
STAR+ Codes: Triple-Fault-Tolerant Codes with Asymptotically
Optimal Updates and Efficient Encoding/Decoding

Hanxu Hou†§∗, Patrick P. C. Lee§

† School of Electrical Engineering & Intelligentization, Dongguan University of Technology
§ Department of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract— STAR codes are well-known binary Maximum
Distance Separable (MDS) array codes with triple fault tolerance
and low encoding/decoding complexity, yet the update complexity
of STAR codes is sub-optimal. We propose STAR+ codes, which
extend STAR codes to achieve asymptotically optimal update
complexity. We show that STAR+ codes are the generalized version
of STAR codes with triple fault tolerance, and additionally have
strictly less complexity in encoding, decoding, and updates than
STAR codes for most parameters.

I. INTRODUCTION

Binary maximum distance separable (MDS) array codes have
been widely employed in storage systems, such as Redundant
Arrays of Inexpensive Disks (RAID) [1], for fault tolerance
with the two main advantages: (i) the storage redundancy is
minimized subject to a given level of fault tolerance; and (ii)
only exclusive-OR (XOR) operations are involved in encoding
and decoding. Specifically, an (n,k,m) binary MDS array code
is an array of size m×n that encodes km information bits to
obtain (n− k)m parity bits, where the nm bits (including km
information bits and (n− k)m parity bits) are stored in the
m×n array. It satisfies the MDS property, meaning that the
system can tolerate any r = n− k out of n column failures
with the minimum storage redundancy. To support storage
applications with update-intensive workloads (e.g., databases),
it is desirable to construct binary MDS array codes that have
small encoding/decoding complexity, in terms of the number
of XORs incurred in encoding/decoding, as well as small
update complexity, in terms of the average number of parity
bits affected by a change of a single information bit.

Binary MDS array codes have been well studied in the
literature. For example, EVENODD [2], X-code [3], and
RDP [4] are well-known binary MDS array codes that can
tolerate any r = 2 column failures. In particular, EVENODD
codes have a well-designed algebraic structure that motivates
many follow-up studies [5]–[8]. Examples are STAR codes
[5] and the generalized EVENODD codes [6], which extend
the EVENODD code construction with three parity columns
and more than two parity columns, respectively. Some other
follow-up studies focus on the efficient decoding [7], [8] of the
generalized EVENODD codes or the efficient repair of binary
MDS array codes [9]–[11]. Although EVENODD codes have
efficient encoding/decoding complexity, their update complexity

This work was partially supported by the National Key R&D Program of
China (No. 2020YFA0712300), the National Natural Science Foundation of
China (No. 62071121), Research Grants Council of HKSAR (AoE/P-404/18)
and Innovation and Technology Fund (ITS/315/18FX).
* Corresponding author.

is sub-optimal. It is shown in [12] that the minimum update
complexities of systematic MDS array codes with r = 2 and
r = 3 parity columns are 2 + 1

m (1−
1
k) and 3 + 3

m (
2
3 −

1
k),

respectively. Recently, EVENODD+ codes [13] have been
proposed that can achieve the asymptotically minimum update
complexity, but they only have r = 2 parity columns. TIP codes
[14] have r = 3 parity columns and achieve the optimal update
complexity, but have much higher decoding complexity than
existing binary MDS array codes (e.g., STAR codes).

We propose STAR+ codes, a generalized construction
for STAR codes with r = 3 parity columns. STAR+ codes
have three properties: (i) MDS property; (ii) lower encod-
ing/decoding complexity than STAR codes; (iii) asymptotically
minimum update complexity (i.e., much lower update complex-
ity than STAR codes). STAR+ codes build on the observation
that STAR codes add an adjuster bit to each parity bit in the
computation of the last two parity columns, thereby leading
to high update complexity. In contrast, STAR+ codes add an
adjuster bit to a subset of parity bits in the computation of the
last two parity columns, so as to reduce the update complexity.

II. CONSTRUCTION OF STAR+ CODES

We present the construction of STAR+ codes with r = 3
parity columns. Given an odd integer m≥ k with gcd(m, `) = 1
for `= 1,2, . . . ,k−1, we define an (m−1)×(k+3) array code
as follows. For j = 0,1, . . . ,k−1, column j is called an informa-
tion column that stores the information bits b0, j,b1, j, . . . ,bm−2, j;
for j = k,k+1,k+2, column j is called a parity column that
stores the parity bits b0, j,b1, j, . . . ,bm−2, j. In this paper, the
subscripts are taken modulo m unless otherwise specified.

