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Abstract— Regenerating code is a class of erasure codes
designed for distributed storage systems that can achieve optimal
tradeoff between storage and repair bandwidth. Most existing
constructions of regenerating codes are based on a finite field with
large enough size. Recently, a new construction of regenerating
codes over a binary cyclic code was proposed. It was shown that
the new construction has lower computational complexity than
the construction based on finite fields. This paper generalizes
the construction by designing regenerating codes with binary
cyclic codes that support more parameters. We show that the
proposed coding method can achieve the fundamental tradeoff
curve between the storage and repair bandwidth. We also
give an example that an existing construction of regenerating
codes can be transformed to a regenerating code over a binary
cyclic code with less computational complexity. Furthermore, the
proposed coding framework has more design space for exact
repair constructions of minimum storage regenerating codes.

I. INTRODUCTION

In a distributed storage system, a data file is stored in
many connected storage nodes. As the storage nodes are
unreliable, the data file should be stored in storage nodes
redundantly. Erasure coding is one common method to provide
redundancy. In an erasure-coding-based storage system, a data
file is encoded and distributed to n storage nodes such that the
file can be reconstructed from any k < n of the storage nodes.
When a storage node fails, we want to repair the failed node
by downloading data from other surviving nodes. In the repair
process, the total amount of data transferred in repairing a
failed node is called repair bandwidth.

It is critical to minimize the repair bandwidth in practice.
The repair problem was formulated in [1] and the regenerating
codes (RGC) were also proposed to achieve the minimum
repair bandwidth under a constraint. RGC is associated with
parameters n, k, d and α, β,B. Specifically, a data file with
B symbols over finite field Fq is encoded into nα symbols
and distributed to n nodes. Each node stores α symbols with
the requirement that any k nodes can reconstruct the data file.
Whenever there is a failed node, it is replaced by a new node
and the failed α symbols are recovered by downloading β
symbols from each of d surviving nodes. After each repair,
the requirement that any k nodes can reconstruct the data file
must hold. There are two repair modes. The first one is called

This work was partially supported by the National Natural Science Founda-
tion of China (No. 61701115, 61671007, 61871136, 61471156), Start Fund of
Dongguan University of Technology (No. GB200902-19, KCYXM2017025,
G200906-49), Research Grants Council of Hong Kong (GRF 14216316
and CRF C7036-15G), Provincial-level major scientific research projects in
Guangdong Province (No. 2017KZDXM028) and the Science and Technology
Planning Project of Guangdong Province (No. 2016B010108002).

exact repair and the second one is functional repair. In exact
repair, the data in the new node is the same as those in the
failed node. In functional repair, the data in the new node may
contain different data from that in the failed one, as long as
any k nodes can reconstruct the original file. It is shown in
[1] that there is a fundamental tradeoff between the storage
capacity α and repair bandwidth dβ as

B ≤
k∑
i=1

min{(d− i+ 1)β, α}. (1)

For exact repair, some recent results on the fundamental limit
on repair bandwidth can be found in [2].

In the optimal tradeoff in (1), we have two extreme points.
The first one is termed the minimum storage regeneration
(MSR) point that corresponds to

α =
B

k
, β =

B

k(d− k + 1)
. (2)

The second one is termed the minimum bandwidth regenera-
tion (MBR) point that corresponds to

α =
2dB

k(2d− k + 1)
, β =

2B

k(2d− k + 1)
. (3)

Most existing exact repair constructions of RGC focus on
the two extreme points over a finite field: MSR codes [3],
[4], [5], [6] and MBR codes [3]. The paper [3] presented an
exact repair product-matrix construction for MSR codes that
can support the parameters 2k − 2 ≤ d ≤ n − 1, and for
MBR codes for all the values of parameters k ≤ d ≤ n − 1.
The constructions of exact repair MSR codes [4], [5], [6]
with high coding rate (k/n > 0.5) are based on vector-linear
codes, and the obtained MSR codes have exponential-level
sub-packetization.

