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Abstract— In data centers, storage nodes are organized in
racks and the cross-rack communication bandwidth is often much
lower than the intra-rack communication bandwidth. Two com-
mon failures in data centers are single-node failures and single-
rack failures. In this paper, we study the problem of minimizing
the cross-rack repair bandwidth in both repairing single-node
failures and repairing single-rack failures. We characterize, given
that the minimum cross-rack repair bandwidth for single-node
failures is achieved, the optimal trade-off between storage and
cross-rack repair bandwidth for single-rack failures. We further
propose a general family of storage codes, Generalized Rack-aware
Regenerating Codes (GRRC), that achieve the optimal trade-off.
We obtain two extreme points of GRRC, namely the minimum
storage generalized rack-aware regeneration (MSGRR) point and
the minimum bandwidth generalized rack-aware regeneration (MB-
GRR) point. We show that MSGRR codes have strictly less cross-
rack repair bandwidth for single-rack failures than the related
minimum storage multi-node repair codes for most parameters.
We also show that MBGRR codes have less cross-rack repair
bandwidth for single-rack failures than the minimum bandwidth
multi-node repair codes for all our evaluated parameters.

Index Terms—Regenerating codes, cross-rack repair band-
width, single-node failures, single-rack failures.

I. INTRODUCTION

Maximum distance separable (MDS) codes are a class of
erasure codes that are widely adopted in distributed storage
systems to achieve data reliability with the minimum storage
redundancy. An (n, k) MDS code encodes a data file of kα
data symbols (i.e., the units for erasure coding operations) to
obtain nα coded symbols over a finite field, where k < n
and α ≥ 1 (α is called the sub-packetization level). The nα
coded symbols are distributed across n different nodes, each of
which stores α symbols. MDS codes satisfy the reconstruction
property, such that any k out of n nodes can retrieve the kα
data symbols.

Modern distributed storage systems often organize nodes
in racks, and the cross-rack communication bandwidth is
much lower than the intra-rack communication bandwidth [1].
When a node fails, it is critical to repair the failed symbols
with the cross-rack repair bandwidth (i.e., the total amount
of symbols transferred across racks during repair) as small
as possible. Several erasure code constructions have been
proposed to minimize the cross-rack repair bandwidth [2]–
[10]. For example, Rack-aware regenerating codes (RRC) [4]
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minimize the cross-rack repair bandwidth for any single-node
failure and provide an optimal trade-off analysis between
storage and cross-rack repair bandwidth. In RRC, n nodes
are evenly placed in r racks with n/r nodes each, where n
is a multiple of r. A data file is encoded into nα symbols
that are stored in n nodes with α symbols each, such that
the reconstruction property is satisfied. Suppose that a node
fails and its α symbols are lost. A new node is identified in
the same rack as the failed node for replacement. The new
node retrieves all other symbols within the same rack and the
encoded symbols from other racks (called helper racks) for
reconstructing the α lost symbols.

Existing erasure code constructions for optimal cross-rack
repair currently focus on optimizing node-level repair. In rack-
based data centers, rack failures, albeit less prevalent than node
failures, can also happen and need to be tolerated [11]. It
is critical to design erasure codes that optimize both node-
level and rack-level repairs, such that the cross-rack repair
bandwidth in both cases can be minimized.

Contributions. In this paper, we propose a general family
of erasure codes, called generalized rack-aware regenerating
codes (GRRC), that minimize the cross-rack repair bandwidth
for both single-node failures and single-rack failures for rack-
based data centers. We make the following contributions.

• We derive the optimal trade-off between storage and cross-
rack repair bandwidth for any single-rack failure for GRRC,
subject to the minimum cross-rack repair bandwidth for any
single-node failure. Based on the trade-off between storage
and cross-rack repair bandwidth for any single-rack failure
of GRRC, we characterize two extreme points, namely
the minimum storage generalized rack-aware regeneration
(MSGRR) point and the minimum bandwidth generalized
rack-aware regeneration (MBGRR) point.

