreadSketch depend
on the choice of the distinct counter (denoted by V) associated
with each bucket. In this paper, we choose the multiresolution
bitmap [9], which supports multiset operations for network-
wide detection (Section III-F) and can be readily implemented
in hardware (Section V).

The Update operation calls the Count operation (Lines 13-
22 of Figure 3) for distinct counting, which we realize as
follows. We construct the distinct counter of each bucket as c
bitmaps V [0], V [1], · · · , V [c−1], where the first c−1 bitmaps
V [0], V [1], · · · , V [c− 2] have b bits each and are associated
with the hash strings 001∗, 011∗, · · · , 0c−21∗, respectively,

while V [c − 1] has b′ bits and is associated with the hash
strings that have at least c− 1 most significant 0-bits; note that
c, b, and b′ are configurable parameters (see details below).
Given the hash string h∗(x, y), we map it to the corresponding
bitmap according to the number of most significant 0-bits, and
set the p-th bit to one, where p is the hash string modulo the
bitmap size. Based on the bitmap configuration, we expect
that half of the distinct items are mapped to V [0], a quarter of
the distinct items are mapped to V [1], and so on. To estimate
the distinct count of a multiresolution bitmap, we add all the
distinct counts of all bitmaps and multiply the sum with some
sampling factor [9].

The Query operation returns the minimum value of multiple
distinct counters associated with a source. We can estimate the
minimum value by combining multiple multiresolution bitmaps
via the bitwise AND operation and obtaining the distinct count
estimate of the combined bitmap.

We configure c, b, and b′ according to some pre-specified
relative error σ (0 < σ < 1) and the maximum possible distinct
count C [10]. Specifically, we fix b = 0.6367/σ2, and initialize
b′ = 2b and c = 2+ dlog2(C/2.6744b)e. We fine-tune both b′

and c for the minimum memory usage subject to the inputs
C and σ via the ComputeConfiguration algorithm. We refer
readers to [10] for details.

E. Identification of Superspreaders
To recover all superspreaders, we check all r × w buckets

of SpreadSketch at the end of each epoch. For each bucket
B(i, j) (1 ≤ i ≤ r, 1 ≤ j ≤ w), if the value of Vi,j exceeds
the pre-specified threshold, then we call the Query operation
on the candidate source in Ki,j to estimate its fan-out. If the
estimated fan-out also exceeds the pre-specified threshold, we
report the candidate source as a superspreader.

F. Network-Wide Superspreader Detection
We can deploy SpreadSketch at multiple measurement

points in parallel to support network-wide superspreader
detection. Suppose that there are q measurement points and a
centralized controller. Each measurement point runs an instance
of SpreadSketch, where all instances share the same set of
parameters (e.g., r, w, and hash functions). At the end of each
epoch, each measurement point sends its sketch data structure
to the controller, which then merges all received sketches (via
a Merge operation) and recovers superspreaders based on the
merged sketch. Note that we do not make any assumptions on
the selection of measurement points or the traffic distributions
among the measurement points.

We elaborate the Merge operation as follows (Lines 23-31 of
Figure 3). Let Bk(i, j) = (V ki,j ,K

k
i,j , L

k
i,j) be the bucket with

index (i, j) at the k-th measurement point, where 1 ≤ i ≤ r,
1 ≤ j ≤ w, and 1 ≤ k ≤ q. Upon receiving all q sketches, the
controller constructs a merged sketch whose bucket B(i, j) is
formed by all Bk(i, j)’s: (i) it sets Vi,j as the union of all V ki,j’s
(for the multiresolution bitmap [9], the union is equivalent to
the bitwise OR operation); (ii) it sets Kk

i,j as the candidate
superspreader that has the maximum level among all Kk

i,j ; and
(iii) it sets Li,j as the maximum value of all Lki,j’s.

After the Merge operation, the controller performs super-
spreader detection on the merged sketch as in Section III-E.
In essence, the merged sketch provides a network-wide view
as if all traffic were measured at a big measurement point.

IV. THEORETICAL ANALYSIS

We present theoretical analysis on SpreadSketch in memory
space, performance, and accuracy. We configure SpreadSketch
with three parameters: ε, δ, and σ (0 < ε, δ, σ < 1), where ε
and δ are the approximation parameter and the error probability
for the sketch configuration, respectively, and σ is the error
factor for the distinct counter configuration. We set r = log 1

δ
and w = 2

ε , where the logarithm base is 2. Our analysis also
assumes ε ≤ φ

4 to provide provable error bounds. Given σ,
we can derive the minimum memory space m (in bits) for a
distinct counter (Section III-D).

A. Space and Time Complexities

Theorem 1 shows the complexities of memory space, update
time, and detection time of SpreadSketch.

