
Generalized Optimal Storage Scaling via Network Coding

Yuchong Hu1,3, Xiaoyang Zhang1, Patrick P. C. Lee2, and Pan Zhou1

1Huazhong University of Science and Technology 2The Chinese University of Hong Kong
3Shenzhen Huazhong University of Science and Technology Research Institute

Abstract—It is critical to support efficient scaling in distributed
storage systems so as to meet increasing storage demands with
new storage nodes. However, the scaling process incurs substan-
tial scaling bandwidth due to reorganizing currently stored data
to new storage nodes. Recent work has applied network coding
to minimize scaling bandwidth for a special case where (n, k)
MDS codes are scaled to (n′, k′) MDS codes for n′ −k′ = n−k.
In this paper, we extend the results and prove the minimum
scaling bandwidth for a more general setting where (n, k) MDS
codes are scaled to (n′, k′) MDS codes for n′ > n and k′ ≥ k.
Furthermore, we present a family of MDS code construction that
achieves optimal scaling from (n, k) to (n′, k′) where k = k′.

I. INTRODUCTION

Distributed storage systems [3], [4] adopt erasure coding

to ensure fault-tolerant storage with low redundancy. Here,

we consider a special class of erasure codes called (n, k)
Maximum Distance Separable (MDS) codes, where k < n. In

(n, k) MDS codes, we divide an original file of size M into k
blocks of size M/k each, and encode them into n coded blocks

also of size M/k each, such that any k out of n coded blocks

can reconstruct the original file (called the MDS property).
To adapt to increasing storage demands, new nodes are often

added to erasure-coded storage systems. This motivates us to

study the storage scaling problem, in which the objective is to

re-distribute all coded data across all nodes to balance the stor-

age usage. Since storage scaling inevitably incurs substantial

scaling bandwidth (i.e., the amount of traffic triggered during

the scaling process) across the network, many studies (e.g.,

[5], [9], [10]) have proposed scaling approaches to mitigate

the scaling bandwidth.
A recent study [11] presents the first work that applies

network coding [1] to minimize the scaling bandwidth in

erasure-coded storage by allowing storage nodes to send

encoded data during scaling. However, it only addresses a

special case that scales from (n, k) MDS codes to (n′, k′)
MDS codes for n′ − k′ = n − k. The scaling analysis for

more general cases remains unexplored.
In this paper, we consider a more general storage scaling

setting from (n, k) MDS codes to (n′, k′) MDS codes for

n′ > n and k′ ≥ k. We prove the information-theoretically

minimum scaling bandwidth using the information flow graph

model [1]. We further present a family of MDS code construc-

tion that achieves the minimum scaling bandwidth for scaling

This work was supported by the National Natural Science Foundation
of China (61502191, 61502190, 61602197, 61772222), Fundamental Re-
search Funds for the Central Universities (2017KFYXJJ065, 2016YXMS085),
Shenzhen knowledge innovation program (JCYJ20170307172447622), ZTE
industry-academia-research cooperation funds and Research Grants Council
of Hong Kong (GRF 14216316 and CRF C7036-15G).

from (n, k) to (n′, k′) for k = k′, which covers a scaling

scenario that keeps k intact while increasing the redundancy

(by increasing n) for higher fault tolerance.

II. PROBLEM

We define the scaling problem from (n, k) MDS codes

to (n′, k′) MDS codes, where (i) n′ > n and (ii) k′ ≥ k.

Case (i) states that there are n′ − n new nodes added into the

storage system, indicating that the scaling process deals with

increasing storage demands. Case (ii) states that the capacity

of each node before scaling (i.e., M/k) is no more than that of

each node after scaling (i.e., M/k′), implying that the scaling

process migrates data from the existing nodes to new nodes.

