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Abstract— An (n, k) maximum distance separable (MDS) code
encodes kα data symbols into nα symbols that are stored in
n nodes with α symbols each, such that the kα data symbols
can be reconstructed from any k out of n nodes. MDS codes
achieve optimal repair access if we can repair the lost symbols
of any single node by accessing α

d−k+1
symbols from each of

d other surviving nodes, where k + 1 ≤ d ≤ n − 1. In this
paper, we propose a generic transformation for any MDS code
to achieve optimal repair access for a single-node repair among
d − k + 1 nodes, while the transformed MDS codes maintain
the same update bandwidth (i.e., the total amount of symbols
transferred for updating the symbols of affected nodes when
some data symbols are updated) as that of the underlying MDS
codes. By recursively applying our transformation for existing
MDS codes with the minimum update bandwidth, we can obtain
multi-layer transformed MDS codes that achieve both optimal
repair access for any single-node repair among all n nodes and
minimum update bandwidth.

Index Terms—MDS codes, minimum update bandwidth, opti-
mal repair access.

I. INTRODUCTION

Maximum distance separable (MDS) codes are a class of
erasure codes that are widely employed in distributed storage
systems to provide data reliability. Reed-Solomon (RS) codes
[1] are one well-known example of MDS codes. An (n, k)
MDS code (where k ≤ n) encodes a data file of kα data
symbols (where α ≥ 1) over the finite field Fq into nα coded
symbols that are distributed across n storage nodes with α
symbols each, such that the original kα data symbols can be
reconstructed from any k out of n nodes (called the MDS
property). The number of symbols stored in each node, α,
is called the sub-packetization level. Dimakis et al. [2] show
that we can repair the α lost symbols of any failed node by
downloading at least

β =
α

d− k + 1

symbols from each of d helper nodes (where k + 1 ≤ d ≤
n − 1). Also, the repair bandwidth (i.e., the total amount of
symbols downloaded for repairing a single failed node of any
(n, k) MDS code) is at least

γ = dβ =
dα

d− k + 1
. (1)
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We focus on a class of MDS codes called the MDS array
codes, in which the code structure is arranged as an α × n
array. We define repair access as the total number of symbols
accessed from d helper nodes when repairing a single failed
node. An MDS array code achieves optimal repair access if the
repair access equals the minimum repair bandwidth in Eq. (1).
Some constructions of MDS array codes with the minimum
repair bandwidth are given in [3]–[12].

In addition to the repair problem, another important issue in
distributed storage systems is the update problem. Specifically,
if some data symbols need to be updated to the new version,
we need to send symbols to the nodes whose symbols need to
be updated. When we update some data symbols, we need
to send symbols to the corresponding nodes to update the
symbols there. Here, we consider vertical MDS array codes,
in which coded symbols are arranged in the rows of the array
(i.e., the coded symbols span across all nodes), mainly because
they achieve optimal update [13]. Table I shows a vertical
MDS array code of k = 2, n = 4, and α = 4 [13]. The eight
data symbols are si,j ∈ Fq , where i = 1, 2 and j = 1, 2, 3, 4.
First, we can decode the eight data symbols from any two
nodes if q > 2. For example, consider nodes 1 and 3. We can
subtract s1,3 each from s1,2+s1,3+s1,4 and s1,2+2s1,3+3s1,4
in node 1 to obtain s1,2+s1,4 and s1,2+3s1,4, respectively, and
further solve for s1,2 and s1,4. The decoding of data symbols
from any other two nodes is similar.