• We show that MSGRR codes have the same cross-rack
repair bandwidth for single-rack failures as the minimum
storage multi-node repair codes [12] when kr is a multiple
of n, and have strictly less cross-rack repair bandwidth than
the minimum storage multi-node repair codes when kr is
not a multiple of n. We also show that MBGRR codes have
less cross-rack repair bandwidth for single-rack failures than
the minimum bandwidth multi-node repair codes [12] for all
the evaluated parameters.

The main difference between GRRC and the repair of multi-
node failures in [12] is as follows. In the repair of n/r-node



failures in [12], a centralized server retrieves encoded symbols
directly from some selected surviving nodes via cross-rack
transmissions and dispatches the reconstructed symbols to n/r
new nodes; there is no further encoding among the encoded
symbols. In contrast, in the repair of a single-rack failure (with
n/r-node failures) in GRRC, the encoded symbols from the
surviving nodes within each helper rack are re-encoded, and
the re-encoded symbols are transmitted to the new replacement
rack via cross-rack transmissions. Our results show that such
re-encoding is critical for minimizing the cross-rack repair
bandwidth for a single-rack failure.

Related work. Many studies focus on minimizing the
number of symbols transferred in repair. There are mainly
three directions.

1) Optimal repair for single-node failures. Regenerating
codes (RC) [13] are the seminal work on minimizing the
repair bandwidth (i.e., the total amount of symbols transferred
during repair) for a single-node failure. RC operates on the
optimal trade-off between storage and repair bandwidth, with
two extreme points: the minimum storage regeneration (MSR)
point and the minimum bandwidth regeneration (MBR) point.
Exact-repair constructions of RC are investigated in [14]–[23],
most of which focus on MSR codes or MBR codes.

2) Optimal repair for multi-node failures. Cooperative re-
generating codes [24] repair multi-node failures in a distributed
manner. Each of the replacement nodes first downloads en-
coded symbols from multiple surviving nodes, and recovers
the failed symbols of a failed node by downloading some
encoded symbols from the other replacement nodes. Rack-
aware cooperative regenerating codes [25] repair multi-node
failures over the rack-based storage, where the node failures
are uniformly distributed among a certain number of racks.

Another direction of repairing multi-node failures is cen-
tralized repair [26], in which all the failed symbols are first
repaired at a central server before and the regenerated symbols
are dispatched to different replacement nodes. It is shown
in [27], [28] that ZigZag codes [17], which are MSR codes
with minimum repair bandwidth for any single-node failure,
also have minimum repair bandwidth for multi-node failures
in centralized repair. Ye and Barg [29] present an explicit
construction of MDS array codes that provide minimum repair
bandwidth for any e-node failures for all e ≤ n−k. Zorgui and
Wang [12] present the optimal trade-off between storage and
repair bandwidth for multi-node failures in centralized repair,
and also present exact-repair constructions of MDS codes to
achieve minimum repair bandwidth for multi-node failures in
centralized repair.

3) Optimal cross-rack repair. Several exact-repair construc-
tions for rack-based data centers have been proposed to mini-
mize the cross-rack repair bandwidth for single-node failures
[2]–[10], [30]. In addition to RRC [4], previous studies [9],
[10] also study the optimal trade-off between storage and
cross-repair bandwidth, but focus on the analysis where kr
is a multiple of n. Note that existing studies mainly focus on
optimizing single-node repair, but do not consider the joint
optimal single-node and single-rack repairs as in this work.

II. OPTIMAL TRADE-OFF BETWEEN STORAGE AND
CROSS-RACK REPAIR BANDWIDTH

In this section, we describe the system model. We analyze
the optimal trade-off between storage and cross-rack repair
bandwidth for single-rack failures, subject to the condition
that the cross-rack repair bandwidth for single-node failures
is minimum. We further propose Generalized Rack-aware
Regenerating Codes (GRRC) that operate on the optimal trade-
off for single-rack failures.