The work [7] proposed a construction of functional repair
RGC that can achieve all the optimal points on the funda-
mental tradeoff curve with the underlying finite field being
sufficiently large. However, multiplication and division in large
finite fields are costly to implement in practice. Recently,
BASIC RGC was proposed by replacing the underlying finite
fields by binary cyclic codes such that only XOR operations
and bit-wise cyclic-shifts are involved in the coding and repair
processes [8], [9] with limited parameters. Another class of
RGC using XOR and bit-wise shifts were given in [10]. In this
paper, we introduce a new class of RGC over binary cyclic
codes. We first show that the proposed new RGC over binary
cyclic codes can achieve the optimal trade-off curve between
storage and repair bandwidth, and then demonstrate that the
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existing exact repair construction of RGC can be converted
into the RGC over binary cyclic codes. BASIC RGC [8], [9]
can be viewed as a special case of the proposed codes.

II. INTRODUCTION TO BINARY CYCLIC CODES

In this section, we introduce some known results of binary
cyclic codes. Let F2[z] denote the set of polynomials in the
indeterminate z with coefficients in a binary field F2. Let
F2[z]/(1 + zm) denote the quotient ring with addition and
multiplication being performed with modulo 1 + zm. The
code generated by a divisor of 1 + zm is called binary cyclic
code. If m is an even number, the binary cyclic code is also
called binary repeated-root cyclic code [11]. In this paper, we
consider that m is an integer except a power of 2.

Let m = pτ , where p is an odd number and τ is a power of
a positive integer. An element in the ring F2[z]/(1 + zpτ )
can be represented by a polynomial a(z) = a0 + a1z +
. . . + apτ−1z

pτ−1 with coefficients from binary field F2. In
F2[z]/(1+ zpτ ), multiplication by z can be implemented as a
cyclic shift, as we have

za(z) mod (1+zpτ ) = apτ−1+a0z+a1z
2+. . .+apτ−2z

pτ−1.

Consider a sub-ring Cpτ of F2[z]/(1 + zpτ ) of which the
polynomial in Cpτ is a multiple of 1 + zτ ,

Cpτ = {a(z)(1+zτ ) mod (1+zpτ )|a(z) ∈ F2[z]/(1+z
pτ )}.

A sufficient and necessary condition of a polynomial in Cpτ
is shown in [12, Theorem 1]. We summarize the result as
follows.

Theorem 1. [12, Theorem 1] A polynomial b(x) =∑pτ−1
i=0 biz

i ∈ F2[z]/(1 + zpτ ) is in Cpτ if and only if

b(p−1)τ+j =

p−2∑
`=0

b`τ+j , (4)

where j = 0, 1, . . . , τ − 1.

For example, when p = 3, τ = 2, a polynomial

b(z) = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5

is in C2·3 if and only if

b4 = b0 + b2, b5 = b1 + b3,

according to Theorem 1. It is shown in [12, Lemma 3] that
the ring Cpτ is isomorphic to F2[z]/(h(z)), where

h(z) = 1 + zτ + · · ·+ z(p−1)τ .

The isomorphism

θ : Cpτ → F2[z]/(h(z))

is defined as

θ(f(z)) = f(z) mod h(z),

and the inverse function φ(b(z)) is given by

φ(b(z)) = b(z) · (1 + h(z)) mod 1 + zpτ .

Note that the ring Cpτ is a sub-ring of F2[z]/(1+ z
pτ ) and

is a binary cyclic code. It can be seen that the multiplication
identity in Cpτ is 1+h(z). The RGC constructed in this paper
are indeed codes over the ring Cpτ . BASIC RGC [8], [9] can
be viewed as RGC over Cpτ with τ = 1.

We select a binary cyclic code Cpτ of length m = pτ , and
treat it as the alphabet set. The coding framework based on Cpτ
is stated as follows. A data file is assumed to have κ(p− 1)τ
bits and divided into κ groups. Each group contains (p− 1)τ
bits. For each group, say b0, b1, . . . , b(p−1)τ−1, we append τ
bits and the appended bits b(p−1)τ+j are computed by (4) for
j = 0, 1, . . . , τ − 1. The polynomial b(x) =