If we update the two data symbols of a node, we only
need to send two updated data symbols to the node plus
one coded symbol to each of the other three nodes to up-
date the corresponding symbols. For example, if the two
data symbols s1,1 and s2,1 are updated into s̄1,1 and s̄2,1,
respectively, then we only need to send two symbols s̄1,1, s̄2,1
to node 1, and three coded symbols s̄1,1−s1,1, s̄2,1−s2,1 and
(s̄1,1−s1,1)+(s̄2,1−s2,1) to nodes 2, 3 and 4, respectively. The
total amount of symbols transferred for the update is called
the update bandwidth [13]. In the (n, k) vertical MDS array
codes of size n × n, each node stores k data symbols and
n−k coded symbols. If the k data symbols stored in one node
should be updated, it is shown in [13] that the minimum update
bandwidth of the (n, k) vertical MDS array codes is n+k−1.
The update bandwidth of updating two data symbols s1,j and
s2,j of the code in Table I is five, which is optimal. However,
the repair access of the code in Table I is sub-optimal.

We show via an example how our MDS code transfor-
mation (detailed in Section II) makes optimal repair access
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TABLE I: Example of the code in [13] with k = 2 and n = 4.
Node 1 Node 2 Node 3 Node 4
s1,1 s1,2 s1,3 s1,4
s2,1 s2,2 s2,3 s2,4

s1,2 + s1,3 + s1,4 s1,1 + s2,3 + s2,4 s2,1 + s2,2 + (s1,4 + s2,4) (s1,1 + s2,1) + (s1,2 + s2,2) + (s1,3 + s2,3)
s1,2 + 2s1,3 + 3s1,4 s1,1 + 2s2,3 + 3s2,4 s2,1 + 2s2,2 + 3(s1,4 + s2,4) (s1,1 + s2,1) + 2(s1,2 + s2,2) + 3(s1,3 + s2,3)

TABLE II: The transformed code by applying the transformation with e = −1 for the first two nodes of the code in Table I.
Note that the symbols in rows 5-8 (the symbols labeled with ?) in nodes 2-4 can repair node 1.

Row Node 1 Node 2 Node 3 Node 4
1 s11,1 + s21,1 s11,2 s11,3 s11,4
2 s12,1 + s22,1 s12,2 s12,3 s12,4
3 (s11,2 + s11,3 + s11,4)+ s11,1 + s12,3 s12,1 + s12,2+ (s11,1 + s12,1) + (s11,2 + s12,2)

(s21,2 + s21,3 + s21,4) +s12,4 (s11,4 + s12,4) +(s11,3 + s12,3)

4 (s11,2 + 2s11,3 + 3s11,4)+ s11,1 + 2s12,3 s12,1 + 2s12,2+ (s11,1 + s12,1) + 2(s11,2 + s12,2)

(s21,2 + 2s21,3 + 3s21,4) +3s12,4 3(s11,4 + s12,4) +3(s11,3 + s12,3)

5 s21,2 ?s11,1 − s21,1 ?s21,3 ?s21,4
6 s22,2 ?s12,1 − s22,1 ?s22,3 ?s22,4
7 s21,1 + s22,3 ?(s11,2 + s11,3 + s11,4)− ?s22,1 + s22,2+ ?(s21,1 + s22,1) + (s21,2 + s22,2)

+s22,4 (s21,2 + s21,3 + s21,4) (s21,4 + s22,4) +(s21,3 + s22,3)

8 s21,1 + 2s22,3 ?(s11,2 + 2s11,3 + 3s11,4)− ?s22,1 + 2s22,2+ ?(s21,1 + s22,1) + 2(s21,2 + s22,2)

+3s22,4 (s21,2 + 2s21,3 + 3s21,4) 3(s21,4 + s22,4) +3(s21,3 + s22,3)

viable. Table II shows the case when we apply our code
transformation to the first two nodes of the code in Table I. In
Table II, the 16 data symbols are s`i,j with ` = 1, 2, i = 1, 2
and j = 1, 2, 3, 4. We first claim that the repair access of
each of the first two nodes is optimal. For example, we can
repair node 1 by accessing the symbols in rows 5-8 (i.e., the
symbols labeled with ? in Table II) from each of the other three
nodes. Using the downloaded eight symbols from node 3 and
node 4, we can obtain two data symbols s22,1 and s22,2 by first
subtracting s21,4 and s22,4 each from s22,1+s22,2+(s21,4+s22,4) and
s22,1 + 2s22,2 + 3(s21,4 + s22,4), followed by solving for s22,1 and
s22,2 from s22,1 +s22,2 and s22,1 +2s22,2. Similarly, we can obtain
s21,1 and s21,2 by subtracting the data symbols s22,1, s22,2, s21,3
and s22,3 from two coded symbols downloaded from node 4
and solving a 2× 2 linear system. Then, we can compute the
following four symbols