Theorem 1. The memory space is O(m+logn+log logn
ε log 1

δ).
The per-packet update time is O(log 1

δ), while the detection
time of returning all superspreaders is O(1ε log

2 1
δ).

Proof. SpreadSketch has rw buckets, each of which holds
an m-bit distinct counter (Vi,j), a log n-bit candidate source
key (Ki,j), and a log log n-bit level counter (Li,j). Thus,
the memory space is O(rw(m + log n + log log n)) =
O(m+logn+log logn

ε log 1
δ).

Each per-packet update takes one hash operation for cal-
culating the level, and then accesses log 1

δ buckets to update
distinct counters. Thus, it takes O(log 1

δ +1) = O(log 1
δ) time.

SpreadSketch checks all buckets to identify all super-
spreaders and estimate their fan-outs. It traces at most rw
superspreaders, each of which checks r buckets for its fan-out
estimation. The detection time is O(r2w) = O(1

w log2 1
δ).

Note that our proof of Theorem 1 assumes that each distinct
counter has O(1) time complexities, including adding an item
to the distinct counter and estimating the distinct count. This
assumption holds for the multiresolution bitmap [9] that we
use and other distinct counters [20], [37].

B. Accuracy for the Estimated Fan-Out

Theorem 2 shows the lower and upper bounds of the
estimated fan-out Ŝ(x) of a source x from the Query operation.
We bound Ŝ(x) with respect to S(x) (i.e., the true fan-out of
x) and S (i.e., the total fan-out of all sources) (Section II-A).

Theorem 2. For any source x, Ŝ(x) ≥ (1− σ)S(x); with a
probability at least 1− δ, Ŝ(x) ≤ (1 + σ)(S(x) + εS).

Proof. For the lower bound, each distinct counter associated
with x is updated by at least S(x) times. Given an error factor
σ, the estimate returned by each distinct counter is at least
(1−σ)S(x). As Ŝ(x) takes the minimum estimate of all distinct
counters, we have Ŝ(x) ≥ (1− σ)S(x).

For the upper bound, let Ri be the sum of fan-outs of all
sources excluding x in the bucket B(i, hi(x)) hashed by x in
row i, where 1 ≤ i ≤ r. The expectation of Ri, denoted by
E[Ri], is given by E[

∑
z 6=x,hi(z)=hi(x) S(z)] ≤

S−S(x)
w ≤ εS

2 ,
due to the pairwise independence of hi and the linearity of
expectation. By Markov’s inequality,

Pr[Ri ≥ εS] ≤ 1
2 . (1)

Given an error factor σ, we have Ŝ(x) ≤ (1+σ)(Ri+S(x))
for each row i. Thus, Pr[Ŝ(x) ≤ (1 + σ)(S(x) + εS)]

= 1− Pr[Ŝ(x)− (1 + σ)S(x) ≥ (1 + σ)εS]
≥ 1− Pr[(1+σ)(Ri+S(x))− (1+σ)S(x) ≥ (1+σ)εS,∀i]
= 1− Pr[Ri ≥ εS,∀i] ≥ 1− (12)

r = 1− δ.

The theorem follows.

C. Accuracy for Superspreader Detection

We first analyze the likelihood that a superspreader is tracked
by SpreadSketch. We then study the false positive and false
negative rates of SpreadSketch.

Lemma 1. A superspreader x is stored in one of its hashed
buckets with a probability at least 1− δ.

Proof. We first describe the idea of our proof. Consider the
bucket B(i, hi(x)) hashed by x in row i, where 1 ≤ i ≤ r.
We partition the distinct source-destination pairs hashed to
the bucket into two groups. The first group contains S(x)
distinct pairs sharing the same source x, and the second group
contains the remaining Ri distinct pairs. Let MS(x) and MRi

be the maximum level values of the two groups, respectively.
If MS(x) > MRi , x is stored in Ki,hi(x). Our idea is to show
that if x is a superspreader, then MS(x) ≤ MRi with a very
small probability. Let A denote the event MS(x) ≤MRi . Then
our problem is to prove that the probability of A, Pr[A], is at
most δ. We prove this in several steps.

Step (i): Deriving the close-form expression of Pr[A]. Let
Xt, where 1 ≤ t ≤ S(x), be a random variable that denotes the
length of the most significant 0-bits of a hash string for the t-th
distinct pair of the source x. Xt follows a geometric distribution
with the parameter 1

2 . Thus, we have Pr[Xt ≤ l] = 1− 1
2l+1 .

Recall that MS(x) is the maximum level value among the
mutually independent random variables {Xt}1≤t≤S(x), we have
Pr[MS(x) ≤ l] =

∏
1≤t≤S(x) Pr[Xt ≤ l] = (1 − 1

2l+1)
S(x).

