
Minimum Storage Rack-Aware Regenerating Codes
with Exact Repair and Small Sub-Packetization

Hanxu Hou†, Patrick P. C. Lee§, and Yunghsiang S. Han†
† School of Electrical Engineering & Intelligentization, Dongguan University of Technology
§ Department of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract— Modern data centers often organize storage nodes
in racks, in which the cross-rack communication cost is typically
much higher than the intra-rack communication cost. Rack-
aware regenerating codes have recently been proposed to achieve
the optimal trade-off between storage redundancy and cross-
rack repair bandwidth, subject to the condition that the original
data can be reconstructed from a sufficient number of any non-
failed nodes. In this paper, we present a coding framework that
transforms any minimum-storage regenerating (MSR) code to a
minimum-storage rack-aware regenerating (MSRR) code, such
that the cross-rack repair bandwidth is minimized subject to the
minimum storage redundancy. To this end, we can construct a
family of exact-repair constructions for the MSRR codes for all
admissible parameters. Furthermore, our constructions achieve
low sub-packetization, which is critical for mitigating the I/O
overhead during repair.

Index Terms—Data centers, cross-rack repair bandwidth, rack-
aware regenerating codes, exact-repair construction

I. INTRODUCTION

Erasure coding is now widely adopted in modern storage
systems to provide higher fault tolerance and lower storage
redundancy over traditional replication. The most popular
erasure codes are Reed-Solomon (RS) codes [1], which encode
a data file of k symbols (i.e., the units for erasure coding
operations) to obtain n symbols over a finite field (where
k < n), and the n symbols are distributed across n different
nodes. RS codes satisfy the maximum distance separable (MDS)
property, i.e., the data file can be retrieved from any k out of
n nodes. However, when a node fails, the conventional repair
method of RS codes first reconstructs the data file and encodes
it again to reconstruct the lost symbol. This amplifies both
network bandwidth and I/O cost.

Regenerating codes (RC) [2] have been proposed to minimize
the network bandwidth for repairing a single-node failure
subject to a given storage cost. It is shown in [2] that RC
achieves the optimal trade-off between the repair bandwidth
(i.e., the total amount of symbols transferred when repairing
a failed node) and the storage redundancy. Two specific RC
constructions, namely minimum storage regenerating (MSR)

This work was partially supported by the National Natural Science
Foundation of China (No. 61701115, 61671007), Start Fund of Dongguan
University of Technology (No. GB200902-19, KCYXM2017025), Research
Grants Council of HKSAR (GRF 14216316 and AoE/P-404/18), Innovation
and Technology Fund (ITS/315/18FX), the Quality Engineering Project of
2018 DGUT under Grant 201802016, the Quality Engineering Project of 2018
DGUT (No. 201802016), 2019 Guangdong Province Teaching Quality and
Teaching Reform (Measurement and Control Technology Teaching Team No.
75).

codes and minimum bandwidth regenerating (MBR) codes,
correspond to the minimum storage regeneration point and the
minimum bandwidth regeneration point in the optimal trade-off
curve, respectively. Follow-up studies [3]–[8] have proposed
different constructions of MSR codes and MBR codes.

Modern data centers often have hierarchical topologies by
organizing nodes in racks, in which the cross-rack communica-
tion cost is much higher than the intra-rack communication cost
[9]. While RC achieves the minimum repair bandwidth in flat
networks, its cross-rack repair bandwidth (i.e., the total amount
of symbols transferred across racks during a single-node repair)
is sub-optimal in general. This motivates a number of studies
that specifically address the repair problem for hierarchical
data centers. For example, Double Regenerating Codes (DRC)
[10], [11] minimize the cross-rack repair bandwidth under the
condition that the minimum storage redundancy is achieved
(as in RS and MSR codes); Rack-aware Regenerating Codes
(RRC) [12] generalize DRC and achieve the optimal trade-off
between storage redundancy and cross-rack repair bandwidth.