We perform storage scaling from (n, k) to (n′, k′) for a

data file of size M in two steps. In the first step, each existing

node Xi (1 ≤ i ≤ n) encodes its stored data of size M
k into

some encoded data, deletes M
k − M

k′ of its stored data, and

only stores data of size M
k′ . In the second step, each new node

Yi′ (1 ≤ i′ ≤ n′ − n) downloads the encoded data from each

Xi (1 ≤ i ≤ n) and encodes all its downloaded data into the

stored data of size M
k′ . Let β denote the bandwidth between

any existing node Xi to any new node Yi′ ; in other words,

each Yi′ downloads at most β units of encoded data from Xi.

Our goal is to minimize the scaling bandwidth, while pre-

serving the MDS property; equivalently, we aim to minimize

β, while the data file can be reconstructed from any k nodes.

III. MODEL

We construct an information flow graph G from (n, k) to

(n′, k′), as shown in Figure 1.

Nodes in G:
• A virtual source S and a data collector T are added as the

source and destination nodes of G, respectively.

• Each existing storage node Xi (1 ≤ i ≤ n) is represented

by (i) an input node Xin
i , (ii) a middle node Xmid

i , (iii) an

output node Xout
i , (iv) a directed edge Xin

i →Xmid
i with

capacity M
k (i.e., the amount of data stored in Xi before

scaling), and (v) a directed edge Xmid
i →Xout

i with capacity
M
k′ (i.e., the amount of data stored in Xi after scaling).

• Each new storage node Yi′ (1 ≤ i′ ≤ n′ −n) is represented

by (i) an input node Y in
i′ , (ii) an output node Y out

i′ , and

(iii) a directed edge Y in
i′ → Y out

i′ with capacity M
k′ (i.e., the

amount of data stored in Yi′).

Edges in G:
• A directed edge S → Xin

i is added for every i (1 ≤ i ≤ n)

with an infinite capacity for data distribution.

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 956

M/k'

∞ M/k

Xin

Xin

M/k'

...

M/k'

...
...

cut
Xin

Xin

Xin
t2

t1

S

Virtual
source

T Data
collector

Existing node

New node

S

XmidXin Xout

Yin Yout

T

t3

...
...

...

Type 1

Type 2

Type 3

Type 4

t4

Xmid

Xmid

Xmid

Xmid

Xmid

Xout

Xout

Xout

Xout

Xout

Yin

Yin

Yin

Yout

Yout

Yin Yout

Yout

Yin Yout

Fig. 1. Information flow graph G for scaling from (n, k) to (n′, k′), where n′ > n and k′ ≥ k.

• A directed edge Xmid
i → Y in

i′ is added for every i (1 ≤ i ≤
n) and i′ (1 ≤ i′ ≤ n′ − n) with capacity β.

• We select any k output nodes and a directed edge is added

from each of them to T with an infinite capacity for data

reconstruction.

To minimize β, we analyze the capacities of all possible

min-cuts in G. A cut is a collection of directed edges, such

that any path from S to T must have at least one edge in

the cut. A min-cut is the cut that has the minimum sum of

capacities of all its edges. To preserve the MDS property after

scaling, we need to consider
(
n′

k′
)

possible data collectors at

T . Thus, both the number of variants of G and the number of

possible min-cuts are also
(
n′

k′
)
.

Let (C, C̄) be some cut of G, where S ∈ C and T ∈ C̄.

Note that we do not consider the cuts with edges directed

from S or to T , as such edges have an infinite capacity. For

the remaining cuts, we characterize them by classifying the

storage nodes into four types based on the nodes in C̄ (see

Figure 1 for details):

• Type 1: Both Xmid
i and Xout

i are in C̄ for some i ∈ [1, n];
• Type 2: Xmid

i is in C, while Xout
i is in C̄, for some i ∈ [1, n];

• Type 3: Y in
i′ is in C, while Y out

i′ is in C̄, for some i′ ∈
[1, n′ − n]; and

• Type 4: Both Y in
i′ and Y out

i′ are in C̄ for some i′ ∈ [1, n′−n].

Suppose that T connects to ti nodes of Type i (1 ≤ i ≤ 4).