Similarly, we obtain Pr[MRi≤ l] = (1− 1
2l+1)

Ri . Thus,

Pr[A] =
∑
l≥0 Pr[MRi= l and MS(x)≤ l]

=
∑
l≥0 Pr[MRi= l] Pr[MS(x)≤ l]

=
∑
l≥0(Pr[MRi≤ l]− Pr[MRi≤ l−1]) Pr[MS(x)≤ l]

=
∑
l≥0((1−

1
2l+1)

Ri − (1− 1
2l
)Ri)(1− 1

2l+1)
S(x). (2)

Step (ii): Analyzing the upper bound of Pr[A]. Let Ri =
λS(x) for some constant λ > 0. Based on Equation (2), we
rewrite Pr[A] as a function of Ri and λ, denoted by F (Ri;λ):

F (Ri;λ) =
∑
l≥0((1−

1
2l+1)

Ri − (1− 1
2l
)Ri)(1− 1

2l+1)
Ri/λ.

We can validate that F (Ri;λ) is a decreasing function of Ri
and an increasing function of λ.

This helps us simplify Pr[A] and obtain a rough upper bound.
We split Ri into equal-length ranges Il = [lS(x)4 , (l+1)S(x)

4] for
integer l ≥ 0. Let P (l) = Pr[Ri∈Il] for l ≥ 0. Thus,

Pr[A] =
∑
l≥0 Pr[A |Ri ∈ Il]P (l)

<
∑
l≥0 Pr[A |λ = (l+1)

4]P (l)

<F (Ri;
1
4)P (0) + F (Ri;

1
2)P (1) + Pr[Ri≥ S(x)

2]. (3)

To obtain the exact upper bound of Pr[A], we maximize the
right hand side of Inequality (3) by configuring its variables. We
first set P (0), P (1), and Pr[Ri ≥ S(x)

2], given the condition
that P (0)+P (1)+Pr[Ri≥ S(x)

2] = 1. If x is a superspreader,
S(x)≥φS. By the assumption ε ≤ φ

4 and Inequality (1), we
have Pr[Ri ≥ S(x)

4] ≤ Pr[Ri ≥ φS
4] ≤ Pr[Ri ≥ εS] ≤ 1

2 ; in
other words, P (0) ≥ 1

2 . Similarly, Pr[Ri ≥ S(x)
2] ≤ 1

4 .
Since F (Ri;λ) increases with λ, F (Ri; 1

4) < F (Ri;
1
2) <

1. The right hand side of Inequality (3) is maximized when
P (0) = 1

2 , P (1) = 1
4 , and Pr[Ri ≥ S(x)

2] = 1
4 . Thus,

Pr[A] < F (Ri;
1
4)×

1
2 + F (Ri;

1
2)×

1
4 + 1

4 .

Step (iii): Quantifying the upper-bound of Pr[A]. Here, we
configure some practical values of S(x) to quantify the terms
F (Ri;

1
4) and F (Ri; 1

2). For example, suppose that S(x) > 10.
We have Pr[A] < 0.269× 1

2 + 0.422× 1
4 + 1

4 = 0.49 < 1
2 .

By considering all r rows, we show that the probability that
a superspreader x is not tracked by all r hashed buckets is
Pr[MRi≥MS(x),∀1≤i≤r]< 1

2r = δ. The theorem follows.

Theorems 3 and 4 bound the false negative and false positive
rates of SpreadSketch, respectively.

Theorem 3. For source x with S(x) ≥ φS
1−σ , SpreadSketch

reports x as a superspreader with a probability at least 1− δ.

Proof. By Theorem 2, Ŝ(x) ≥ (1− σ)S(x) ≥ φS . Then x is
not reported as a superspreader if and only if it is not stored
in any of its hashed buckets. By Lemma 1, this happens with
a probability at most δ. Thus, x is reported as a superspreader
with a probability at least 1− δ.

Theorem 4. For source x with S(x) ≤ εS
1+σ , SpreadSketch

reports x as a superspreader with a probability at most δ.

Proof. A source x is reported as a superspreader only if Ŝ(x) ≥
φS and x is stored in one of its hashed buckets. We first
consider the probability Pr[Ŝ(x) ≥ φS]. From the proof of
Theorem 2, we have Ŝ(x) ≤ (1+σ)(Ri+S(x)) for each row
i, where 1 ≤ i ≤ r. Thus,

Pr[Ŝ(x) ≥ φS] ≤ Pr[(1 + σ)(Ri +
εS
1+σ) ≥ φS,∀i]

= Pr[Ri ≥ φ−ε
1+σS,∀i]

≤ Pr[Ri ≥ εS,∀i] (due to ε ≤ φ
4 and σ < 1)

≤ 1
2r = δ (by Inequality (1)).

We next consider the probability that x is stored in one of
its hashed buckets. By Lemma 1, this probability is less than
one. Combining both cases, the theorem follows.