A. System Model

We consider a rack-based data center, in which there are n
nodes that are evenly partitioned into r racks with n/r nodes
each, where n is assumed to be a multiple of r. A data file of
B data symbols is encoded into nα symbols that are stored
in n nodes with α symbols each. We label the r racks from
1 to r, and label the n/r nodes in each rack from 1 to n/r.
We assume that the intra-rack communication bandwidth is
abundant, and all αn/r symbols stored in each rack can be
used to repair a single-node failure or a single-rack failure. We
select a node in each rack to be a relayer node that can retrieve
encoded symbols from the surviving nodes in the same rack
during repair. Without loss of generality, we choose node 1 in
each rack as the relayer node. In this work, we optimize both
single-node repair and single-rack repair. We elaborate their
repair properties and define the notations as follows.

Repair property for single-node failures. We follow the
repair model of RRC [4] for single-node failures. When a node
fails, we select a new node in the same rack as the failed
node for replacement. The new node arbitrarily selects dnode
helper racks, where kr

n ≤ dnode ≤ r−1, and downloads βnode
encoded symbols from the relayer node in each of the dnode
helper racks, in which the relayer node computes the βnode
encoded symbols based on the αn/r symbols within the same
rack. The new node can recover the α lost symbols with the
α(n/r − 1) symbols from other n/r − 1 nodes in the same
rack, as well as the dnodeβnode downloaded symbols from
the helper racks. Thus, the cross-rack repair bandwidth for
single-node failures is dnodeβnode. The optimal trade-off [4]
between storage and cross-rack repair bandwidth for single-
node failures is:

kα+

m∑
`=1

min{(dnode − `+ 1)βnode − α, 0} ≥ B, (1)

where m = bkrn c. There are two extreme points in the optimal
trade-off in Eq. (1), namely the minimum storage rack-aware
regeneration (MSRR) point and the minimum bandwidth rack-
aware regeneration (MBRR) point, corresponding to the min-
imum storage and the minimum cross-rack repair bandwidth,
respectively. The MSRR point corresponds to

(α, βnode) = (
B

k
,

B

k(dnode −m+ 1)
), (2)

and the MBRR point corresponds to

(α, βnode) = (
2Bdnode

2kdnode −m(m− 1)
,

2B

2kdnode −m(m− 1)
). (3)



Repair property for single-rack failures. When a rack
fails, we create a new rack that contains n/r new nodes,
including one relayer node and n/r − 1 non-relayer nodes.
The relayer node in the new rack arbitrarily selects drack
helper racks, where kr

n ≤ drack ≤ r − 1, and downloads
βrack encoded symbols from each of drack racks. The relayer
node in the new rack can repair the αn/r lost symbols with
the drackβrack downloaded symbols and sends α(n/r − 1)
recovered symbols to the other n/r− 1 new nodes in the new
rack. The cross-rack repair bandwidth γrack for a single-rack
failure is γrack = drackβrack.

Goal. Our goal is to design a new erasure code construction
that minimizes the cross-rack repair bandwidth for both single-
node failures and single-rack failures, subject to the repair
properties for both single-node failures and single-rack failures
as well as the reconstruction property (i.e., any k out of n
nodes can reconstruct the data file).

Since node failures are much more prevalent than rack
failures [11], we require that the cross-rack repair bandwidth
for single-node failures be minimum as specified in Eq. (1).
Then our analysis goal is to characterize the optimal trade-off
between storage and cross-rack repair bandwidth for single-
rack failures, subject to the minimum cross-rack repair band-
width for single-node failures.

B. Information Flow Graphs

We draw the information flow graphs for repairing a single-
rack failure, so as to derive the trade-off between storage and
cross-rack repair bandwidth for single-rack failures.