Specifically, RRC [12] partitions n nodes evenly into r racks
with n/r nodes each, where n is a multiple of r. It encodes a
data file of B symbols into nα symbols that are stored in n
nodes with α symbols each. It satisfies the MDS property, i.e.,
any k out of n nodes can reconstruct the data file. Suppose that
a node fails and its α symbols are lost. To repair the α lost
symbols, RRC first identifies a new node in the same rack as
the failed node (called the host rack). The new node first reads
(n/r − 1)α symbols stored in n/r − 1 surviving nodes in the
host rack, and downloads β symbols from each of the selected
d (d < r) other racks. The cross-rack repair bandwidth is dβ,
the total amount of symbols downloaded from d other racks.
The optimal trade-off between the cross-rack repair bandwidth
dβ and the storage redundancy α is:

kα+

m∑
`=1

min{(d− `+ 1)β − α, 0} ≥ B, (1)

where m = bkrn c. There are two extreme points in the
optimal trade-off in Eq. (1), namely the minimum storage
rack-aware regeneration (MSRR) and minimum bandwidth
rack-aware regeneration (MBRR) points, which correspond
to the minimum storage and the minimum cross-rack repair
bandwidth, respectively. The MSRR point corresponds to

α =
B

k
, β =

B

k(d−m+ 1)
, (2)

554978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

and the MBRR point corresponds to

α =
2Bd

2kd−m(m− 1)
, β =

2B

2kd−m(m− 1)
.

Note that when r = n, MSRR codes and MBRR codes reduce
to MSR codes and MBR codes, respectively.

Contributions. We present a general coding framework that
can convert MSR codes into MSRR codes with the minimum
cross-rack repair bandwidth. Prior studies [3]–[8] have proposed
different MSR code constructions. Thus, we can obtain as many
MSRR code constructions as the available MSR code construc-
tions through our coding framework. To this end, we can
obtain a family of MSRR code constructions for all admissible
parameters by applying our coding framework to the existing
MSR codes [7], [8] that support all admissible parameters. In
particular, the MSRR code constructions obtained from our
coding framework have a much lower sub-packetization α than
existing MSRR codes [13].

The key idea of our coding framework is as follows. Let
MSR(n, k, d) denote the MSR codes, such that any k out
of n nodes can reconstruct all the data symbols and each
node can be repaired by connecting d nodes. Thus, we can
repair any one node of the MSR(r,m, d) codes (i.e., any m
out of r nodes can reconstruct all data symbols) with the
repair bandwidth dα

d−m+1 , which equals the cross-rack repair
bandwidth of MSRR(n, k, r, d) codes. Thus, we can store the
rα symbols of the MSR(r,m, d) code in r nodes, in which each
node is chosen from each rack so as to maintain the minimum
cross-rack repair bandwidth of MSRR(n, k, r, d) codes, while
we ensure that the MDS property is satisfied by appropriately
constructing the coded symbols.

Related work. There exist several exact-repair constructions
for MSRR codes [10], [11], [13] and MBRR codes [12] in
the literature; by exact-repair, we mean that the lost symbols
in the failed node are the same as those repaired in the new
node. DRC [10], [11] can be viewed as a specific construction
of MSRR codes with some special parameters, while Hou
et al. [12] present the constructions for MBRR codes for all
admissible parameters (n, k, r, d) and MSRR codes for all the
parameters that satisfy α = 1. Chen and Barg [13] propose a
family of MSRR constructions that minimizes the cross-rack
repair bandwidth for all admissible parameters, at the expense
of incurring a very high level of sub-packetization (i.e., the size
of α). Jin et al. [14] design a repair scheme for RS codes over
some specific finite field such that it also minimizes the cross-
rack repair bandwidth of MSRR codes, but the construction
cannot support all admissible parameters. Note that when kr

n
is an integer, the cross-rack repair bandwidth of MSRR codes
is the same as that of MSR codes; in other words, all existing
MSR codes can be viewed as MSRR codes if kr

n is an integer.
Thus, in this paper, we focus on the exact-repair constructions
of MSRR codes when kr

n is not an integer.
Some studies focus on different settings on reducing the

cross-rack repair bandwidth in rack-based data centers, such
as a two-rack setting [15], [16] or a setting based on locally
repairable codes [17]. Two closely related studies to RRC are

by Sohn et al. [18] and Prakash et al. [19]. The repair models
between RRC and that in [18] are different: RRC allows the
encoding of symbols within the same rack during a repair,
but not in [18]. For the model in [19], the MDS property is
not satisfied; the reason is that repairing a data file needs to
retrieve data from a certain number of racks, while the MDS
property (i.e., the data file can be retrieved from any k out of
n nodes) is not a necessary requirement.