s21,1 + s22,3 + s22,4, s
2
1,1 + 2s22,3 + 3s22,4,

s21,2 + s21,3 + s21,4, s
2
1,2 + 2s21,3 + 3s21,4.

Together with the downloaded four symbols from node 2, we
can recover the first four symbols in node 1. We can repair
node 2 by accessing the symbols in rows 1-4 from each of
nodes 1, 3 and 4.

We next claim that we only need to send 10 symbols
(the minimum update bandwidth) to the nodes to update the
corresponding symbols if four data symbols s11,j , s

1
2,j , s

2
1,j , s

2
2,j

are updated, where j = 1, 2, 3, 4. For example, suppose
that the data symbols s11,1, s

1
2,1, s

2
1,1, s

2
2,1 are updated into

s̄11,1, s̄
1
2,1, s̄

2
1,1, s̄

2
2,1. We only need to send three symbols

s̄11,1 − s11,1, s̄
2
1,1 − s21,1, s̄

1
2,1 + s̄22,1 to node 1, three coded

symbols s̄11,1 − s11,1, s̄
2
1,1 − s21,1, s̄

1
2,1 − s̄22,1 to node 2, two

coded symbols s̄12,1−s12,1, s̄22,1−s22,1 to node 3, and two coded
symbols s̄11,1 + s̄12,1 − (s11,1 + s12,1), s̄21,1 + s̄22,1 − (s21,1 + s22,1)
to node 4.

Note that the code in Table II is MDS, i.e., we can retrieve
all 16 data symbols from any two nodes. For example, from
nodes 3 and 4, we can subtract s11,4, s

1
2,4 each from s12,1 +

s12,2 + s11,4 + s12,4 and s12,1 + 2s12,2 + 3(s11,4 + s12,4) in node 3
to obtain s12,1 + s12,2 and s12,1 + 2s12,2, respectively, and further
solve for s12,1 and s12,2. By subtracting s11,3, s

1
2,3 each from

(s11,1 + s12,1) + (s11,2 + s12,2) + (s11,3 + s12,3) and (s11,1 + s12,1) +
2(s11,2 + s12,2) + 3(s11,3 + s12,3) in node 4, we obtain (s11,1 +
s12,1) + (s11,2 + s12,2) and (s11,1 + s12,1) + 2(s11,2 + s12,2). Then,
we can solve s11,1 + s12,1 and s11,2 + s12,2. Recall that s12,1 and
s12,2 are known, we can further obtain s11,1 and s11,2. Similarly,
we can compute s21,1, s

2
1,2, s

2
2,1, s

2
2,2 from the eight symbols in

rows 5-8 in nodes 3 and 4.

In this paper, we design a new generic transformation for
any m × n MDS array code to obtain a transformed MDS
array code of size m(d − k + 1) × n with three properties:
(i) it achieves optimal repair access for a single-node repair
among d − k + 1 nodes; (ii) it maintains the same update
bandwidth as the underlying m × n MDS array code; and
(iii) it is an MDS code. By recursively applying the generic
transformation for the n× n vertical MDS array code in [13]
d n
d−k+1e times, we can obtain an n · (d− k + 1)d

n
d−k+1 e × n

multi-layer transformed vertical MDS array code, in which
each node contains k · (d − k + 1)d

n
d−k+1 e data symbols and

(n − k) · (d − k + 1)d
n

d−k+1 e coded symbols, such that the
transformed code achieves not only optimal repair access for
any single-node repair, but also minimum update bandwidth
when k · (d− k + 1)d

n
d−k+1 e data symbols are updated.