TABLE I
COMPARISON OF SPREADSKETCH WITH STATE-OF-THE-ART SKETCHES.

Sketches r w Memory space Per-packet update time Detection time

DCS log 1
δ

H
ε2

log ((1 + logn)/δ) O(H
ε2

log2 n log ((2 + logn)/δ)) O(logn log 1
δ) O(H

ε2
log2 n log ((2 + logn)/δ))

CDS log 1
δ

2
ε O(mε log 1

δ) O(log 1
δ) O(Hlog(1/δ))

VBF log logn n1/ log logn O(m(log logn)n1/ log logn) O(log logn) O(Hlog logn)

CMH log 1
δ

2
ε O(mε log 1

δ +H logn) O(log Hδ) O(H)

REV O(logn
log logn) (logn)Θ(1) O(

m(logn)Θ(1)

log logn) O(logn) O(Hn
3

log logn log logn)

FAST 4H log 4
δ 1+log n

4H log (4/δ)
O(Hm log 1

δ log n
H log (1/δ)

) O(log 1
δ log n

H log (1/δ)
) O(H log3 1

δ log(n
H log (1/δ)

))

SpreadSketch log 1
δ

2
ε O(m+logn+log logn

ε log 1
δ) O(log 1

δ) O(H log 1
δ)

D. Analysis for Network-Wide Superspreader Detection

We briefly discuss the memory space, performance, and
accuracy of network-wide superspreader detection. Suppose
that we deploy q measurement points, each of which runs a
SpreadSketch instance with the same configuration parameters
as in a single-sketch case. Since there are q SpreadSketch
instances, the memory space is O(q(m+logn+log logn)

ε log 1
δ)

(i.e., q times the single-sketch case). The per-packet update time
at each measurement point remains O(log 1

δ). To recover all
superspreaders, the controller takes O(qrw) = O(qε log

1
δ) time

to merge q sketches and O(rw) = O(1ε log
2 1
δ) time to traverse

all the buckets of the merged sketch, so the total detection
time for returning all superspreaders is O(1ε log

1
δ (q + log 1

δ)).
Finally, our network-wide detection operates on a r×w merged
sketch, so its false negative and false positive rates follow
Theorems 3 and 4 as in the single-sketch case, respectively.

E. Comparison with Existing Approaches

We compare SpreadSketch with several state-of-the-art
sketches on superspreader detection (Section II-C), including
Distinct-Count Sketch (DCS) [14], Connection Degree Sketch
(CDS) [36], Vector Bloom Filter (VBF) [24], Count-Min-Heap
(CMH) [7], RevSketch (REV) with distinct counting [31],
[42], and Fast Sketch (FAST) [25], [26] with distinct counting.
Table I shows the space and time complexities of all sketches
in terms of ε, δ, n, m, and H (the maximum number of
superspreaders that appear in an epoch). We assume that the
distinct counters and bit arrays used in the sketches all have
O(1) time complexities. For CDS [36], the original paper does
not discuss the table configuration with respect to accuracy
parameters, so we set the numbers of rows and buckets of CDS
as in SpreadSketch.
Space. DCS has high memory space as it includes the term
log2 n
ε2 . CMH, REV, FAST, and SpreadSketch all contain a

log n term. However, the term refers to log n bits in CMH and
SpreadSketch, while it refers to log n distinct counters in FAST
and REV. It is not obvious whether SpreadSketch has smaller
memory space than CDS and VBF. However, our evaluation
(Section V) shows that SpreadSketch achieves higher accuracy
than both CDS and VBF under the same memory space.
Per-packet update time. CMH incurs log 1

δ memory accesses
to update the sketch and takes O(logH) time to access its
heap if the source is a superspreader. DCS, REV, and FAST
all have high update time complexities, which are proportional
to log n (i.e., the key length). VBF extracts consecutive bits of

each source key (in O(1) time) to locate O(log logn) hashed
buckets. Both CDS and SpreadSketch have the same low per-
packet update time.
Detection time. DCS, CDS, VBF, REV, and FAST all have
high detection time complexities; in particular, the detection
times of both CDS and VBF increase exponentially with the
number of rows. CMH takes only O(H) time to return all
superspreaders and their estimated fan-outs from its heap.
SpreadSketch takes O(log 1

δ) time to estimate the fan-out of
each superspreader, and hence O(H log 1

δ) time in total.

V. EVALUATION

We conduct trace-driven evaluation on real-world Internet
traces and compare SpreadSketch with state-of-the-art sketches.
We show that SpreadSketch achieves (i) high detection accuracy,
(ii) high update and detection performance, and (iii) accurate
network-wide superspreader detection. We further implement
SpreadSketch in P4 [3] and present its microbenchmark
performance on a Barefoot Tofino switch [1].