To make data reconstruction viable after scaling, we require:

t1 + t2 + t3 + t4 = k′. (1)

IV. ANALYSIS

We now derive the lower bound of β by analyzing the min-

cuts of G. Our analysis is similar to that of the classical repair

problem via network coding [2]. Although both scaling and

repair problems aim to minimize bandwidth, there exists one

M/2

 M/k'

 M/k' cut

 T

S

in
1X

in
2X

in
3X

out
1X

out
2X

out
3X

in
1Y out

1Y

 mid
3X

 mid
2X

mid
1X

*

Fig. 2. Information flow graph G for scaling from (3, 2) to (4, 2).

key difference: in scaling, if the data collector T selects some

existing nodes (say one of them is X) and some new nodes

(say one of them is Y), then there may be less than β units

of effective information from X to Y . The reason is that X
has offered all its information to T ; even if it transfers β
units to Y , some of them are not seen as effective information

from the perspective of T . For example, Figure 2 depicts the

scaling from (3, 2) to (4, 2). Although the bandwidths of all

the scaling links between existing nodes and new nodes are

defined as β, the effective information from Xmid
3 to Y in

1 is

actually zero. Since Xout
3 is selected by T and will provide

M/2 units to T , Xmid
3 cannot transmit additional effective

information to Y in
1 . It motivates us to define β∗ as effective

information out of β. For example, in Figure 2, the effective

information from Xmid
3 to Y in

1 is β∗ = 0, and the capacity of

the cut is actually 2β +M/2.

Based on the definition of β∗, we see that β and β∗ are

subject to the following inequalities:{
β ≥ β∗,

β∗ ≤
M
k −M

k′
t4

.
(2)

Here, β∗ ≤
M
k −M

k′
t4

means that each existing node can transmit

at most M
k − M

k′ units to the t4 selected new nodes.

2018 IEEE International Symposium on Information Theory (ISIT)

957

Let Λ(t1, t2, t3, t4) denote the capacity of a cut. We derive

Λ as follows:

• Each storage node of Type 1 contributes M
k to Λ;

• Each storage node of Type 2 contributes M
k′ to Λ;

• Each storage node of Type 3 contributes M
k′ to Λ; and

• Each storage node of Type 4 contributes (n−t1−t2)β+t2·β∗

to Λ.

Thus, we have:

Λ = t1 · M
k + t2 · M

k′ + t3 · M
k′ +

t4 · ((n− t1 − t2)β + t2 · β∗). (3)

We consider three cases of Λ as follows.

A. Case 1: k = k′

When k = k′, based on the example in Figure 2, we have

β∗ = 0. (4)

Thus, Equation (3) can reduce to:

Λ = t1 · M
k

+ t2 · M
k′

+ t3 · M
k′

+ t4 · (n− t1 − t2)β. (5)

In addition, due to Equation (4), Equation (2) is satisfied.

We first give a necessary condition of the lower bound of

β by analyzing a specific case as follows:

t1 = 0;
t2 = k′ − 1;
t3 = 0;
t4 = 1.

In this case, Equation (5) can reduce to:

Λ = (k′ − 1) · M
k′

+ (n− k′ + 1) · β. (6)

Since the capacities of all possible min-cuts of G are at least M
for valid file reconstruction, we have Λ ≥ M . By Equation (6),

we have

β ≥ M

(n− k′ + 1)k′
. (7)

To show that the lower bound in Equation (7) is actually

tight, we can analyze the capacities of all possible min-cuts

of G of Case 1 via the following lemma.

Lemma 1. Suppose that k = k′ and β is equal to its lower
bound M

(n−k′+1)k′ . Then the capacity of each possible min-cut
of G is at least M .