There exist some similar transformations [9], [11], [14] for
MDS codes to achieve optimal repair access for a subset
of n nodes. However, the update bandwidth increases in the
existing transformed codes in [9], [11], [14], while the update
bandwidth of our transformed codes is kept the same as that
of the underlying MDS codes.
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II. GENERIC TRANSFORMATION FOR MDS ARRAY CODES

A. Transformation Design

For j = 1, 2, . . . , n, let the m symbols stored in node j be

vj =
[
v1,j v2,j · · · vm,j

]T
,

such that we can reconstruct all km data symbols from any k
out of n vectors v1,v2, · · · ,vn. In the following, we present
the generic transformation for MDS array codes to enable
optimal repair access for a single-node repair among d−k+1
nodes, where k + 1 ≤ d ≤ n− 1. Without loss of generality,
we assume that the first d − k + 1 nodes of the transformed
codes are the selected nodes, for which we enable optimal
repair access.

First, we define the multiplication of a scalar e and a vector

v =
[
v1 v2 . . . vm

]
by

ev =
[
ev1 ev2 . . . evm

]
and the addition of two vectors

v1 =
[
v11 v12 . . . v1m

]
and

v2 =
[
v21 v22 . . . v2m

]
by

v1 + v2 =
[
v11 + v21 v12 + v22 . . . v1m + v2m

]
.

Let t = d− k + 1. We create t instances

v1
1,v

1
2, · · · ,v1

n,

v2
1,v

2
2, · · · ,v2

n,

· · · ,
vt1,v

t
2, · · · ,vtn,

of the MDS array codes, such that any k out of n vectors
v`1,v

`
2, · · · ,v`n can reconstruct km data symbols for ` =

1, 2, . . . , t. For j = 1, 2, . . . , t, the t vectors (tm symbols)
stored in node j are obtained by the following three steps.

1) We perform the cyclic-right-shift of i − 1 positions of
the i-row (i = 1, 2, . . . , t) of the following t× t matrix

V1
t×t =


v1
1 v1

2 · · · v1
t

v2
1 v2

2 · · · v2
t

...
...

. . .
...

vt1 vt2 · · · vtt


to obtain the matrix

V2
t×t =


v1
1 v1

2 · · · v1
t

v2
t v2

1 · · · v2
t−1

...
...

. . .
...

vt2 vt3 · · · vt1


2) For i, j ∈ {1, 2, . . . , t}, the entry in row i and column

j of the matrix V2
t×t is vi((j−i) mod t)+1. When i+ j <

t + 1, we replace the entry in row i and column j of

the matrix V2
t×t by vi((j−i) mod t)+1 + vt+1−j

((j−i) mod t)+1.
When i+ j > t+ 1, we replace the entry in row i and
column j of the matrix V2

t×t by evi((j−i) mod t)+1 +

vt+1−j
((j−i) mod t)+1. The resulting matrix V3

t×t is
v1
1 + vt1 v1

2 + vt−1
2 · · · v1

t

v2
t + vtt v2

1 + vt−1
1 · · · v1

t−1 + ev2
t−1

...
...

. . .
...

vt−1
3 + vt3 vt−1

4 · · · v1
2 + evt−1

2

vt2 vt−1
3 + evt3 · · · v1

1 + evt1

 . (2)

3) The t vectors stored in node j are the t entries in column
j of the matrix V3

t×t for j = 1, 2, . . . , t.
For j = t + 1, t + 2, . . . , n, node j stores t vectors
v1
j ,v

2
j , . . . ,v

t
j . The obtained codes are our transformed codes.

Table II shows the transformed code by directly applying
the transformation with e = −1 for the example in Table I.

B. Properties

We first present the following lemma before showing the
properties of the transformed codes.