A. Setup

Traces. We consider three one-hour real-world traces, namely
CAIDA16, CAIDA18, and CAIDA19, captured by CAIDA [2]
on 10 GigE backbone links in years 2016, 2018, and 2019,
respectively. We divide each trace into 60 one-minute epochs.
We focus on the source-destination address pairs of IPv4 traffic
only. The three traces have highly different statistical properties
as well as skewness (Figure 1 in Section III-A): CAIDA16
(least skewed), CAIDA18 (moderately skewed), and CAIDA19
(most skewed) contain 0.46K, 1.31K, and 0.35K unique sources,
as well as 0.74K, 5.28K, and 2.58K distinct pairs per epoch
on average, respectively. We evaluate superspreader detection
in each epoch and obtain averaged results over all epochs.
Parameter configurations. We compare SpreadSketch with
the state-of-the-art sketches listed in Table I. For fair compar-
isons, we use the multiresolution bitmap [9] as the distinct
counter in CMH, REV, and FAST. We fix a multiresolution
bitmap as 438 bits, so that it can count up to 10,000 distinct
items with σ = 0.1 (Section III-D). Also, we configure the
same memory usage for all sketches. For SpreadSketch, we fix
r = 4 rows and vary the number of buckets per row (i.e., w)
for each given memory size. For other sketches, we tune r and
w under the given memory size and choose the setting that
maximizes the accuracy (F1-score). We tune the threshold for
each trace to keep the number of true superspreaders in each

●SS DCS CDS VBF CMH REV FAST

●
● ● ● ●0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

P
re

c
is

io
n
 (

%
)

● ● ● ● ●0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

R
e
c
a
ll

(%
)

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

F
1
 s

c
o
re

0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

E
rr

o
r

(%
)

(a) Precision on CAIDA16 (b) Recall on CAIDA16 (c) F1-score on CAIDA16 (d) Relative error on CAIDA16

● ● ● ● ●0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

P
re

c
is

io
n
 (

%
)

● ● ● ● ●0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

R
e
c
a
ll

(%
)

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

F
1
 s

c
o
re

0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

E
rr

o
r

(%
)

(e) Precision on CAIDA18 (f) Recall on CAIDA18 (g) F1-score on CAIDA18 (h) Relative error on CAIDA18

● ● ● ● ●

0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

P
re

c
is

io
n
 (

%
)

● ● ● ● ●
0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

R
e
c
a
ll

(%
)

● ● ●
●

●

0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

F
1
 s

c
o
re

0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

E
rr

o
r

(%
)

(i) Precision on CAIDA19 (j) Recall on CAIDA19 (k) F1-score on CAIDA19 (l) Relative error on CAIDA19

Fig. 4. (Experiment 1) Accuracy. We do not plot the relative errors for some settings if the corresponding recall is zero.

epoch as 100. In particular, we fix the heap size of CMH as
256 source keys, so as to provide sufficient space for storing
candidate superspreaders.
Metrics. We consider the following metrics.
• Precision: the ratio of true superspreaders detected over all

superpspreaders reported;
• Recall: the ratio of true superspreaders detected over all true

superspreaders reported;
• F1-score: the harmonic average of precision and recall;
• Relative error: 1

|D|
∑
x∈D

|Ŝ(x)−S(x)|
S(x) , where D is the set of

true superspreaders detected;
• Throughput: the number of packets processed per second;
• Detection time: the time spent on recovering all super-

spreaders.

B. Results

(Experiment 1) Accuracy. Figure 4 compares the accuracy
of SpreadSketch with that of other sketches on all three traces
versus the memory size (varied from 1 MiB to 3 MiB). We
make several observations. First, CDS has the highest F1-score
on CAIDA16, yet its precision drops greatly on CAIDA18 and
CAIDA19 when the memory is no more than 1.5 MiB (e.g.,
near zero in Figure 4(e)). The reason is that both CAIDA18
and CAIDA19 have much more distinct pairs than CAIDA16,
and CDS needs more buckets to distinguish the sources with
large fan-outs. With insufficient buckets, CDS returns many
false positives. Similar observations apply to VBF, which has
a precision of near zero on CAIDA18 and below 0.56 on
CAIDA19. Second, CMH, FAST, and REV all have a higher
F1-score for more skewed traces (e.g., the lowest F1-score on
CAIDA16, and the highest F1-score on CAIDA19). The reason
is that with a higher skewness of fan-outs, they can distinguish

more readily superspreaders from normal sources. Third, DCS
has a nearly zero F1-score on all traces, as it requires more
memory to report all superspreaders.