Given the system parameters n, k, r, α, drack, and
βrack, we draw a directed acyclic graph, denoted by
G(n, k, r, α, drack, βrack) (or G in short). Fig. 1 shows an
example of G with (n, k, r, drack) = (12, 6, 4, 3). G contains a
source node S that corresponds to the data file of size B, and
a data collector T. Each node i in rack ` is represented by a
pair of an input node In`,i and an output node Out`,i, where
` = 1, 2, . . . , r and i = 1, 2, . . . , n/r. We also draw directed
edges as follows:
• For ` = 1, 2, . . . , r and i = 1, 2, . . . , n/r, we draw a

directed edge from each input node In`,i to its corresponding
output node Out`,i with capacity α, representing the storage
size of α units in node i in rack `.

• For ` = 1, 2, . . . , r and i = 1, 2, . . . , n/r, we draw a
directed edge from S to each input node In`,i with infinite
capacity.

• For ` = 1, 2, . . . , r and i = 2, 3, . . . , n/r, we draw a
directed edge from each output node Out`,i to the output
node of the relayer node, Out`,1, in rack ` with infinite
capacity, representing that the relayer node in rack ` can
access all the symbols in rack `.
Suppose that rack f fails, where f ∈ {1, 2, . . . , r}. We

create a new rack to replace the failed rack f , and put n/r pairs
of input node In

′

f,i and output node Out
′

f,i in G to replace
n/r nodes in rack f . To model the local encoding process in
the new rack f , we add a virtual node, denoted by Virtf . We
draw the directed edges as follows:
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Fig. 1: Information flow graph of G with (n, k, r, drack) =
(12, 6, 4, 3).

• For i = 1, 2, . . . , n/r, we draw a directed edge from Virtf
to In

′

f,i with capacity α.
• For i = 1, 2, . . . , n/r, we draw a directed edge from In

′

f,i

to Out
′

f,i with capacity α.
• For i = 2, 3, . . . , n/r, we draw a directed edge from Out

′

f,i

to Out
′

f,1 with infinite capacity.
• Suppose that we select drack helper racks
h1, h2, . . . , hdrack ∈ {1, 2, . . . , r} \ {f}. For
` = 1, 2, . . . , drack, we draw a directed edge from
Outh`,1 to Virtf with capacity βrack.

• To represent the reconstruction property, we draw k edges
from any k output nodes to T with infinite capacity.
Note that there are

(
n
k

)
combinations of connecting k output

nodes to T , and we can represent the set of all possible graphs
of G as G(n, k, r, drack, α, βrack) (or G in short). Given G and
T, we define an (S,T)-cut as a subset of the edges in G, such
that S and T are disconnected if the edges in the subset are
removed from G. We define the capacity of (S,T)-cut as the
sum of the capacities of the edges in the cut. Let mincut(G)
be an (S,T)-cut of a given G with the smallest capacity, and
minG mincut(G) be the minimum capacity. We characterize
the minimum cut in the following theorem.

Theorem 1. Given n, k, r, drack, α, βrack, and B, if an erasure
code satisfies the repair property for single-rack failures and
the reconstruction property, the following inequality holds:

kα+

m∑
`=1

min{(drack − `+ 1)βrack − αn/r, 0} ≥ B. (4)

Proof. We present our proof in three steps.
Step 1. In calculating the minimum cut, we make the

following claim. If a relayer node in a rack is connected to
the data collector T and not all the other n/r−1 nodes in the
rack are connected to T, then the capacity of (S,T)-cut is not
the smallest.

To prove the claim, suppose that a relayer node is connected
to T. Then the relayer node can contribute min{(n/r−1)α+
drackβrack, αn/r} symbols to the cut if the relayer node is a
new node and αn/r symbols to the cut if the relayer node is
not a new node. The other n/r− 1 nodes in the same rack of
the relayer node have no contribution to the cut whether they
are connected to T or not. Therefore, if the relayer node is



connected to T, all the other n/r− 1 nodes in the same rack
should be connected to T, in order to minimize the capacity
of the cut.

Step 2. We next show that there exists an information flow
graph G, such that mincut(G) is equal to the left-hand side
of Eq. (4).