II. CODING FRAMEWORK

In this section, we present a coding framework that can
convert any MSR code construction into the corresponding
MSRR code construction.

A. Framework Design

Recall that MSRR codes contain B data symbols, where

B = kα = k(d−m+ 1)β,

according to Eq. (2). Also, there are three types of coded
symbols: (i) a global coded symbol, which is generated by a
linear combination of all B data symbols, (ii) a local coded
symbol, which is generated by a linear combination of the
symbols within a rack, and (iii) an intermediate coded symbol,
which is generated in the middle of operations. Both the
global and local coded symbols are finally stored, while the
intermediate coded symbols are used for computations and will
not be stored.

We first provide a brief overview of the coding framework.
• We compute (n− r)α global coded symbols by encoding

all the B data symbols. We select n/r − 1 nodes from
each of the r racks (i.e., n−r nodes in total). We store the
resulting (n− r)α global coded symbols in the selected
n−r nodes, each of which stores α global coded symbols.

• We choose mα out of B data symbols, and compute rα
intermediate coded symbols by encoding the selected mα
data symbols using an MSR(r,m, d) code. We divide
the rα intermediate coded symbols into r groups with α
symbols each. Each group corresponds to a distinct rack.

• For each group, we compute the α local coded symbols by
encoding α intermediate coded symbols and all (n/r−1)α
global coded symbols stored in n/r− 1 out of n/r nodes
of the corresponding rack. The computed α local coded
symbols are stored in the remaining node of corresponding
rack.

We now elaborate the details of our coding framework. Let[
s1 s2 · · · sB

]
denote B data symbols. We first compute the (n− r)α global
coded symbols, denoted by c1, c2, · · · , c(n−r)α, as follows:[

c1 c2 · · · c(n−r)α
]

=
[
s1 s2 · · · sB

]
Q,

where Q is a B × (n − r)α (B ≥ (n − r)α) matrix of rank
(n − r)α. The resulting (n − r)α global coded symbols are
then stored in n− r nodes of r racks, among which we select
n/r − 1 nodes from each of the r racks and each node stores

2
555

Rack 1

Rack 2

Rack 3

Rack 4

Fig. 1: Example of MSRR code with (n, k, r, d) = (12, 8, 4, 3).

α symbols. Typically, we can choose Q as a Cauchy matrix
or a Vandermonde matrix so that any k out of the n− r nodes
are sufficient to reconstruct B data symbols, if n− r ≥ k.

Let P be a mα × rα coefficient matrix (of rank mα) for
an MSR(r,m, d) code, where the `-th column is denoted by
pT` for ` = 1, 2, . . . , rα. We compute rα intermediate coded
symbols, denoted by g1, g2, . . . , grα, through the MSR(r,m, d)
code as:[

g1 g2 · · · grα
]

=
[
s1 s2 · · · smα

]
P.

We divide the generated rα intermediate coded symbols into r
groups with α symbols each. For i = 1, 2, . . . , r, group i
contains α symbols g(i−1)α+1, g(i−1)α+2, . . . , giα. We can
reconstruct mα data symbols s1, s2, . . . , smα from any m
out of r groups due to the MDS property of the MSR(r,m, d)
code. Also, we can reconstruct α intermediate coded symbols
in any group by downloading β symbols from each of the d
selected groups out of r − 1 other groups due to the repair
procedure of the MSR(r,m, d) code.