SpreadSketch achieves the highest F1-score in most cases. Its
F1-score is 0.86-0.96, 0.82-0.93, and 0.96-0.97 on CAIDA16,
CAIDA18, and CAIDA19, respectively; it is the only sketch
that achieves an F1-score of above 0.9 when the memory size
is at least 1.5 MiB. Although it has a lower F1-score than CDS
on CAIDA16, SpreadSketch is generally much more robust
than CDS and the other sketches on accuracy on all traces.
Also, SpreadSketch achieves the lowest relative errors among
all sketches on all traces.
(Experiment 2) Performance. We benchmark the performance
of all sketches on a server equipped with an eight-core Intel
Xeon E5-1630 3.70 GHz CPU and 16 GiB RAM. The server
runs Ubuntu 14.04.5. Before running each experiment on a
trace, we load the whole trace into memory to exclude any
disk I/O overhead. We present only the results on CAIDA16,
while the same observations are made on other traces. We fix
the memory size of all sketches as 1 MiB. Our plots omit the
error bars as the variances across epochs are negligible.

Figure 5(a) shows the update throughput of adding the source-
destination pairs of a packet stream into a sketch (in million
packets per second (MPPS)). SpreadSketch, CDS, and VBF all
achieve a throughput of above 14.88 MPPS, implying that they
can match a 10 Gb/s line-rate in software. VBF has the highest
throughput as it uses the consecutive bits of a source key to
locate buckets, while other sketches including SpreadSketch
perform multiple hash computations to map a source to buckets.
CMH has the lowest throughput, as it spends non-negligible
time to estimate fan-outs and traverse the heap structure.

Figure 5(b) shows the detection time of returning all

22.92

2.66

20.24

30.34

0.29
3.48 3.40

0

10

20

30

SS DCS CDS VBF CMH REV FAST

T
h
ro

u
g
h
p
u
t
(M

P
P

S
)

26.53 ms

50 us

8618.75 s

29.98 s

16 us

31.69 s

579 us

10
0

10
2

10
4

10
6

10
8

10
10

10
12

SS DCS CDS VBF CMH REV FAST

R
e
c
o
ve

ry
 t
im

e
 (

u
s
)

(a) Update throughput (b) Detection time

Fig. 5. (Experiment 2) Performance.

SS CMH Univ

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12
Number of measurement points

P
re

c
is

io
n

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12
Number of measurement points

R
e
c
a
ll

(a) Precision (b) Recall

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12
Number of measurement points

F
1
 s

c
o
re

0

25

50

75

100

2 4 6 8 10 12
Number of measurement points

E
rr

o
r

(%
)

(a) F1-score (b) Relative error

Fig. 6. (Experiment 3) Network-wide detection.

superspreaders. SpreadSketch, DCS, CMH and FAST all return
superspreaders in few milliseconds. CMH has the smallest
detection time as it outputs superspreaders from its heap
structure directly. In contrast, VBF and REV take around 30 s
to recover superspreaders from their data structures, and CDS
even takes over two hours. Overall, SpreadSketch achieves
both high update and detection performance.
(Experiment 3) Network-wide detection. We now study
network-wide detection, and also include the sketch-based
network-wide measurement system UnivMon [27] in com-
parisons. For UnivMon, we replace all integer counters with
multiresolution bitmaps for superspreader detection. We sim-
ulate a network-wide scenario (Section III-F) by partitioning
the packets in an epoch of a trace to a given number of
measurement points (i.e., the same source may appear in
multiple measurement points). We present only the results
on CAIDA19, while the results are similar for other traces.
Also, among state-of-the-art sketches, we show only the results
for CMH; for others, the accuracy remains identical as in
single-point detection. We again fix the memory space of each
sketch at each measurement point as 1 MiB.

Figure 6 shows the accuracy versus the number of mea-
surement points. The accuracy of SpreadSketch is maintained
regardless of the number of measurement points. In contrast,
the F1-score of CMH varies with the number of measurement
points and generally shows a downtrend. The reason is that
CMH only keeps (in its heap structure) the source keys whose
fan-outs exceed a pre-specified threshold at each measurement
point, but it may likely miss the superpspreaders that show
small fan-outs at most measurement points. UnivMon achieves
almost a zero F1-score in all cases, as it maintains information
for different traffic statistics and hence requires much more

TABLE II
SWITCH RESOURCE USAGE OF SPREADSKETCH (PERCENTAGES IN

BRACKETS ARE FRACTIONS OF TOTAL RESOURCE USAGE).
SRAM (KiB) No. stages No. actions No. ALUs PHV size (bytes)

256 (1.67%) 6 (50%) 20 (nil) 6 (12.5%) 108 (14%)

memory to achieve high accuracy.
(Experiment 4) SpreadSketch in hardware. We implement
SpreadSketch in P4 [3] (with less than 500 lines of code)
and compile it in the Barefoot Tofino chipset [1]. Our
implementation realizes each row of SpreadSketch as an array
of registers that can be directly updated in the switch data
plane via stateful ALUs. We generate the hash string of each
source-destination pair in a dedicated match-action table. We
then count the number of leading zeros of the hash string
using a longest-prefix-match table. If a hash string matches
one entry of the table, the action of that entry will return
the corresponding level value. To fit SpreadSketch in limited
switch memory, we set r = 3, w = 2048, and m = 128. We
find that SpreadSketch achieves an F1-score of over 0.9 for an
epoch length of one second on all CAIDA traces.