Proof: By Equation (7), Equation (5) can reduce to:

Λ ≥ t1 · M
k

+ t2 · M
k′

+ t3 · M
k′

+ t4 · M · (n− t1 − t2)

(n− k′ + 1)k′
. (8)

By Equation (1) and k = k′, Equation (8) can reduce to:

Λ ≥ M + t4 · M
k′

· k
′ − 1− t1 − t2
n− k′ + 1

. (9)

When t4 = 0, Λ ≥ M . When t4 ≥ 1, by Equation (1), k′ −
1− t1 − t2 ≥ 0 and hence Λ ≥ M . The lemma holds.

B. Case 2: k < k′ and n
k ≥ n′

k′

Similar to Case 1, we first give a necessary condition of the

lower bound of β and obtain β∗.

Clearly, each new storage node Yi′ (1 ≤ i′ ≤ (n′ − n))
must receive at least M

k′ units of data from all existing storage

nodes Xi’s (1 ≤ i ≤ n) over the links with capacity β each.

Thus, we have

β ≥ M

nk′
. (10)

Let β∗ be equal to M
nk′ . Then we need to show that β and β∗

in Case 2 satisfy the conditions of Equation (2). Clearly, the

first equation of Equation (2) is satisfied. The second equation

of Equation (2) can reduce to

M
k − M

k′

t4
≥ M

nk′
. (11)

Type 4 only has new storage nodes, so t4 ≤ n′ − n. Then

M
k − M

k′

t4
≥

M
k − M

k′

n′ − n
. (12)

By Equation (12), Equation (11) holds if

M
k − M

k′

n′ − n
− M

nk′
≥ 0. (13)

Equation (13) can reduce to

M · k′ · n− k · n′

(n′ − n) · kk′n ≥ 0. (14)

Since n
k ≥ n′

k′ , Equation (14) holds, so Equation (11) holds.

Thus, the second equation of Equation (2) is satisfied.

To show the lower bound in Equation (10) is actually tight,

we analyze the capacities of all possible min-cuts of G of Case

2 via the following lemma.

Lemma 2. Suppose that k < k′, n
k ≥ n′

k′ and β is equal to its
lower bound M

nk′ . Then the capacity of each possible min-cut
of G is at least M .

Proof: Given that β∗ = β, Equation (3) can reduce to:

Λ = t1 · M
k

+ t2 · M
k′

+ t3 · M
k′

+ t4 · (n− t1)β. (15)

By Equation (1), and n′ − n ≥ t4 (Type 4 only has new

storage nodes), Equation (15) can reduce to:

Λ ≥ M + t1 ·M · n · k′ − k · n′

kk′n
. (16)

Due to n
k ≥ n′

k′ , the right hand side of Equation (16) must be

at least M . The lemma holds.

C. Case 3: k < k′ and n
k < n′

k′

We divide Case 3 into two sub-cases.

1)
M
k −M

k′
t4

≥ M
nk′ : Similar to Case 2 in Section IV-B, let

β∗ = β = M
nk′ . Then we can ensure that Equation (2) is met

and we have all possible Λ ≥ M .

2018 IEEE International Symposium on Information Theory (ISIT)

958

2)
M
k −M

k′
t4

< M
nk′ : In this sub-case, note that if β∗ = β =

M
nk′ , then Equation (2) cannot be met, so the lower bound of

β should be larger than M
nk′ , i.e., M

nk′ < β.

Let β∗ =
M
k −M

k′
t4

. Due to
M
k −M

k′
t4

< M
nk′ and M

nk′ < β,

Equation (2) is met. Also, Equation (3) can reduce to

Λ = (t1 + t2) · M
k

+ t3 · M
k′

+ t4 · (n− t1 − t2)β. (17)

Then we give a necessary condition of the lower bound of

β via analyzing a special case in which t3 = 0. Equation (17)

can now reduce to:

Λ = (t1 + t2) · M
k

+ t4 · (n− t1 − t2)β. (18)

Since the capacities of all the possible min-cuts of G are at

least M for valid file reconstruction, we have Λ ≥ M . Then

by Equation (18), we have

β ≥ M

k
· k − (t1 + t2)

(n− (t1 + t2))(k′ − (t1 + t2))
. (19)

To obtain the maximum value of the right hand side of

Equation (19), we first determine the range of (t1 + t2).