Now, let Φ be a ((n/r − 1)α + 1) × rα matrix, with the
i-th column denoted by

φTi =
[
φ1,i φ2,i · · · φ(n/r−1)α+1,i

]T
for i = 1, 2, . . . , rα. For h = 1, 2, . . . , r, we compute α local
coded symbols, each of which is a linear combination of the
coded symbol g(h−1)α+i and all (n/r − 1)α symbols stored
in (n/r − 1) nodes in rack h, i.e.,[
g(h−1)α+i c(h−1)(n/r−1)α+1 · · · ch(n/r−1)α

]
·φT(h−1)α+i

with i = 1, 2, . . . , α. The computed α local coded symbols are
stored in the remaining node in rack h (recall that the other
n/r − 1 nodes are used to stored the global coded symbols).

Fig. 1 shows an example of (n, k, r, d) = (12, 8, 4, 3) and
β = 1. This implies that m = bkrn c = 2, α = (d−m+1)β = 2,
and B = 16. The 16 data symbols are s1, s2, . . . , s16. First, we
compute (n−r)α = 16 global coded symbols c1, c2, . . . , c16 by
multiplying the 16 data symbols and a 16× 16 Cauchy matrix,
and the global coded symbols will be stored in two nodes for
each rack. Then we create an MSR(r = 4,m = 2, d = 3) code
by encoding mα = 4 data symbols. Here, we use the MSR

code in [20], such that we compute the rα = 8 intermediate
coded symbols as:[

g1 g2 g3 g4 g5 g6 g7 g8
]

=
[
s1 s2 s3 s4

]
·

1 0 0 0 1 0 2 0
0 1 0 0 0 2 0 1
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1

 .
Finally, we compute and store the following α = 2 local coded
symbols[
g2h−1 c4(h−1)+1 c4(h−1)+2 c4(h−1)+3 c4h

]
· φT2h−1,[

g2h c4(h−1)+1 c4(h−1)+2 c4(h−1)+3 c4h
]
· φT2h,

in the remaining node in rack h with h = 1, 2, 3, 4.

B. Repair Method

We now show that we can recover α symbols stored in any
node by downloading β symbols from each of other d racks
and accessing all other (n/r − 1)α symbols in the host rack.

Suppose that a node in rack f fails, where f ∈ {1, 2, . . . , r}.
The new node connects to any d helper racks hi for i =
1, 2, . . . , d. Recall that rack hi stores the following αn/r
symbols:[
g(hi−1)α+1 c(hi−1)(n

r−1)α+1 · · · chi(
n
r−1)α

]
· φT(hi−1)α+1,

. . . ,[
g(hi−1)α+α c(hi−1)(n

r−1)α+1 · · · chi(
n
r−1)α

]
· φT(hi−1)α+α,[

c(hi−1)(n
r−1)α+1 c(hi−1)(n

r−1)α+2 · · · chi(
n
r−1)α

]
.

Thus, we can access the above αn/r symbols in rack hi and
retrieve the following α symbols

g(hi−1)α+1, g(hi−1)α+2, . . . , g(hi−1)α+α.

Recall that [
g1 g2 · · · grα

]
are the codeword of the MSR(r,m, d) code. We can repair the
α symbols

g(f−1)α+1, g(f−1)α+2, . . . , g(f−1)α+α (3)

by downloading β symbols from each of the d racks h1,
h2, . . . , hd according to the repair method of the MSR(r,m, d)
code. Once the α symbols in Eq. (3) are obtained, we recover
the α lost symbols in rack f by accessing the other (n/r−1)α
symbols stored in rack f and the symbols in Eq. (3). Thus, we
can repair any single failed node by downloading β symbols
from each of d other racks to the new node, and the cross-rack
repair bandwidth is optimal.

C. MDS Property

We first review the Schwartz-Zippel Lemma before showing
the MDS property (i.e., the data file can be reconstructed from
any k out of n nodes).

Lemma 1. (Schwartz-Zippel [21]) Let Q(x1, . . . , xn) ∈
Fq[x1, . . . , xn] be a non-zero multivariate polynomial of total

3
556

degree d. Let r1, . . . , rn be chosen independently and uniformly
at random from a subset S of Fq . Then

Pr[Q(r1, . . . , rn) = 0] ≤ d

|S|
. (4)

The next theorem shows that the MDS property can be
satisfied if the field size is sufficiently large.