∑pτ−1
i=0 biz

i is
in Cpτ by Theorem 1. Therefore, we can represent the data
file by κ polynomials in Cpτ . A polynomial in Cpτ is called a
symbol, a data symbol or a coded symbol. Each symbol carries
(p− 1)τ information bits. A (ν, κ) linear code over Cpτ with
length ν and dimension κ is defined by a κ × ν generator
matrix G, where ν > κ. Each information symbol is in Cpτ ,
and each entry of G is a polynomial in F2[z]/(1 + zpτ ). The
encoding is performed by multiplying a row vector w of length
κ containing κ data symbols, and the generator matrix G. An
entry in wG is called a coded symbol. A coded symbol is thus
a linear combination of the κ data symbols, with elements from
F2[z]/(1 + zpτ ) as the coefficients. Since Cpτ is an ideal in
F2[z]/(1 + zpτ ), all coded symbols in each codeword of the
code is also in Cpτ . We only store the coefficients of degree
from 0 to (p − 1)τ − 1 of a symbol or a polynomial in a
storage node, as the last τ coefficients can be computed when
it is needed.

A code is said to be maximum distance separable (MDS)
if we can recover the κ data symbols in w from any κ out
of ν coded symbols. Let I = {i1, i2, . . . , iκ} be the column
index set of the generator matrix G, where i1, i2, . . . , iκ are
different integers from 1 to ν. Denote GI as the sub-matrix
of G obtained by retaining the columns indexed by I. The
code is MDS if and only if all the sub-matrices of G are
invertible over Cpτ , i.e., there exists a square matrix G̃I over
F2[z]/(1 + zpτ ) for each GI such that GIG̃I is the κ × κ
identity matrix over Cpτ .

The MDS condition is given in the next theorem.

Theorem 2. [12, Theorem 6] Suppose that s1(z) to sκ(z)
are data symbols, and p1(z) to pν(z) are coded symbols with
generator matrix G. We can compute s1(z) to sκ(z) from any
κ out of ν coded symbols if and only if the determinant of
any κ × κ sub-matrix of G is a non-zero polynomial and is
relatively prime to h(z).

Note that Cpτ is isomorphic to a finite field F2(p−1)τ if and
only if 2 is a primitive element in Zp and τ = pi for some
non-negative integer i [13]. When τ = 1 and p is a prime
number such that 2 is a primitive element in Zp, the ring Cp
is a finite field.
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III. FUNCTIONAL REPAIR RGC OVER BINARY CYCLIC
CODES

In the rest of this paper, we show that we can achieve
the optimal tradeoff of functional repair RGC over the binary
cyclic code Cpτ if the length m is large enough and satisfies
a condition.

In the encoding process of RGC over the binary cyclic code,
the data file with B(p−1)τ bits is first divided into B groups,
with each group containing (p−1)τ bits. We append τ bits for
each group according to (4), and represent the (p − 1)τ bits
and the τ appended bits as a polynomial in F2[z]/(1 + zpτ ).
Therefore, each group of (p − 1)τ bits is then encoded to a
codeword of Cpτ . We let s1(z), s2(z), . . . , sB(z) ∈ Cpτ be the
resulting codewords. We call these B symbols the source data
symbols. Then, we generate nα coded symbols over Cpτ by
multiplying the B source data symbols and a B×nα generator
matrix. We then store α coded symbols (only the first (p −
1)τ coefficients of each symbol are stored in node) in each
node. Each coded symbol is a linear combination of the B
source data symbols. The coefficients of the linear combination
form the global encoding vector of the corresponding coded
symbol. The generator matrix is to be chosen to satisfy the
(n, k) recovery property that any k nodes can recover the data
file.

Suppose that node f fails. We replace the failed node by
a new node which contacts d surviving nodes. The storage
nodes which participate in the repair process are also called
the helpers. Each of the helper nodes transmits β symbols
to the new node, and each of these symbols is computed by
a linear combination of the α coded symbols in the node,
with local encoding coefficients being chosen from F2[z]/(1+
zpτ ). Upon receiving the dβ symbols from the d helpers, the
new node computes α symbols and stores them. Each of the
α symbols stored in the new node is obtained by a linear
combination of the received dβ symbols. Note that the local
encoding coefficients are from F2[z]/(1 + zpτ ). We want to
show that by choosing the proper local encoding coefficients
from F2[z]/(1+z

pτ ), we can always satisfy the (n, k) recovery
property after infinite rounds of failure/repair.

Similar to the method in [7], [8], we need the following
lemma in the proof of functional repair RGC over Cpτ .