Due to
M
k −M

k′
t4

< M
nk′ , Equation (1) can reduce to

M
k − M

k′

k′ − (t1 + t2 + t3)
<

M

nk′
. (20)

Since t3 = 0, Equation (20) can reduce to:

t1 + t2 <
kk′ + n(k − k′)

k
. (21)

Thus, we have

(t1 + t2)max =

{
kk′+n(k−k′)

k − 1, nk′
k is integral,

�kk′+n(k−k′)
k �, nk′

k is decimal.
(22)

By Equation (1) and due to t3+t4 ≤ n′−n (nodes of Type 3

and Type 4 are all new storage nodes), we have k′−(n′−n) ≤
t1 + t2. Thus, we have

(t1 + t2)min =

{
k′ − (n′ − n), k′ ≥ (n′ − n),

0, k′ < (n′ − n).
(23)

Based on the right-hand side of Equation (19), we define a

function f(t1 + t2) as follows:

f(t1 + t2) =
M

k
· k − (t1 + t2)

(n− (t1 + t2))(k′ − (t1 + t2))
. (24)

Through the derivation of Equation (24), we work out the

maximum of the right hand side of Equation (19) as follows:

⎧⎨
⎩
f((t1 + t2)max), (t1 + t2)max ≤ Z,
max(f(�Z�), f(�Z�)), (t1 + t2)min ≤ Z ≤ (t1 + t2)max,
f((t1 + t2)min), Z ≤ (t1 + t2)min.

(25)

where Z = k −√
(n− k)(k′ − k).

To show the lower bound in Equation (25) is actually tight,

we analyze the capacities of all possible min-cuts of G of

Case 3 under the condition
M
k −M

k′
t4

< M
nk′ .

Lemma 3. Suppose that k < k′, n
k < n′

k′ , and β is equal to
its lower bound given by Equation (25). Then the capacity of
each possible min-cut of G is at least M .

Proof: Since β is equal to its lower bound given by E-

quation (25), Equation (19) holds. By Equation (19), Equa-

tion (17) can reduce to:

Λ ≥ (t1 + t2) · M
k

+ t3 · M
k′

+ t4 · M
k

· k − (t1 + t2)

k′ − (t1 + t2)
. (26)

By Equation (1), Equation (26) can reduce to:

Λ ≥ M +M(t1 + t2)(k
′ − k) · k

′ − (t1 + t2)− t4
kk′(k′ − (t1 + t2))

. (27)

Since k′ ≥ t1 + t2 + t4 (see Equation (1)), the right hand side

of Equation (27) must be at least M . The lemma holds.

Lemma 4 ([2]). If the capacity of each possible min-cut of G
is at least the original file size M , there exists a random linear
network coding scheme guaranteeing that T can reconstruct
the original file for any connection choice, with a probability
that can be driven arbitrarily high by increasing the field size.

Theorem 1. For scaling from (n, k) to (n′, k′), the bounds
derived from Lemmas 1, 2, and 3 are tight.

Proof: The existence of random linear codes based on Lem-

ma 4 makes the derived bounds tight.

V. CODE CONSTRUCTION FOR k = k′

Theorem 1 and Lemma 1 provide the tight lower bound of

β when k = k′. In this section, we show how to construct a

family of random linear codes, such that the scaling is optimal

by satisfying β = M
(n−k+1)k (i.e., M

(n−k′+1)k′ when k = k′)
while maintaining the MDS property after scaling.

To explain our construction, we extend our system model

in Section III. We first split the file of size M evenly into qk
original blocks where q = n − k + 1, and encode them into

qn coded blocks. We distribute them into n existing nodes

X1, X2, · · · , Xn, each of which stores q coded blocks. The

(n, k) MDS property is satisfied, i.e., the qk coded blocks of

any k out of n nodes can reconstruct the qk original blocks.