Theorem 2. If the field size is larger than

B

min{k,r}∑
i=1

(
n− r
k − i

)(
r

i

)
, (5)

then any k nodes can recover the B data symbols.

Proof. We need to show that any k out of n nodes can
reconstruct B data symbols. Suppose that a data collector
connects to k nodes. If each of the chosen k nodes stores
global coded symbols, then we can retrieve the B data symbols
as any square sub-matrix of a Cauchy matrix is non-singular.
Consider that a data collector connects to k − ` nodes that
store global coded symbols and ` nodes that store local coded
symbols, where ` = 1, 2, . . . ,min(k, r). The received B = kα
symbols can be represented by the B ×B encoding matrix. If
we view each entry of P and Φ as a non-zero variable, we can
check that the determinant of the B ×B matrix is a non-zero
polynomial with total degree at most B. There are in total

min{k,r}∑
i=1

(
n− r
k − i

)(
r

i

)
choices.

The multiplication of all the determinants is a polynomial with
total degree at most (5). Thus, we can decode the B data
symbols from any k nodes if the field size is larger than the
value in Eq. (5) according to the Schwartz-Zippel Lemma.

Although the upper bound of field size in Theorem 2 is
exponential in k, we may directly check by computer search
whether any k nodes can reconstruct the B data symbols over a
small field. For example, we have checked by computer search
that we can always find the matrices P and Φ such that any k
nodes can reconstruct the B data symbols for the case with
(n, k, r, d) = (12, 8, 4, 3) when the field size is 41.

D. Example

Continue the example in Fig. 1. We can recover the two
symbols in any node by downloading three symbols from
other three racks. Suppose that the node that stores local coded
symbols in the first rack fails. We need to recover the following
two symbols [

s1 c1 c2 c3 c4
]
· φT1 ,[

s2 c1 c2 c3 c4
]
· φT2 .

Recall that the second rack stores the following six symbols

g3φ1,3 + c5φ2,3 + c6φ3,3 + c7φ4,3 + c8φ5,3,

g4φ1,4 + c5φ2,4 + c6φ3,4 + c7φ4,4 + c8φ5,4,

c5, c6, c7, c8.

The second rack can first compute

g3φ1,3 =(g3φ1,3 + c5φ2,3 + c6φ3,3 + c7φ4,3 + c8φ5,3)

− (c5φ2,3 + c6φ3,3 + c7φ4,3 + c8φ5,3),

g4φ1,4 =(g4φ1,4 + c5φ2,4 + c6φ3,4 + c7φ4,4 + c8φ5,4)

− (c5φ2,4 + c6φ3,4 + c7φ4,4 + c8φ5,4),

and then obtain g3 and g4, as φ1,3 6= 0 and φ1,4 6= 0. By the
same procedure for rack 3 and rack 4, rack 3 can compute
g5, g6 and rack 4 can compute g7, g8. Finally, rack 2 sends
one symbol

g3 + g4 = s3 + s4

to the new node, rack 3 sends one symbol

g5 + g6 = (s1 + s3) + (2s2 + s4)

to the new node, and rack 4 sends one symbol

g7 + g8 = (2s1 + s3) + (2s2 + s4)

to the new node. We can cancel out the term s3 + s4 from
(s1+s3)+(2s2+s4) and (2s1+s3)+(2s2+s4), and then solve
for g1 = s1 and g2 = s2 from the two linearly independent
equations. The new node thus can recover the two symbols

g1φ1,1 + c1φ2,1 + c2φ3,1 + c3φ4,1 + c4φ5,1

g2φ1,2 + c1φ2,2 + c2φ3,2 + c3φ4,2 + c4φ5,2

in the failed node from symbols g1, g2, c1, c2, c3, c4. The other
node can be recovered similarly by downloading three symbols
from other three racks.