Table II shows the switch resource usage of SpreadSketch in
SRAM consumption, the numbers of physical stages, actions,
and stateful ALUs (all of which measure computational
resources), as well as the packet header vector (PHV) size
(which measures the message size across stages). SpreadSketch
uses 256 KiB of SRAM, which accounts for only 1.67% of
the total SRAM. We can place all the tables, registers, and
ALU operations for managing SpreadSketch in the data plane
in six physical stages (half of the total stages of the Tofino
chipset). However, SpreadSketch still leaves sufficient resources
in each occupied stage for other applications since its overall
consumptions of SRAM and ALUs are limited. Our prototype
contains 20 actions in total to process packets, including hash
computations and the updates of register arrays. To perform
transactional read-test-write operations on multiple buckets for
each source-destination pair, SpreadSketch consumes only six
(12.5% of total) stateful ALUs. The PHV size in our prototype
is 108 bytes (14% of total PHV resources), nearly half of
which are needed to store packet header information for packet
forwarding. We also validate that SpreadSketch can process
packets at line-rate on a Tofino switch.

VI. CONCLUSIONS

This paper designs a new invertible sketch data structure
called SpreadSketch for network-wide superspreader detection.
We show via theoretical analysis and trace-driven evaluation
that SpreadSketch achieves high memory efficiency, high update
and detection performance, as well as high detection accuracy.
We further implement SpreadSketch in P4 and demonstrate its
feasible deployment in commodity hardware switches.
Acknowledgments: The work was supported by Research
Grants Council of Hong Kong (GRF 14204017), National
Key R&D Program of China (2019YFB1802600), National
Natural Science Foundation of China (61802365), and CAS
Pioneer Hundred Talents Program. The corresponding author
is Qun Huang.

REFERENCES

[1] Barefoot’s Tofino. https://barefootnetworks.com/products/brief-tofino/.
[2] CAIDA. http://www.caida.org/data/passive/trace stats/.
[3] P4 Language. https://p4.org.
[4] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner. Heavy Hitters in

Streams and Sliding Windows. In Proc. of IEEE INFOCOM, 2016.
[5] J. Cao, Y. Jin, A. Chen, T. Bu, and Z.-L. Zhang. Identifying High

Cardinality Internet Hosts. In Proc. of IEEE INFOCOM, 2009.
[6] G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary:

The Count-min Sketch and its Applications. Journal of Algorithms,
55(1):58–75, 2005.

[7] G. Cormode and S. Muthukrishnan. Space Efficient Mining of Multigraph
Streams. In Proc. of ACM PODS, 2005.

[8] Z. Durumeric, M. Bailey, and J. A. Halderman. An Internet-Wide View
of Internet-Wide Scanning. In Proc. of USENIX Security Symposium,
2014.

[9] C. Estan, G. Varghese, and M. Fisk. Bitmap Algorithms for Counting
Active Flows on High Speed Links. In Proc. of ACM IMC, 2003.

[10] C. Estan, G. Varghese, and M. Fisk. Bitmap Algorithms for Counting
Active Flows on High Speed Links. Technical report, UCSD technical
report CS2003-0738, 2003.

[11] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexible and
Elastic DDoS Defense. In Proc. of USENIX Security Symposium, 2015.

[12] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
Analysis of a Near-optimal Cardinality Estimation Algorithm. In Analysis
of Algorithms, 2007.

[13] P. Flajolet and G. N. Martin. Probabilistic Counting Algorithms for
Data Base Applications. Journal of Computer and System Sciences,
31(2):182–209, 1985.

[14] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani. Streaming
Algorithms for Robust, Real-Time Detection of DDoS Attacks. In Proc.
of IEEE ICDCS, 2007.

[15] J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L. Uden, and
X. Li. HeavyKeeper: An Accurate Algorithm for Finding Top-k Elephant
Flows. In Proc. of USENIX ATC, pages 909–921, 2018.

[16] H. Huang, Y.-E. Sun, S. Chen, S. Tang, K. Han, J. Yuan, and W. Yang.
You Can Drop but You Can’t Hide: K-persistent Spread Estimation in
High-speed Networks. In Proc. of IEEE INFOCOM, 2018.

[17] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and
G. Zhang. SketchVisor: Robust Network Measurement for Software
Packet Processing. In Proc. of ACM SIGCOMM, 2017.