Lemma 1. If e 6= 0 and e 6= 1, then we can obtain
1) vi` and vj` from vi` + vj` and vi` + evj` ;
2) vi` + vj` from vj` and vi` + evj` ;
3) vi` + evj` from vj` and vi` + vj` ;
4) vj` from evj` .

Proof. Consider the first statement. From vi`+vj` and vi`+ev
j
` ,

we can obtain

vih,` + vjh,` for 1 ≤ h ≤ m,
vih,` + evjh,` for 1 ≤ h ≤ m.

We can compute vih,` and vjh,` by

vih,` =
e(vih,` + vjh,`)− (vih,` + evjh,`)

e− 1
,

vjh,` =
(vih,` + vjh,`)− (vih,` + evjh,`)

1− e
.

The last three statements can be proven similarly.

The next two theorems show that the transformed codes are
MDS codes and have optimal repair access for a single-node
repair of the first t nodes.

Theorem 2. If e 6= 0 and e 6= 1, then the transformed codes
satisfy the MDS property.

Proof. The transformed codes satisfy the MDS property if any
k out of n nodes can reconstruct all the data symbols.

Suppose that the indices of the chosen k nodes are
j1, j2, . . . , jk, where 1 ≤ j1 < . . . < jk ≤ n. If j1 ≥
t + 1, then the kt vectors stored in the chosen k nodes are
v`j1 ,v

`
j2
, · · · ,v`jk with ` = 1, 2, . . . , t. We can thus compute

all the data symbols since the underlying codes are MDS
codes.

In the following, we consider the case that 1 ≤ j1 <
j2 < · · · < jh < t and jh+1 ≥ t + 1 with 1 ≤ h ≤
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t. The entry in row t + 1 − j1 and column j2 of the
matrix V3

t×t is vt+1−j2
((j2+j1−1) mod t)+1 + evt+1−j1

((j2+j1−1) mod t)+1;
while the entry in row t + 1 − j2 and column j1 is
vt+1−j2
((j1+j2−1) mod t)+1 + vt+1−j1

((j1+j2−1) mod t)+1. By Lemma 1,
we can obtain vt+1−j2

((j1+j2−1) mod t)+1 and vt+1−j1
((j1+j2−1) mod t)+1

from the above two entries. Similarly, we can obtain
vt+1−j`
((j1+j`−1) mod t)+1 and vt+1−j1

((j1+j`−1) mod t)+1 from the entries
in row t+1−j1 and column j`, and row t+1−j` and column
j1, for ` = 2, 3, . . . , h. Recall that the entry in row t+ 1− j1
and column j1 is vt+1−j1

((2j1−1) mod t)+1. We obtain

{vt+1−j1
((2j1−1) mod t)+1,v

t+1−j1
((j1+j2−1) mod t)+1, . . . ,v

t+1−j1
((j1+jh−1) mod t)+1},

together with the entries in row t + 1 − j1 and columns
jh+1, jh+2, . . . , jk, we can compute all the data symbols in
row t+1−j1 according to the MDS property of the underlying
codes.

By the same argument, we can reconstruct all the data
symbols in rows t+1− j2, . . . , t+1− jh. Once the vectors in
rows t+ 1− j2, . . . , t+ 1− jh are known, we can reconstruct
all the other data symbols similarly.

Theorem 3. The transformed codes have the optimal repair
access for a single-node repair of the first t nodes.

Proof. For j = 1, 2, . . . , t, we show that we can recover node j
by accessing k vectors vt+1−j

h1
,vt+1−j
h2

, . . . ,vt+1−j
hk

with t+
1 ≤ h1 < · · · < hk ≤ n and t− 1 entries in row t+ 1− j of
the matrix V3

t×t except the failed node j.
By accessing vt+1−j

h1
,vt+1−j
h2

, . . . ,vt+1−j
hk

, we can compute
vt+1−j
1 ,vt+1−j

2 , . . . ,vt+1−j
t as the underlying codes are MDS

codes. With the obtained vt+1−j
((2j−1) mod t)+1 and the accessed

t − 1 entries in row t + 1 − j of the matrix V3
t×t except

the failed node j, we can compute all t vectors in node j by
Lemma 1. Thus, we can repair t vectors in node j by accessing
k + t − 1 = d vectors and the repair access is optimal by
Eq. (1).