Given the (m− 1)× k information array of bits bi, j for
i = 0,1, . . . ,m−2 and j = 0,1, . . . ,k−1, we define an imagi-
nary row of bits bm−1, j = 0 for j = 0,1, . . . ,k−1. The bits in
column k are:

bi,k =
k−1

∑
j=0

bi, j for 0≤ i≤ m−2. (1)

The bits in columns k+1 and k+2 are respectively:

bi,k+1 =


bm−1,k+1 +

k−1
∑
j=0

bi− j, j for 0≤ i≤ 2b k
2c−1,

k−1
∑
j=0

bi− j, j for 2b k
2c ≤ i≤ m−2,

(2)

TABLE I: STAR+(9,3), with the adjuster bits b8,4 = b7,1 +b6,2 and
b8,5 = b0,1 +b1,2.

0 1 2 3 4 5
b0,0 b0,1 b0,2 b0,0 +b0,1 +b0,2 b0,0 +b7,2 +b8,4 b0,0 +b1,1 +b2,2
b1,0 b1,1 b1,2 b1,0 +b1,1 +b1,2 b1,0 +b0,1 +b8,4 b1,0 +b2,1 +b3,2
b2,0 b2,1 b2,2 b2,0 +b2,1 +b2,2 b2,0 +b1,1 +b0,2 b2,0 +b3,1 +b4,2
b3,0 b3,1 b3,2 b3,0 +b3,1 +b3,2 b3,0 +b2,1 +b1,2 b3,0 +b4,1 +b5,2
b4,0 b4,1 b4,2 b4,0 +b4,1 +b4,2 b4,0 +b3,1 +b2,2 b4,0 +b5,1 +b6,2
b5,0 b5,1 b5,2 b5,0 +b5,1 +b5,2 b5,0 +b4,1 +b3,2 b5,0 +b6,1 +b7,2
b6,0 b6,1 b6,2 b6,0 +b6,1 +b6,2 b6,0 +b5,1 +b4,2 b6,0 +b7,1 +b8,5
b7,0 b7,1 b7,2 b7,0 +b7,1 +b7,2 b7,0 +b6,1 +b5,2 b7,0 +b0,2 +b8,5

and

bi,k+2 =


bm−1,k+2 +

k−1
∑
j=0

bi+ j, j for m−1−2b k
2c ≤ i≤ m−2,

k−1
∑
j=0

bi+ j, j for 0≤ i≤ m−2−2b k
2c,

(3)
where the two adjuster bits are

bm−1,k+1 =
k−1

∑
j=1

bm−1− j, j, and bm−1,k+2 =
k−1

∑
j=1

bm−1+ j, j.

Let STAR+(m,k) denote the array defined from the above
equations. As a special case, EVENODD+ codes [13] are an
(m− 1)× (k + 2) array with two parity columns defined in
Eq. (1) and Eq. (2).

In STAR+(m,k), we only add two adjuster bits bm−1,k+1
and bm−1,k+2 to 2b k

2c bits in column k+1 and column k+2,
respectively, while STAR codes [5] add the two adjuster bits
bm−1,k+1 and bm−1,k+2 to all parity bits in the second and third
parity columns, respectively. This distinction makes the update
complexity of STAR+(m,k) asymptotically optimal. Table I
depicts an example of STAR+(9,3), in which the two adjuster
bits b8,4 and b8,5 are added to the first two parity bits in
column 4 and the last two parity bits in column 5, respectively.

Note that the idea of achieving asymptotically minimum
update complexity in our STAR+(m,k) is similar to that of
EVENODD+ codes [13]. Here we generalize the method for
more parity columns in STAR+(m,k). The key point is that
we should not only find efficient decoding algorithms for all
the erasure patterns, but also show that the update complexity
is asymptotically optimal.

III. DECODING ALGORITHM OF THREE FAILURES

We present the decoding algorithm of STAR+(m,k) to
recover the erasures of any three columns, thereby also
justifying its MDS property. Theorem 1 shows a key property
of STAR+(m,k) needed for the decoding algorithm.

Theorem 1. For `= 1,2, bm−1,k+` = ∑
m−2
i=0 (bi,k +bi,k+`).

Proof. We first consider ∑
m−2
i=0 (bi,k +bi,k+1). From Eq. (1) and

Eq. (2), it can be expressed as

m−2

∑
i=0

(bi,k +bi,k+1) =
m−2

∑
i=0

k−1

∑
j=0

bi, j+

k−1

∑
j=0

2b k
2 c−1

∑
i=0

(bi− j, j +bm−1,k+1)+
m−2

∑
i=2b k

2 c
bi− j, j


=

m−2

∑
i=0

k−1

∑
j=0

bi, j +
k−1

∑
j=0

m−2

∑
i=0

bi− j, j.