[18] Q. Huang, P. P. Lee, and Y. Bao. SketchLearn: Relieving User Burdens
in Approximate Measurement with Automated Statistical Inference. In
Proc. of ACM SIGCOMM, 2018.

[19] N. Kamiyama, T. Mori, and R. Kawahara. Simple and Adaptive
Identification of Superspreaders by Flow Sampling. In Proc. of IEEE
INFOCOM, 2007.

[20] D. M. Kane, J. Nelson, and D. P. Woodruff. An Optimal Algorithm for
the Distinct Elements Problem. In Proc. of ACM PODS, 2010.

[21] D. E. Knuth. The Art of Computer Programming, Volume 4. Addison-
Wesley Professional, 2015.

[22] T. Li, S. Chen, W. Luo, M. Zhang, and Y. Qiao. Spreader Classification
Based on Optimal Dynamic Bit Sharing. IEEE/ACM Trans. on
Networking, 21(3):817–830, 2013.

[23] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: a Better NetFlow for
Data Centers. In Proc. of USENIX NSDI, 2016.

[24] W. Liu, W. Qu, J. Gong, and K. Li. Detection of Superpoints Using a
Vector Bloom Filter. IEEE Trans. on Information Forensics and Security,
11(3):514–527, 2016.

[25] Y. Liu, W. Chen, and Y. Guan. A Fast Sketch for Aggregate Queries
over High-Speed Network Traffic. In Proc. of IEEE INFOCOM, 2012.

[26] Y. Liu, W. Chen, and Y. Guan. Identifying High-Cardinality Hosts from
Network-Wide Traffic Measurements. IEEE Trans. on Dependable and
Secure Computing, 13(5):547–558, 2016.

[27] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon. In Proc. of ACM SIGCOMM, 2016.

[28] R. Martin. Snort: Lightweight Intrusion Detection for Networks. In Proc.
of USENIX LISA, 1999.

[29] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. SCREAM: Sketch
Resource Allocation for Software-defined Measurement. In Proc. of
ACM CoNEXT, 2015.

[30] D. Plonka. FlowScan: A Network Traffic Flow Reporting and Visualiza-
tion Tool. In Proc. of USENIX LISA, 2000.

[31] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda,
M. Y. Kao, and G. Memik. Reversible Sketches: Enabling Monitoring
and Analysis over High-Speed Data Streams. IEEE/ACM Trans. on
Networking, 15(5):1059–1072, 2007.

[32] S. Sen and J. Wang. Analyzing Peer-to-Peer Traffic Across Large
Networks. In Proc. of ACM SIGCOMM, 2002.

[33] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm
Fingerprinting. In Proc. of USENIX OSDI, 2004.

[34] L. Tang, Q. Huang, and P. P. Lee. MV-Sketch: A Fast and Compact
Invertible Sketch for Heavy Flow Detection in Network Data Streams.
In Proc. of IEEE INFOCOM, 2019.

[35] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New Streaming
Algorithms for Fast Detection of Superspreaders. In Proc. of NDSS,
2005.

[36] P. Wang, X. Guan, T. Qin, and Q. Huang. A data streaming method for
monitoring host connection degrees of high-speed links. IEEE Trans. on
Information Forensics and Security, 6(3):1086–1098, 2011.

[37] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A Linear-Time
Probabilistic Counting Algorithm for Database Applications . ACM
Trans. on Database Systems, 15(2):208–229, 1990.

[38] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen. Estimating the Persistent
Spreads in High-Speed Networks. In Proc. of IEEE ICNP, 2014.

[39] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and
S. Uhlig. Elastic Sketch: Adaptive and Fast Network-Wide Measurements.
In Proc. of ACM SIGCOMM, 2018.

[40] M. Yoon and S. Chen. Detecting Stealthy Spreaders by Random Aging
Streaming Filters. IEICE Trans. on communications, 94(8):2274–2281,
2011.

[41] M. Yoon, T. Li, S. Chen, and J.-K. Peir. Fit a Compact Spread Estimator
in Small High-Speed Memory. IEEE/ACM Trans. on Networking,
19(5):1253–1264, 2011.

[42] M. Yu, L. Jose, and R. Miao. Software Defined Traffic Measurement
with OpenSketch. In Proc. of USENIX NSDI, 2013.

[43] Q. Zhao, A. Kumar, and J. Xu. Joint Data Streaming and Sampling
Techniques for Detection of Super Sources. In Proc. of ACM SIGCOMM,
2005.

[44] Y. Zhou, Y. Zhou, M. Chen, and S. Chen. Persistent Spread Measurement
for Big Network Data Based on Register Intersection. Proc. of ACM on
Measurement and Analysis of Computing Systems, 1(1):15, 2017.