Here, each coded block has size equal to the lower bound of

β = M
(n−k+1)k .

For the jth coded blocks on the ith node (where 1 ≤ i ≤ n
and 1 ≤ j ≤ q), it is formed by a linear combination of

the qk original blocks over a finite field F. Thus, we let pi,j

be a column vector of size qk specifying the coefficients for

the above linear combination, and also let Pi be a qk × q
matrix comprising the column vectors {pi,j}1≤j≤q . Clearly,

the original file can be reconstructed by decoding qk coded

blocks of any k nodes via inverting an encoding matrix [7].

Now we can specify our code construction in the way that

uses Pi and pi,j to refer to the all the q blocks and the jth

block stored in Xi, respectively.

The scaling from (n, k) to (n′, k′) works as follows. Due to

k′ = k, each new node Yi′ also has q blocks. During scaling,

each existing node Xi (where 1 ≤ i ≤ n) encodes all its

2018 IEEE International Symposium on Information Theory (ISIT)

959

blocks into n′ − n new blocks, each of which is defined as

Pi · ci,i′ , where ci,i′ denotes a coefficient vector of size q,

(where 1 ≤ i′ ≤ n′ − n), and then transmits the n′ − n new

blocks to Y1, . . . , Yn′−n in order. In this way, each new node

Yi′ (where 1 ≤ i′ ≤ n′ − n) receives n new blocks, and then

encodes all the n received blocks into q coded blocks denoted

by

P′
i′ = [P1 · c1,i′ , · · · ,Pn · cn,i′] ·Di′ , (28)

where Di′ is a n× q coefficient matrix, and 1 ≤ i′ ≤ n′ − n.

Suppose that the MDS property is satisfied before scaling.

To maintain the MDS property after scaling, we ensure that for

any k (i.e., k′) nodes collected by T , the collection composed

of the qk vectors of these collected k nodes, denoted by W,

has full rank. Let T be connected with u nodes from the

existing nodes and v nodes from the new nodes, satisfying that

u+ v = k. When v = 0, it is clear that the MDS property is

satisfied after scaling, so we only consider v ≥ 1. By u+v = k
and q = n− k + 1, we can have

(n− u)v ≥ qv. (29)

We now construct the codes that maintain the MDS property

for scaling from (n, k) to (n′, k′) where k = k′.

Theorem 2. If we divide the original file of size M into qk
blocks where q = n− k+ 1, then there exists a linear coding
construction defined in the finite field F for the optimal scaling
from (n, k) to (n′, k′) where n < n′ and k = k′, such that the
MDS property is still maintained with a probability arbitrarily
driven to 1 by increasing the field size of F.

Proof: Suppose that before scaling {Pi}1≤i≤n satisfies the

MDS property initially. We show that there exist assignments

of ci,i′ and Di′ , such that W = {P1; · · · ;Pu;P
′
1; · · · ;P′

v}
has full rank.

By Equation (28), we have W = {P1, · · · ,Pu;

[P1 · c1,1, · · · ,Pn · cn,1] ·D1, · · · ,
[P1 · c1,v, · · · ,Pn · cn,v] ·Dv}.

Clearly, span(W) = {P1; · · · ;Pu;

[Pu+1 · cu+1,1; · · · ;Pn · cn,1] ·Dn−u
1 , · · · ;

[Pu+1 · cu+1,v; · · · ;Pn · cn,v] ·Dn−u
v }, (30)

where Dn−u
i′ is a matrix composed of the last n − u row

vectors of Di′ .