Suppose that in G, racks 1, 2, . . . ,m fail in this order. For
` = 1, 2, . . . ,m, we draw a directed edge from each of the out-
put nodes Out

′

1,1, Out
′

2,1, . . ., Out
′

`−1,1, Out`+1,1, Out`+2,1,
. . ., Outdrack+1,1 of the relayer nodes in drack helper racks
1, 2, . . . , `− 1, `+ 1, `+ 2, . . . , drack + 1, respectively, to the
virtual node Virt` with capacity βrack. For i = 1, 2, . . . , n/r,
we also draw a directed edge from Virt` to each of n/r input
nodes In

′

`,i with capacity α. Furthermore, we draw a directed
edge from the input node In

′

`,i to the output node Out
′

`,i with
capacity α.

Consider that the data collector T connects to all mn/r
nodes in m racks 1, 2, . . . ,m and k − mn/r nodes (except
the relayer node) in rack m+1. For ` = 1, 2, . . . ,m, the n/r
nodes in rack ` contribute min{(n/r − 1)α + (drack − ` +
1)βrack, αn/r} symbols to the cut. Thus, the min-cut of the
graph G is the left-hand side of Eq. (4).

Step 3. Finally, we show that the min-cut of any G in the
set G is no less than the left-hand side of Eq. (4).

Given G, let the k output nodes connected to T be {Out`,i :
(`, i) ∈ I}, where the cardinality of I is k. Consider the first
subset with n/r output nodes of I. If the first subset only con-
tains one relayer node, then the subset with n/r output nodes
can contribute min{(n/r − 1)α+ drackβrack, αn/r} symbols
to the cut by the proof of Step 1. Otherwise, if the first subset
contains more than one relayer node or contains no relayer
node, then the contributed symbols to the cut by the first
subset are no less than min{(n/r− 1)α+ drackβrack, αn/r}.
Therefore, the first subset contributes at least min{(n/r −
1)α+drackβrack, αn/r} symbols to the cut. Similarly, we can
show that the `-th subset with n/r output nodes can contribute
at least min{(n/r−1)α+(drack−`+1)βrack, αn/r} symbols
to the cut, where ` = 2, 3, . . . ,m. We have that the min-cut
of any G is the left-hand side of Eq. (4).

The erasure codes that achieve the minimum cross-rack
repair bandwidth for single-node failures while satisfying the
equality in Eq. (4) are called the Generalized Rack-aware
Regenerating Codes (GRRC). Note that when r = n (i.e.,
each rack contains one node), the trade-off curve in Eq. (4)
reduces to the trade-off curve of regenerating codes [13].

We can obtain two extreme points in the optimal trade-off in
Eq. (4), namely the minimum storage generalized rack-aware
regeneration (MSGRR) point and the minimum bandwidth
generalized rack-aware regeneration (MBGRR) point, which
correspond to the minimum storage and the minimum cross-
rack repair bandwidth for single-rack failures, respectively,
given that the MSRR point in Eq. (2) and the MBRR point
Eq. (3) are achieved, respectively. From Eq. (1) and Eq. (4),

the MSGRR point is achieved when

α =
B

k
, βrack =

B

k(drack −m+ 1)
· n
r
. (5)

If dnode = drack, then βrack = βnode · nr by Eq. (2) and Eq. (5).
In the following, we consider the case of dnode = drack. Note
that the minimum storage points of the optimal trade-off in
Eq. (4) and in Eq. (1) are achieved at the same value of α.
However, the minimum repair bandwidth points of the optimal
trade-off in Eq. (4) and in Eq. (1) are achieved at different
values of α. Recall that the MBGRR code is obtained by first
minimizing βnode and α in Eq. (1) and then minimizing βrack
in Eq. (4). By minimizing βnode and α in Eq. (1), we have α
and βnode in Eq. (3). By substituting α in Eq. (3) into Eq. (4),
we can obtain the MBGRR point in the next theorem.