The repair method of node 1 of the transformed code in
Table II (see Section I) is due to the proof of Theorem 3
and the repair access is optimal due to Theorem 3. The next
theorem shows that the transformed codes maintain the same
update bandwidth as that of the underlying MDS codes.

Theorem 4. In the (n, k) underlying MDS codes, suppose
that we want to update the data symbol si,j with 1 ≤ j ≤ n
and 1 ≤ i ≤ k, and we need to send the coded symbol
ch to node uh to update some symbols in vector vh for
h = 1, 2, . . . , η with 1 ≤ η ≤ n and 1 ≤ u1 < · · · <
uη ≤ n. In the transformed codes, if we want to update t data
symbols s1i,j , s

2
i,j , . . . , s

t
i,j , we need to send t coded symbols

c1h, c
2
h, . . . , c

t
h to node uh to update some symbols in vectors

v1
h,v

2
h, . . . ,v

t
h when uh > t, and one coded symbol to each

of the first t nodes when uh ≤ t.

Proof. By assumption, the coded symbol c`h is needed to
update some symbols in v`uh

, where ` = 1, 2, . . . , t and
h = 1, 2, . . . , η. If uh > t, we can update the symbols in
v`uh

stored in node uh with the coded symbols c1h, c
2
h, . . . , c

t
h.

Consider the case of uh ≤ t. For j ≤ t, the t vectors stored
in node j are

v1
((j−1) mod t)+1 + vt+1−j

((j−1) mod t)+1,

v2
((j−2) mod t)+1 + vt+1−j

((j−2) mod t)+1, . . . ,

vt−j((2j) mod t)+1 + vt+1−j
((2j) mod t)+1,

vt+1−j
((2j−1) mod t)+1,

vt+1−j
((2j−2) mod t)+1 + evt+2−j

((2j−2) mod t)+1,

vt+1−j
((2j−3) mod t)+1 + evt+3−j

((2j−3) mod t)+1, . . . ,

vt+1−j
((j) mod t)+1 + evt((j) mod t)+1.

For i1 6= i2 ∈ {1, 2, . . . , t}, we have

{((j − i1) mod t) + 1 6= ((j − i2) mod t) + 1}
and

{((j − 1) mod t) + 1, ((j − 2) mod t) + 1, . . . , ((j − t) mod t) + 1}
= {1, 2, . . . , t}.

Thus, we only need to send one coded symbol to each of the
first t nodes to update some symbols. Specifically, we need to
send one of the following symbols

cj+t+1−uh
uh

+ ct+1−j
uh

,

cj+1−uh
uh

+ ct+1−j
uh

,

cj+1−uh
uh

,

ct+1−j
uh

+ ect+j+1−uh
uh

,

ct+1−j
uh

+ ecj+1−uh
uh

,

to node j to update some symbols in the vector with subscript
being uh.

By Theorem 4, if the update bandwidth of updating one data
symbol of the underlying MDS codes is η, then the update
bandwidth of updating t data symbols of the transformed
codes is tη. Thus, the normalized update bandwidth (i.e.,
the ratio of update bandwidth to the number of updated data
symbols) of the transformed codes is the same as that of the
underlying codes. If the underlying codes have optimal update
bandwidth, then the transformed codes also have optimal
update bandwidth.