Lemma 3 (DeMillo-Lipton-Schwartz-Zippel [14]). Let F be
a finite field and S be a subset of elements in F. Let f be
a non-zero multivariate polynomial in F[X1, X2, . . . , XN ] of
degree e. Then the polynomial f has at most e|S|N−1 roots
in SN .

Before giving the main result, we need to introduce more
notations. For i = 1, 2, . . . , k, let

si = min{(d− i+ 1)β, α}.

For i = k+1, k+2, . . . , n, let si = 0. Denote H as the set of
vectors of length n whose components are non-negative inte-
gers. Let H be majorized by the vector s = (s1, s2, . . . , sn).
In other words, if we sort the components of a vector h ∈ Zn+

in non-increasing order as h[1] ≥ h[2] ≥ · · · ≥ h[n], then h is
in H if and only if

µ∑
i=1

h[i]

{
≤
∑µ
i=1 si for m = 1, 2, . . . , n− 1,

= B for µ = n.

We refer the readers to [15] for more details on majorization
theory.

In [8], the existence of RGC over a binary cyclic code
was given by showing that we can choose the local encoding
coefficients to be powers of z such that a collection of
the determinants of all sub-matrices of the generator matrix
are all evaluated to be invertible in Cp. In this paper, the
local encoding coefficients are chosen from any non-zero
polynomials in Cpτ , and the collection of the determinants
of all sub-matrices of the generator matrix are evaluated to
be invertible in Cpτ . The local encoding coefficient has p
different selections in [8] while the local encoding coefficient
has 2pτ − 1 different choices in this paper. Consider that τ is
a power of 2, we have that

h(z) = 1 + zτ + · · ·+ z(p−1)τ = (1 + z + · · ·+ zp−1)τ .

Then, a polynomial is invertible in Cpτ is equivalent to that
the polynomial is also invertible in Cp. The difference between
the proof of the work in [8] and this paper is that the local
encoding coefficients in this paper have more choices. We thus
have more design space for the construction of RGC and the
value of p can be reduced in functional repair RGC.

Theorem 4. Given the parameters n, k, d, α and β. Let m =
pτ be an even prime, p be an odd number, τ be a power of
2, and ordp(2) be the multiplicative order of 2 mod p. If 2m

is larger than

p− 1

ordp(2)
τ ·B ·max

{(nα
B

)
, 2|H|

}
, (5)

where B is defined in (1), then there exists a functional repair
RGC over the binary cyclic code of length m, which achieves
the optimal tradeoff between storage and repair bandwidth.

Sketch of proof. The proof is similar to the proof in [8]. The
main difference is that the local encoding coefficients have
more choices in this paper. The local encoding coefficients in
each repair process are from F2[z]/(1 + zpτ ) and the (n, k)
recovery property is maintained. Note that the polynomial 1+
z + . . .+ zp−1 has p−1

ordp(2)
factors with degree ordp(2) and

1 + zτ + . . .+ z(p−1)τ = (1 + z + · · ·+ zp−1)τ

has p−1
ordp(2)

τ factors with degree ordp(2). In the application
of Lemma 3, we take the set S to be non-zero polynomials in
F2[z]/(1+ zpτ ). Each entry of the local encoding coefficients
has 2pτ − 1 choices.

If we choose the parameter p to be a prime number such
that the multiplicative order of 2 mod p is equal to p − 1,
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1+ z+ . . .+ zp−1 is irreducible polynomial, and the value of
ordp(2) is equal to p− 1. Then the value in (5) becomes

τ ·B ·max
{(nα

B

)
, 2|H|

}
.

Note that there are infinitely many such prime number p under
the Artin’s conjecture on primitive roots [16].

IV. EXACT REPAIR CONSTRUCTION

In this section, we show that the existing exact repair
construction of RGC can be converted to RGC over the binary
cyclic codes, via the product-matrix RGC [3] as an example.

A. Product-Matrix MSR Codes

In the following, we construct the product-matrix MSR
codes for d = 2k − 2. The construction can be extended to
d ≥ 2k − 2, as like the construction in [3].