By Equations (29) and (30), we can tune ci,i′ and Dn−u
i′

(1 ≤ i ≤ n and 1 ≤ i′ ≤ n′ − n) such that the collection

{[Pu+1 · cu+1,l; · · · ;Pn · cn,l] · Dn−u
l , 1 ≤ l ≤ v} is com-

posed of vq vectors of v nodes out of Pu+1, . . . ,Pn. Since

{Pi}1≤i≤n satisfies the MDS property initially, the span of

{P1; · · · ;Pu} plus {[Pu+1 ·cu+1,l; · · · ;Pn ·cn,l] ·Dn−u
l , 1 ≤

l ≤ v} have rank uq + vq. Since u + v = k, span(W) has

full rank.

We can show that det(W) is a nonzero number for a certain

assignment of ci,i′ and Dn−u
i′ because span(W) has full

rank. This means that det(W) is a non-zero polynomial. Thus,

det(W) �= 0 holds with a probability arbitrarily driven to one

by increasing the field size of F, as a result of the Schwartz-

Zippel Theorem [6]. Thus, Theorem 2 concludes.

VI. RELATED WORK

Many prior studies propose to mitigate the scaling band-

width, e.g., FastScale [12], GSR [9]. However, these stud-

ies address storage scaling in RAID arrays. Some follow-

up studies consider cases in distributed environments. For

example, Rai et al. [8] propose a coding scheme that can

switch between two given different (n, k) settings. Huang et al.

[5] reduce the scaling bandwidth in erasure-coded distributed

storage systems. Zhang et al. [11] apply network coding to

storage scaling to minimize the scaling bandwidth, yet they

only consider special cases when scaling from (n, k) to (n′, k′)
for n′ − k′ = n− k. This paper generalizes the scaling cases

in [11] and present formal analysis on the optimal storage

scaling.

VII. CONCLUSIONS

We study generalized storage scaling via network coding

to handle increasing storage demands, and present two key

findings. First, we prove, via the information flow graph

model, the minimum scaling bandwidth when (n, k) MDS

codes are scaled to (n′, k′) MDS codes for n′ > n and k′ ≥ k.

Also, we construct a family of MDS codes that achieves

minimum scaling bandwidth when scaling (n, k) to (n′, k′)
for k = k′. Our future work is to address the scale-down case

for n > n′.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network Information
Flow. IEEE Trans. on Info. Theory, 46(4):1204–1216, Jul 2000.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network Coding for Distributed Storage Systems. IEEE Trans.
on Info. Theory, 56(9):4539–4551, Sep 2010.

[3] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in Globally Distributed Storage
Systems. In Proc. of USENIX OSDI, 2010.

[4] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure Coding in Windows Azure Storage. In Proc. of
USENIX ATC, 2012.

[5] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie. Scale-RS: An Efficient
Scaling Scheme for RS-coded Storage Clusters. IEEE Trans. on Parallel
and Distributed Systems, 26(6):1704–1717, 2015.

[6] R. Motwani and P. Raghavan. Randomized Algorithms. In Cambridge
University Press, 1995.

[7] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-like Systems. Software - Practice & Experience, 27(9):995–1012,
Sep 1997.

[8] B. K. Rai, V. Dhoorjati, L. Saini, and A. K. Jha. On Adaptive Distributed
Storage Systems. In Proc. of IEEE ISIT, 2015.

[9] C. Wu and X. He. GSR: A Global Stripe-based Redistribution Approach
to Accelerate RAID-5 Scaling. In Proc. of IEEE ICPP, 2012.

[10] S. Wu, Y. Xu, Y. Li, and Z. Yang. I/O-Efficient Scaling Schemes for
Distributed Storage Systems with CRS Codes. IEEE Trans. on Parallel
and Distributed Systems, 27(9):2639–2652, Sep 2016.

[11] X. Zhang, Y. Hu, P. P. C. Lee, and P. Zhou. Toward Optimal Storage
Scaling via Network Coding: From Theory to Practice. In Proc. of IEEE
INFOCOM, 2018.

[12] W. Zheng and G. Zhang. FastScale: Accelerate RAID Scaling by
Minimizing Data Migration. In Proc. of USENIX FAST, 2011.

2018 IEEE International Symposium on Information Theory (ISIT)

960