Recall that the update bandwidth of the code in Table I is
five. The update bandwidth of the transformed code in Table II
is 10 when the four data symbols s11,j , s

1
2,j , s

2
1,j , s

2
2,j need to

be updated by Theorem 4, where j = 1, 2, 3, 4. For example,
when j = 1, i.e., the data symbols s11,1, s

1
2,1, s

2
1,1, s

2
2,1 are

updated into s̄11,1, s̄
1
2,1, s̄

2
1,1, s̄

2
2,1. We can send three symbols

s̄11,1 + s̄21,1, s̄
1
2,1 + s̄22,1, s̄

2
1,1 − s21,1 to node 1 to update s11,1 +

s21,1, s
1
2,1 + s22,1, s

2
1,1 + s22,3 + s22,4, s

2
1,1 + 2s22,3 + 3s22,4, three

symbols s̄11,1−s11,1, s̄11,1− s̄21,1, s̄12,1− s̄22,1 to node 2 to update
s11,1 + s12,3 + s12,4, s

1
1,1 + 2s12,3 + 3s12,4, s

1
1,1 − s21,1, s12,1 − s22,1,

two symbols s̄12,1 − s12,1, s̄22,1 − s22,1 to node 3 to update

s12,1 + s12,2 + (s11,4 + s12,4), s12,1 + 2s12,2 + 3(s11,4 + s12,4),

s22,1 + s22,2 + (s21,4 + s22,4), s22,1 + 2s22,2 + 3(s21,4 + s22,4),
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TABLE III: Example of the transformed codes with k = 3,
n = 6 and t = 3.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
v1
1 + v3

1 v1
2 + v2

2 v1
3 v1

4 v1
5 v1

6
v2
3 + v3

3 v2
1 v1

2 + ev2
2 v2

4 v2
5 v2

6
v3
2 v2

3 + ev3
3 v1

1 + ev3
1 v3

4 v3
5 v3

6

and two symbols s̄11,1−s11,1+s̄12,1−s12,1, s̄21,1−s21,1+s̄22,1−s22,1
to node 4 to update

(s11,1 + s12,1) + (s11,2 + s12,2) + (s11,3 + s12,3),

(s11,1 + s12,1) + 2(s11,2 + s12,2) + 3(s11,3 + s12,3),

(s21,1 + s22,1) + (s21,2 + s22,2) + (s21,3 + s22,3),

(s21,1 + s22,1) + 2(s21,2 + s22,2) + 3(s21,3 + s22,3).

Table III shows an example with k = 3, n = 6 and t = 3.
Suppose that we want to update one symbol c1 in vector v1 in
the underlying code. For the transformed code, we only need
to send one symbol c11 + c31 to node 1 to update the symbol in
vector v1

1 +v3
1, one symbol c21 to node 2 to update the symbol

in vector v2
1 and one symbol c11 + ec31 to node 3 to update the

symbol in vector v1
1 + ev3

1.
The code in Table III have optimal repair access for single-

node repair among the first three nodes. For example, we can
repair node 1 by accessing five vectors

v2
3 + ev3

3,v
1
1 + ev3

1,v
3
4,v

3
5,v

3
6

from the other five nodes and the repair access is optimal.
Specifically, we can first compute v3

1, v3
2 and v3

3 from the
downloaded three vectors v3

4,v
3
5,v

3
6. Then, we can recover

two vectors v1
1 + v3

1 and v2
3 + v3

3 by

v1
1 + v3

1 =(1− e)v3
1 + (v1

1 + ev3
1),

v2
3 + v3

3 =(1− e)v3
3 + (v2

3 + ev3
3).

The repair method of node 2 and node 3 is similar.

III. MDS ARRAY CODES WITH OPTIMAL REPAIR ACCESS
AND OPTIMAL UPDATE BANDWIDTH

In this section, we propose the construction of MDS array
codes that have optimal repair access for any single-node
repair and optimal update bandwidth by applying the transfor-
mation in Section II multiple times for the MDS array codes
in [13].