Theorem 2. The MBGRR point is achieved with α =
2Bdnode

2kdnode−m(m−1) and

βrack =

−αm(m−1)
drack

+ 2ταn/r

τ(2drack − τ + 1)
, (6)

where τ is a positive integer with τ = 1, 2, . . . ,m − 1 that
satisfies

n/r

drack − τ
>

−m(m−1)
drack

+ 2τn/r

τ(2drack − τ + 1)
≥ n/r

drack − τ + 1
. (7)

Proof. In MBGRR point, we have α = 2Bdnode
2kdnode−m(m−1)

according to Eq. (3). By letting Eq. (4) with equality, we obtain

kα+

m∑
`=1

min{(drack − `+ 1)βrack − αn/r, 0} = B. (8)

Recall that the m terms of the summation in the left-hand
side of Eq. (8) are

∑m
`=1 min{(drack−`+1)βrack−αn/r, 0}.

There exists an integer τ that ranges from 1 to m − 1 such
that

(d− τ + 1)βrack ≥ αn/r > (d− τ)βrack.
Then we have

m∑
`=1

min{(drack − `+ 1)βrack − α
n

r
, 0} = τ(2d− τ + 1)βrack

2
,

and from Eq. (8), we further obtain Eq. (6) and Eq. (7).

Remarks. We remark that our MSGRR point is contained in
the MSRR point, since the MSGRR point is derived by first
achieving the MSRR point and then achieving the minimum
cross-rack repair bandwidth for single-rack failures. Similarly,
our MBGRR point is contained in the MBRR point.

A single-rack failure can be viewed as n/r-node failures
in our model. The trade-off between storage and the repair
bandwidth for multi-node failures for functional repair has
been given by cooperative regenerating codes [24] with dis-
tributed repair as well as by [12] with centralized repair. Since
the centralized repair [12] incurs less repair bandwidth than
cooperative regenerating codes [24], we choose the centralized
repair [12] as the baseline for our comparison.



Specifically, the codes for the two extreme points in the
optimal tradeoff in [12] are called minimum storage multi-
node repair (MSMR) codes and minimum bandwidth multi-
node repair (MBMR) codes. If we directly employ the MSMR
codes in a rack-based data center, we can obtain the storage
and cross-rack repair bandwidth for a single-rack failure (n/r-
node failures) for MSMR codes as follows:

(αMSMR, γMSMR) = (
B

k
,
B

k
·

n
r d

d− k + n
r

), (9)

where d = drack
n
r . Similarly, the storage and cross-rack repair

bandwidth for a single-rack failure (n/r-node failures) for
MBMR codes are:

(αMBMR, γMBMR) = (
γMBMR

n/r
,

Bd

dm− n
r ·

m(m−1)
2

), (10)

when kr
n is an integer,

(αMBMR, γMBMR)

=(γMBMR

d+m(n− k − n
r
)

d(k −mn
r
)

,
Bd

d(m+ 1)− nm(m+1)
2r

), (11)

when kr
n is not an integer, where d = drack

n
r .

III. COMPARISON

In this section, we evaluate the cross-rack repair bandwidth
for MSGRR codes, MBGRR codes and the related centralized
regenerating codes [12] at two extreme points. For MSGRR
codes and MBGRR codes, let dnode = drack.

We first consider the comparison for MSGRR codes and
MSMR codes, which is summarized in the following theorem.

Theorem 3. If kr
n is an integer, then the cross-rack repair

bandwidth for a single-rack failure of MSGRR codes is the
same as that of MSMR codes. If kr

n is not an integer, then
MSGRR codes have strictly less cross-rack repair bandwidth
for a single-rack failure than MSMR codes.