Let β = 1, as d = 2k − 2, we have that B = k(k − 1)
and α = k − 1 according to (2). The data file consists
of B groups, each of (p − 1)τ bits. We generate B data
symbols in Cpτ by appending τ bits for each group by (4).
Let s1(z), s2(z), . . . , sB(z) be the B data symbols. Create two
(k−1)×(k−1) symmetric matrices S1,S2 by filling the upper-
triangular part of each of S1,S2 by k(k − 1) data symbols.
We thus obtain the d× (k − 1) data matrix

M =

[
S1

S2

]
.

The generator matrix Ψ can be chosen to be the n × d
Vandermonde matrix or Cauchy matrix. In the following, we
choose the generator matrix to be Vandermonde matrix, i.e.,
the i-th row of the generator matrix Ψ is defined as

ψTi :=
[
1 zi−1 z2(i−1) · · · z(d−1)(i−1)

]
, (6)

for i = 1, 2, . . . , n. The i-th node stores α = k − 1 coded
symbols in ψTi M.

With the same discussion in [3], we can show that the pro-
posed product-matrix MSR code satisfies the (n, k) recovery
property, if the square Vandermonde matrix is invertible in
Cpτ or the determinant of the square Vandermonde matrix is
relatively prime to h(z) by Theorem 2. The above condition is
satisfied if we choose p to be a prime number such that p ≥ n.
The method of repairing a failed node is the same as in [3],
except that we are now working over Cpτ instead of over a
finite field. Therefore, we can repair one node by downloading
one symbol from each of arbitrary d = 2k−2 surviving nodes.
Please refer to [3] for the detailed repair method.

B. Product-Matrix MBR Codes

Consider the product-matrix construction of MBR codes.
Let β = 1, then we have

B =
k(k + 1)

2
+ k(d− k)

and α = d. A data file contains B(p − 1)τ bits is divided
into B groups, each with (p − 1)τ bits. We generate B data
symbols s1(z), s2(z), . . . , sB(z) in Cpτ for the data file. We

create nα coded symbols by multiplying the n× α generator
matrix Ψ and the α × α data matrix M. The data matrix M
is of the form

M :=

[
S T

TT 0

]
,

where the matrix S is a symmetric k × k matrix obtained by
first filling the upper-triangular part by data symbols sj(z), for
j = 1, 2, . . . , k(k+1)/2, and then obtain the lower-triangular
part by reflection along the diagonal. The rectangular matrix
T has size k× (d− k), and the entries in T are data symbols
sj(z), j = k(k+1)/2, . . . , B, listed in some fixed but arbitrary
order. The matrix 0 is a (d− k)× (d− k) all-zero matrix.

The n × α generator matrix Ψ is composed of the d × d
identity matrix Id×d and the encoding matrix Ψ(n−d)×d. The
encoding matrix Ψ(n−d)×d is an (n − d) × d Vandermonde
matrix, with the i-th row defined in (6) with i = 1, 2, . . . , n−d.
For i = 1, 2, . . . , n, node i stores the d symbols in the i-th
row of ΨM. We choose p to be an odd number such that the
determinant of any d×d sub-matrix of the generator matrix Ψ
is relatively prime to h(z), and by Theorem 2, the constructed
codes satisfy the (n, k) recovery property.

In the following, we give an example for n = 7, k = 3,
d = 4. This example contains all the essential features of
product-matrix MBR codes over the binary cyclic codes.

There are B = 9 data symbols s1(z) to s9(z). The data
matrix is

M =


s1(z) s2(z) s3(z) s7(z)
s2(z) s4(z) s5(z) s8(z)
s3(z) s5(z) s6(z) s9(z)
s7(z) s8(z) s9(z) 0

 .
The generator matrix Ψ is composed of the 4×4 identity ma-
trix I4×4 and a 3×4 Vandermonde matrix Ψ3×4. Specifically,
for i = 1, 2, 3, the encoding vector of node 4 + i is

ψTi =
[
1 zi−1 z2(i−1) z3(i−1)

]
.

For any four distinct node indices i1, i2, i3 and i4 between 1 to
7, the determinant of the sub-matrix of the generator matrix Ψ
consisting by rows i1, i2 i3 and i4 is invertible in Cpτ . Thus,
the code satisfies the (n, k) recovery property.