E. Discussion

Low computational complexity is another practical concern
in data centers. One method of reducing computational com-
plexity is replacing the field operations by XOR operations, and
the corresponding codes are called binary MDS array codes.
Although we present the coding framework for MSR codes
over a finite field, we can substitute the MSR codes over a finite
field by a binary MDS array code with the minimum repair
bandwidth. The idea is to replace all the field operations by
cyclic shifts and XOR operations to obtain a coding framework
that can convert binary MDS array codes with the minimum
repair bandwidth into MSRR codes with lower computational
complexity. Some existing constructions of binary MDS array
codes with the minimum or asymptotically minimum repair
bandwidth can be found in previous work [22]–[25].

When the B data symbols are required to be retrieved,
we can connect the k nodes from m + 1 racks. Among the
m+ 1 racks, all mn/r nodes in any m racks and k −mn/r
nodes which store global coded symbols in the remaining rack
are connected. With the above k nodes, the existing efficient
decoding method can be employed in the decoding procedure.
For example, suppose that the connected k nodes are mn/r
nodes from the first racks plus k − mn/r nodes that store
global coded symbols from rack m+ 1. For h = 1, 2, . . . ,m,

4
557

rack h can access all αn/r symbols and obtain the following
αn/r symbols.

g(h−1)α+1, g(h−1)α+2, . . . , g(h−1)α+α,

c(h−1)(n
r−1)α+1, c(h−1)(n

r−1)α+2, . . . , ch(n
r−1)α.

Recall that [
g1 g2 · · · grα

]
are the codeword of the MSR(r,m, d) code. Therefore, we can
retrieve all mα data symbols from the symbols[

g1 g2 · · · gmα
]
,

and of course all rα symbols of the MSR(r,m, d) code. In
rack m+ 1, the (k−mn/r)α global coded symbols stored in
k −mn/r nodes are

c((2m+1)(n
r)+1−k)α+1, c((2m+1)(n

r)+1−k)α+2, . . . , c(m+1)(n
r)α.

Together with mα(nr − 1) global coded symbols

c1, c2, . . . , cmα(n
r−1)

stored in the first m racks and the decoded mα data symbols,
we can retrieve all other B − mα data symbols by solving
the (B − mα) × (B − mα) linear system, whose encoding
matrix is either a Cauchy matrix or a Vandermonde matrix.
The existing decoding method for solving the Cauchy linear
system [26] or the Vandermonde linear system [27] can be
applied to reduce the decoding complexity.

By applying the proposed coding framework, we can convert
the existing MSR codes into the corresponding MSRR codes
that have the minimum cross-rack repair bandwidth for any
node. It is worth mentioning that the low coding rate (k/n ≤
0.5) MSR codes, such as product-matrix construction [4] with
n = 2k−1, 2k, can be converted into high coding rate (k/n >
0.5) MSRR codes, as kr

n is not an integer. For example, we
convert the MSR(n = 4, k = 2) code (low coding rate) into an
MSRR code with (n, k, r, d) = (12, 8, 4, 3) (high coding rate)
in the example in Fig. 1.

III. COMPARISON

In this section, we compare the sub-packetization and
the supported parameters of the proposed MSRR codes by
applying the coding framework in Section II with the existing
construction of MSRR codes in [10]–[14].

Lemma 3. The sub-packetization of our MSRR codes by
applying the coding framework given in Section II for MSR
codes in [4], [6] and [8] is d−m+ 1, (d−m+ 1)

r
d−m+1 and

(d − m + 1)
d r

(d−m+1)b r−m−1
d−m

c
e
, respectively. As the d helper

nodes in repairing a failed node in [8] are specific, the d helper
nodes in the MSRR codes by applying the coding framework
for the codes in [8] are also specific.

Proof. According to the coding framework given in Section
II, the sub-packetization of our MSRR codes is the same
as that of the employed MSR(r,m, d) codes. Recall that the
sub-packetization of MSR(n, k, d) in [4], [6] and [8] is d −

TABLE I: Comparison with related work.
Parameters Sub-packetization

DRC [10], [11] n
n−k is integer α = 1

or r = 3
Codes in [12] d = m α = 1
Codes in [14] n: prime power α = 1
Codes in [13] all parameters (d−m+ 1)r

Our codes with [4] 2m− 2 ≤ d d−m+ 1

Our codes with [6] all parameters (d−m+ 1)
d r
d−m+1

e

Our codes with [8] all parameters (d−m+ 1)

d r

(d−m+1)b r−m−1
d−m

c
e

TABLE II: Sub-packetization of our codes by applying [4] and
the codes in [13].