Proof. Recall that the cross-rack repair bandwidth for a single-
rack failure of MSGRR codes is given in Eq. (5) and the
cross-rack repair bandwidth for a single-rack failure of MSMR
codes [12] is in Eq. (9). The difference of the cross-rack
repair bandwidth for single-rack failures for MSGRR codes
and MSMR codes is

γrack − γMSMR

=
B

k(drack −m+ 1)
· n
r
· drack −

B

k
·

n
r drack

n
r

drack
n
r − k +

n
r

=
Bndrack
kr

· ( 1

drack −m+ 1
− 1

drack − kr
n + 1

).

When kr
n is an integer, we have m = kr

n and MSGRR codes
have the same cross-rack repair bandwidth for single-rack
failures as MSMR codes. When kr

n is not an integer, we have
m < kr

n and MSGRR codes have strictly less cross-rack repair
bandwidth for single-rack failures than MSMR codes.

Table I shows the comparison of MSGRR codes and MSMR
codes in terms of cross-rack repair bandwidth. The results in

TABLE I: Cross-rack repair bandwidth for single-rack failures (n/r-
node failures) of MSGRR codes and MSMR codes.

(n, k, r, drack) MSGRR MSMR Improvement
(20, 9, 5, 4) 16

27
64
99

8.3%

(20, 9, 5, 3) 2
3

16
21

12.5%

(20, 10, 5, 4) 8
15

16
25

16.7%

(20, 10, 5, 3) 3
5

4
5

25.0%

(20, 11, 5, 4) 16
33

64
99

25.0%

(20, 11, 5, 3) 6
11

48
55

37.5%

(20, 13, 5, 4) 8
13

64
91

12.5%

(20, 14, 5, 4) 4
7

16
21

25.0%

(20, 15, 5, 4) 8
15

64
75

37.5%

(18, 10, 6, 5) 1
2

9
16

11.1%

(18, 10, 6, 4) 3
5

18
25

16.7%

(18, 11, 6, 5) 5
11

45
77

22.2%

(18, 11, 6, 4) 6
11

9
11

33.3%

(18, 13, 6, 5) 15
26

9
13

16.7%

(18, 14, 6, 5) 15
28

45
56

33.3%

TABLE II: Cross-rack repair bandwidth for single-rack failures
(n/r-node failures) of MBGRR codes and MBMR codes.

(n, k, r, drack) MBGRR MBMR Improvement
(20, 9, 5, 4) 3

7
4
9

3.6%

(20, 10, 5, 4) 5
13

4
9

13.5%

(20, 11, 5, 4) 15
43

4
9

21.5%

(20, 12, 5, 4) 116
315

4
9

17.1%

(20, 13, 5, 4) 116
343

2
5

15.5%

(20, 14, 5, 4) 116
371

2
5

21.8%

(20, 15, 5, 4) 116
399

2
5

27.3%

Table I show that the cross-rack repair bandwidth for single-
rack failures of MSGRR codes is less than that of MSMR
codes, when kr

n is not an integer.
The cross-rack repair bandwidth for a single-rack failure

of MBGRR codes is given in Theorem 2 and the cross-rack
repair bandwidth for a single-rack failure of MBMR codes is
given in Eq. (10) and Eq. (11). Table II shows the comparison
for MBGRR codes and MBMR codes in terms of cross-rack
repair bandwidth for a single-rack failure for some parameters,
which demonstrates that the cross-rack repair bandwidth for
a single-rack failure of MBGRR codes is less than that of
MBMR codes for all our evaluated parameters.

IV. CONCLUSION

In this paper, we propose GRRC that can achieve the
minimum cross-rack repair bandwidth for single-rack failures
under the condition that the cross-rack repair bandwidth for
single-node failures is minimum. We derive two extreme
optimal points of GRRC, namely MSGRR and MBGRR
points. We show that MSGRR codes have strictly less cross-
rack repair bandwidth for single-rack failures than that of
MSMR codes for most of the parameters. We also show
that the cross-rack repair bandwidth for single-rack failures
of MBGRR codes is less than that of MBMR codes for all
the evaluated parameters. Exact-repair construction of the two
extreme optimal points is one of our future work.
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