From the definition of bm−1,k+1, as well as bm−1, j = 0 for
j = 0,1, . . . ,k−1, the above equation becomes

m−1

∑
i=0

k−1

∑
j=0

bi, j +
m−1

∑
i=0

k−1

∑
j=0

bi− j, j +
k−1

∑
j=0

bm−1− j, j = bm−1,k+1.

With the same argument, we can also obtain bm−1,k+2 =

∑
m−2
i=0 (bi,k +bi,k+2). The proof is completed.

Since the double-erasure decoding of STAR+(m,k) can be
viewed as a special case of the triple-erasure decoding, we
focus on the decoding algorithm for three erased columns.
Suppose that three columns f ,g,h are erased, where 0≤ f <
g < h ≤ k+ 2. We want to present a decoding algorithm to
reconstruct all the erased bits from the remaining k columns.
The reconstruction can be divided into four cases based on
different erasure patterns: (i) three parity erasures, i.e., f =
k,g= k+1,h= k+2; (ii) two parity erasures, i.e., 0≤ f ≤ k−1
and k ≤ g < h ≤ k+ 2; (iii) one parity erasure, i.e., 0 ≤ f <
g ≤ k− 1 and k ≤ h ≤ k+ 2; and (iv) no parity erasure, i.e.,
0≤ f < g < h≤ k−1.

For three parity erasures, the decoding algorithm is the same
as the definition shown in Eq. (1), Eq. (2), and Eq. (3).

For two parity erasures, we should consider three patterns: (i)
g= k+1,h= k+2, (ii) g= k,h= k+2, and (iii) g= k,h= k+1.
For the first two patterns, we can recover the failed information
column f with the same method as in EVENODD+ codes [13].
The decoding procedure of g = k,h = k+1 is similar to the
decoding method of g = k,h = k+2.

In the following, we consider the remaining two cases of
erasure patterns.

A. Decoding Algorithm with One Parity Erasure

We consider three patterns: (i) h = k+2, (ii) h = k+1, and
(iii) h = k. If the third parity column is erased (i.e., h = k+2),
we recover the two erased information columns using the
EVENODD+ decoding algorithm [13] and recover the third
parity column by Eq. (3). If the second parity column is erased
(i.e., h = k+1), the decoding algorithm is also similar to the
EVENODD+ decoding algorithm [13].

We now consider the decoding algorithm when the first parity
column is erased (i.e., h = k and 0≤ f < g≤ k−1). According
to Theorem 1, we can directly obtain bm−1,k+1 +bm−1,k+2 in
the following lemma.

Lemma 2. bm−1,k+1 +bm−1,k+2 = ∑
m−2
i=0 (bi,k+1 +bi,k+2).

By subtracting all the information bits in k− 2 surviving
information columns from bits bi,k+1 and bi,k+2 for i =
0,1, . . . ,m−2, we obtain the following 2m−2 syndrome bits

pi,1 =


b− f+i, f +b−g+i,g +(b−1− f , f +b−1−g,g)

for i = 0,1, . . . ,2b k
2c−1,

b− f+i, f +b−g+i,g

for i = 2b k
2c,2b

k
2c+1, . . . ,m−2,

(4)

pi,2 =


b f+i, f +bg+i,g

for i = 0,1, . . . ,m−2−2b k
2c,

b f+i, f +bg+i,g +(b−1+ f , f +b−1+g,g)

for i = m−1−2b k
2c, . . . ,m−2.

(5)

According to Lemma 2, we can compute

(b−1− f , f +b−1−g,g)+(b−1+ f , f +b−1+g,g)

by summing all the bits in Eq. (4) and Eq. (5).
We first consider the case of f > 0. When f > 0, we have

p f−1,1 = b−g+ f−1,g +(b−1− f , f +b−1−g,g) (6)

in Eq. (4) with i = f −1 (as 0≤ f −1≤ k−3) and

pg−1,1 = b− f+g−1, f +(b−1− f , f +b−1−g,g) (7)

in Eq. (4) with i = g−1 (as 1≤ g−1≤ k−2). Similarly, we
have

pm− f−1,2 = bg− f−1,g +(b−1+ f , f +b−1+g,g) (8)

in Eq. (5) with i =m− f −1 (as m−k+1≤m− f −1≤m−2)
and

pm−g−1,2 = b f−g−1, f +(b−1+ f , f +b−1+g,g) (9)