Parameters (n, k, r, d) (12,8,4,3) (20,15,5,4) (35,24,7,6)
α in [13] 16 32 37 = 2187

α of our codes with [4] 2 2 3

k + 1, (d − k + 1)
n

d−k+1 and (d − k + 1)
d n

(d−k+1)bn−k−1
d−k

c
e
,

respectively. Therefore, The sub-packetization of our MSRR
codes by applying the coding framework for MSR codes in
[4], [6] and [8] is d−m+ 1, (d−m+ 1)

r
d−m+1 and (d−m+

1)
d r

(d−m+1)b r−m−1
d−m

c
e
, respectively.

Table I shows the comparison with the existing constructions
of MSRR codes in terms of supported parameters and sub-
packetization. Among the existing constructions, only the
codes in [13] can support all the admissible parameters and
other constructions only focus on some parameters. The sub-
packetization of MSRR codes in [13] is (d−m+1)r, which is
much larger than that our MSRR codes by applying the coding
framework for MSR codes in [4], [6] and [8]. Table II shows
the sub-packetization of the proposed codes and the codes in
[13] for some parameters.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we present a coding framework that can convert
any MSR code into MSRR code that has optimal cross-rack
repair bandwidth for any single node. By applying the proposed
coding framework for the existing constructions of MSR codes,
we can obtain many constructions of MSRR codes. Moreover,
the proposed MSRR codes have much less sub-packetization
compared to the existing MSRR codes in general parameters.
In addition to cross-rack repair bandwidth, another important
metric in the repair procedure is repair access, defined as the
total number of symbols accessed in repairing one single failure
node. How to design MSRR codes with small sub-packetization
and less repair access is our future work. Another future work
is how to fix the tight lower bound of the sub-packetization for
MSRR codes. Note that with the coding framework, we can
prove the existence of the MSRR code construction, but we do
not provide the explicit construction. How to obtain an explicit
construction of MSRR codes for all admissible parameters
with small sub-packetization and small finite field is also an
interesting future work.

5
558

REFERENCES

[1] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields,” Journal of the Society for Industrial & Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[2] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network Coding for Distributed Storage Systems,” IEEE Trans. Infor-
mation Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[3] I. Tamo, Z. Wang, and J. Bruck, “Zigzag Codes: MDS Array Codes with
Optimal Rebuilding,” IEEE Trans. Information Theory, vol. 59, no. 3,
pp. 1597–1616, 2012.

[4] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-Regenerating
Codes for Distributed Storage at the MSR and MBR Points via a Product-
Matrix Construction,” IEEE Trans. Information Theory, vol. 57, no. 8,
pp. 5227–5239, August 2011.

[5] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC Codes: Low-
Complexity Regenerating Codes for Distributed Storage Systems,” IEEE
Trans. Information Theory, vol. 62, no. 6, pp. 3053–3069, 2016.

[6] J. Li, X. Tang, and C. Tian, “A Generic Transformation for Optimal
Repair Bandwidth and Rebuilding Access in MDS Codes,” in Proc. IEEE
Int. Symp. Inf. Theory, 2017, pp. 1623–1627.

[7] M. Ye and A. Barg, “Explicit Constructions of High-Rate MDS Array
Codes with Optimal Repair Bandwidth,” IEEE Trans. Information Theory,
vol. 63, no. 4, pp. 2001–2014, 2017.

[8] H. Hou, P. P. Lee, and Y. S. Han, “Multi-Layer Transformed MDS Codes
with Optimal Repair Access and Low Sub-Packetization,” arXiv preprint
arXiv:1907.08938, 2019.

[9] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing clusters,”
in Proc. of ACM SOSP, 2009.

[10] Y. Hu, P. P. C. Lee, and X. Zhang, “Double Regenerating Codes for
Hierarchical Data Centers,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
2016, pp. 245–249.