For i = 1, 2, 3, 4, node i is data node and stores i-th row of
matrix M. For i = 5, 6, 7, node i is coded node and stores the
four coded symbols in the i-th row of ΨM. Each of the coded
symbols can be obtained by right-cyclic-shifting and adding
the source packets appropriately.

Suppose that a data collector connects to nodes 5, 6 and 7.
We can solve for s7(z), s8(z) and s9(z) from s7(z) + s8(z) + s9(z)

s7(z) + zs8(z) + z2s9(z)
s7(z) + z2s8(z) + z4s9(z)

 =

1 1 1
1 z z2

1 z2 z4

s7(z)s8(z)
s9(z)

 .
It can be solved by Theorem 2. Then, s1(z) to s6(z) can be
decoded from1 1 1

1 z z2

1 z2 z4

s1(z) s2(z) s3(z)
s2(z) s4(z) s5(z)
s3(z) s5(z) s6(z)

 .
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Suppose the node 5 fails and we want to repair it from nodes
1, 2, 6, and 7. The coded symbol sent from helper node i to
the newcomer is the multiplication of the symbols in node i
and the encoding vector of node 5. If we arrange the symbols
received by the newcomer as a column vector, then the column
vector can be written as

1 0 0 0
0 1 0 0
1 z z2 z3

1 z2 z4 z6

 ·M ·ψ1.

Since the matrix on the left has non-zero determinant, accord-
ing to Theorem 2, the newcomer can compute M ·ψ1. As M
is symmetric, this is exactly equal to the content of the failed
node. The repair of other nodes can be done similarly.

With the same discussion, we can show that the compu-
tational complexity of product-matrix RGC over the binary
cyclic codes is the same as that of RGC over binary cyclic
codes in [9], both codes have less computational complexity
than the product-matrix RGC over finite fields in [3]. Similarly,
we may convert other existing constructions of exact repair
RGC such as [4], [5], [6] to RGC over the binary cyclic codes
with less computational complexity.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a coding framework of designing
RGC over a binary cyclic code. In the coding framework,
only the XOR and bit-wise cyclic shifts are involved in the
coding and repair processes. The previous constructions of
RGC over binary cyclic codes [8], [9] can be viewed as a
special case of the construction in this paper. We show that
the fundamental tradeoff curve between storage and repair
bandwidth of functional repair RGC can be achieved when the
parameter m is large enough. For exact repair, we show that
the product-matrix construction of RGC can be converted into
the RGC over the binary cyclic codes with less computational
complexity. More importantly, the proposed binary cyclic
codes have more design space of exact repair constructions
of MSR codes, by choosing some special generator matrix
and parameters p, τ .

Given k data symbols sj(x) in Cpτ , for j = 1, 2, . . . , k.
We can generate k + r coded symbols pj(x) in Cpτ , for j=
1, 2, . . . , k + r by computing the product

[p1(x), p2(x), · · · , pk+r(x)] = [s1(x), s2(x), · · · , sk(x)] ·G

over F2[x]/(1+x
pτ ), where the generator matrix G is of size

k × (k + r). If G is composed of the k × k identity matrix
Ik×k and a k × r encoding matrix Pk×r, then resulting code
is systematic. A systematic code is determined by the encod-
ing matrix Pk×r. By choosing some well-designed encoding
matrix, we can obtain the systematic code that have optimal
repair bandwidth or asymptotically for the k data symbols. For
example, when the encoding matrix is1 1 1 · · · 1 1

x x2 x4 · · · x2
k−2

1

1 x2
k−2

x2
k−3 · · · x2 x

T ,

it is shown in [17] that the corresponding codes with r = 3
and d = k + 1 have asymptotically optimal repair bandwidth
for any data symbol. The detailed construction can be found
in [18]. More constructions with general parameters k, r and
d that achieve asymptotically optimal repair bandwidth is one
of the future work.

Note that the constructions in [18], [12] can only achieve
asymptotically optimal repair bandwidth for any data symbol.
How to combine the existing constructions of exact repair
RGC over finite field and the encoding matrix construction
over Cpτ such that all n symbols can achieve (asymptoti-
cally) optimal repair bandwidth is an interesting future work.
Another interesting future work is the decoding algorithm.
When more than two data symbols fail, how to design the
decoding algorithm to recover the failed data symbols is also
an important and practical problem.
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