We first provide a brief overview of the MDS codes in
[13]. The MDS code given in [13] is an (n, k) vertical
MDS array code of size n × n, where node j stores k
data symbols s1,j , s2,j , . . . , sk,j and n − k coded symbols
c1,j , c2,j , . . . , cn−k,j with j = 1, 2, . . . , n. If the k data
symbols stored in any one node should be updated, it is shown
in [13] that we need to send at least n + k − 1 symbols to
update all the related symbols (including the updated k data
symbols and some related coded symbols). Table I shows an
example of n = 4 and k = 2.

Recall that there are n nodes in MDS array codes in [13].
We divide n nodes into d n

d−k+1e partitions, each of which
contains d−k+ 1 nodes. For i = 1, 2, . . . , d n

d−k+1e, partition

i contains d−k+1 nodes that are from node (i−1)(d−k+1)+1
to node i(d− k + 1) mod n.

By applying the transformation in Section II for the first
partition (nodes 1 to d − k + 1) of the codes in [13], we
can obtain the transformed codes of size n(d − k + 1) × n,
denoted by C1(n, k, d), that satisfy MDS property according to
Theorem 2, have optimal repair access for a single-node repair
among the first d− k + 1 nodes according to Theorem 3 and
have optimal update bandwidth according to Theorem 4 when
the k(d − k + 1) data symbols are updated. Specifically, the
update bandwidth of C1(n, k, d) is (d−k+1)(n+k−1) if k(d−
k+ 1) data symbols s`1,j , s

`
2,j , . . . , s

`
k,j with ` = 1, 2, . . . , d−

k + 1 are updated, where j = 1, 2, . . . , n. By applying the
transformation for the second partition (nodes between d−k+2
and 2(d−k+1)) of the codes C1(n, k, d), we obtain the codes
C2(n, k, d) with each node storing n · (d − k + 1)2 symbols.
The codes C2(n, k, d) are MDS codes according to Theorem 2,
have optimal repair access for a single-node repair among the
first 2(d−k+1) nodes according to Theorem 3. As the update
bandwidth of the underlying codes C1(n, k, d) is (d−k+1)(n+
k−1) when k(d−k+1) data symbols are updated, the update
bandwidth of C2(n, k, d) is (n+ k− 1)(d− k+ 1)2 when the
k(d−k+1)2 data symbols are updated according to Theorem 4
and the update bandwidth of C2(n, k, d) is optimal.

Similarly, by recursively applying the transformation for
partition i + 1 of Ci(n, k, d) for i = 2, 3, . . . , d n

d−k+1e − 1,
we obtain the codes Cd n

d−k+1 e(n, k, d) with each node storing
n·(d−k+1)d

n
d−k+1 e symbols. The codes Cd n

d−k+1 e(n, k, d) are
MDS codes according to Theorem 2, have optimal repair ac-
cess for any single-node repair according to Theorem 3. As the
update bandwidth of the underlying codes Cd n

d−k+1 e−1(n, k, d)

is (d − k + 1)d
n

d−k+1 e−1(n + k − 1) when k(d − k +
1)d

n
d−k+1 e−1 data symbols are updated, the update bandwidth

of Cd n
d−k+1 e(n, k, d) is (n + k − 1)(d − k + 1)d

n
d−k+1 e when

the k(d− k + 1)d
n

d−k+1 e data symbols are updated according
to Theorem 4 and the update bandwidth of Cd n

d−k+1 e(n, k, d)
is optimal.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a new transformation for any
MDS array code to obtain the transformed MDS array code
that has optimal repair access for a single-node repair of the
d − k + 1 chosen nodes and the same update bandwidth as
the underling MDS array code. By recursively applying the
proposed transformation for the MDS array codes in [13]
many times, we can obtain the multi-layer transformed MDS
array codes that have optimal repair access for any single-node
repair and optimal update bandwidth. One of our future work
is how to combine our transformation and the existing efficient
decoding methods [15], [16] and repair methods [17]–[19] of
binary MDS array codes, so as to obtain MDS array codes with
lower sub-packetization level, efficient repair access for any
single node, efficient update bandwidth, and efficient decoding
method.
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