[11] Y. Hu, X. Li, M. Zhang, P. P. C. Lee, X. Zhang, P. Zhou, and D. Feng,
“Optimal Repair Layering for Erasure-Coded Data Centers: From Theory
to Practice,” ACM Transactions on Storage, vol. 13, no. 4, pp. 33–56,
2017.

[12] H. Hou, P. P. Lee, K. W. Shum, and Y. Hu, “Rack-Aware Regenerating
Codes for Data Centers,” IEEE Trans. Information Theory, vol. 65, no. 8,
pp. 4730–4745, Aug. 2019.

[13] Z. Chen and A. Barg, “Explicit Constructions of MSR Codes for Clustered
Distributed Storage: The Rack-Aware Storage Model,” Accepted in IEEE
Trans. Information Theory, 2019.

[14] L. Jin, G. Luo, and C. Xing, “Optimal Repairing Schemes for Reed-
Solomon Codes with Alphabet Sizes Linear in Lengths under the Rack-
Aware Model,” arXiv preprint arXiv:1911.08016, 2019.

[15] B. Gastón, J. Pujol, and M. Villanueva, “A Realistic Distributed Storage
System That Minimizes Data Storage And Repair Bandwidth,” in Proc.
IEEE Data Compression Conference, Snowbird, March 2013.

[16] J. Pernas, C. Yuen, B. Gastón, and J. Pujol, “Non-Homogeneous Two-
Rack Model for Distributed Storage Systems,” in Proc. IEEE Int. Symp.
Inf. Theory, 2013, pp. 1237–1241.

[17] M. A. Tebbi, T. H. Chan, and C. W. Sung, “A Code Design Framework
for Multi-Rack Distributed Storage,” in Proc. IEEE Inf. Theory Workshop
(ITW), 2014, pp. 55–59.

[18] J.-y. Sohn, B. Choi, S. W. Yoon, and J. Moon, “Capacity of Clustered
Distributed Storage,” IEEE Trans. Information Theory, vol. 65, no. 1,
pp. 81–107, 2019.

[19] N. Prakash, V. Abdrashitov, and M. Médard, “The Storage versus
Repair-Bandwidth Trade-off for Clustered Storage Systems,” IEEE Trans.
Information Theory, vol. 64, no. 8, pp. 5783–5805, August 2018.

[20] Y. Wu and A. G. Dimakis, “Reducing Repair Traffic for Erasure Coding-
Based Storage via Interference Alignment,” in Proc. IEEE Int. Symp. Inf.
Theory, Seoul, July 2009, pp. 2276–2280.

[21] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
University Press, 1995.

[22] H. Hou and P. P. Lee, “Binary MDS Array Codes with Optimal Repair,”
IEEE Trans. Information Theory, vol. 66, no. 3, pp. 1405–1422, Mar.
2020.

[23] H. Hou, P. P. C. Lee, Y. S. Han, and Y. Hu, “Triple-Fault-Tolerant Binary
MDS Array Codes with Asymptotically Optimal Repair,” in Proc. IEEE
Int. Symp. Inf. Theory, Aachen, June 2017.

[24] H. Hou, Y. S. Han, P. P. Lee, Y. Hu, and H. Li, “A New Design of
Binary MDS Array Codes with Asymptotically Weak-Optimal Repair,”
IEEE Trans. Information Theory, vol. 65, no. 11, pp. 7095–7113, 2019.

[25] E. E. Gad, R. Mateescu, F. Blagojevic, C. Guyot, and Z. Bandic, “Repair-
Optimal MDS Array Codes over GF(2),” in Proc. IEEE Int. Symp. Inf.
Theory, 2013, pp. 887–891.

[26] H. Hou and Y. S. Han, “A New Construction and an Efficient Decoding
Method for Rabin-Like Codes,” IEEE Trans. Communications, vol. 66,
no. 2, pp. 521–533, 2018.

[27] H. Hou, Y. S. Han, K. W. Shum, and H. Li, “A Unified Form of
EVENODD and RDP Codes and Their Efficient Decoding,” IEEE Trans.
Communications, vol. 66, no. 11, pp. 5053–5066, 2018.

6
559