in Eq. (5) with i = m−g−1 (as m− k ≤ m−g−1≤ m−3).
We call the bits in Eq. (6), Eq. (7), Eq. (8), and Eq. (9)

starting bits. Starting from the starting bit in Eq. (6), we can
compute one information bit as follows. First, we compute the
summation of the bits p f−1,1 and p−2g+ f−1,2 to obtain

b−2g+2 f−1, f +(b−1− f , f +b−1−g,g)+ ε(b−1+ f , f +b−1+g,g),

where ε ∈ {0,1}. Then, we find the bit in Eq. (4) that contains
b−2g+2 f−1, f and compute the summation of the bit in Eq. (4)
with i = 3 f −2g−1 and the above bit to obtain

η(b−1− f , f +b−1−g,g)+ ε(b−1+ f , f +b−1+g,g)+b−3g+3 f−1,g,

where η ∈ {0,1}. By repeating the above procedure for ` times,
we can obtain

p f−1,1 + p f−2g−1,2 + · · ·+ p2`(f−g)− f−1,2

= η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)

+b2`(f−g)−1, f , or (10)
p f−1,1 + p f−2g−1,2 + · · ·+ p2`(f−g)+ f−1,1

= η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)

+b(2`+1)(f−g)−1,g, (11)

where ` is a non-negative integer. Recall that there does not
exist the term b− f−1, f +b−g−1,g and b f−1, f +bg−1,g according
to Eq. (4) and Eq. (5), respectively. If

b2`(f−g)−1, f = b− f−1, f or

b2`(f−g)−1, f = b f−1, f or

b(2`+1)(f−g)−1,g = b−g−1,g or

b(2`+1)(f−g)−1,g = bg−1,g,

then the above procedure is stopped. Similarly, we can obtain

η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+b2`(g− f)−1,g, or
(12)

η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+b(2`+1)(g− f)−1, f ,
(13)

where ` is a non-negative integer, by summing the chosen bits
in Eq. (4) and Eq. (5) with starting bit pg−1,1 until

b(2`+1)(g− f)−1, f = b− f−1, f or

b(2`+1)(g− f)−1, f = b f−1, f or

b2`(g− f)−1,g = b−g−1,g or

b2`(g− f)−1,g = bg−1,g.

For the starting bit p− f−1,2 in Eq. (8), we can obtain

η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+b2`(g− f)−1, f , or
(14)

η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+b(2`+1)(g− f)−1,g,
(15)

where ` is a non-negative integer,

b2`(g− f)−1, f = b− f−1, f or

b2`(g− f)−1, f = b f−1, f or

b(2`+1)(g− f)−1,g = b−g−1,g or

b(2`+1)(g− f)−1,g = bg−1,g.

For the starting bit p−g−1,2 in Eq. (9), we can obtain

η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+b2`(f−g)−1,g, or
(16)

η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+b(2`+1)(f−g)−1, f ,
(17)

where ` is a non-negative integer,

b(2`+1)(f−g)−1, f = b− f−1, f or

b(2`+1)(f−g)−1, f = b f−1, f or

b2`(f−g)−1,g = b−g−1,g or

b2`(f−g)−1,g = bg−1,g.

Recall that there is no b− f+i, f + b−g+i,g for i = m− 1 in
Eq. (4) and b f+i, f +bg+i,g for i = m−1 in Eq. (5). We put the
bit b− f−1, f +b−g−1,g and m−1 bits in Eq. (4) into the first set
and put the bit b f−1, f +bg−1,g and m−1 bits in Eq. (5) into the
second set. Given an integer t with 0≤ t ≤m−1, we can always
find a bit in the first set that contains b(− f+i) mod m, f = bt, f or

b(−g+i) mod m,g = bt,g, and a bit in the second set that contains
b(f+i) mod m, f = bt, f or b(g+i) mod m,g = bt,g. For each starting
bit, we recursively choose one bit in Eq. (4) or Eq. (5) that can
cancel out one bit until the existing bit is b− f−1, f or b−g−1,g
or b f−1, f or bg−1,g. Thus, all 2(m−1) syndrome bits in Eq. (4)
and Eq. (5) are involved in computing a bit with starting bit in
Eq. (6), Eq. (7), Eq. (8), and Eq. (9), and each bit in Eq. (4)
and Eq. (5) is only involved once in computing the bit with
starting bit in Eq. (6), Eq. (7), Eq. (8) and Eq. (9). We can
divide 2(m−1) bits in Eq. (4) and Eq. (5) into four groups.
The bits in each group are used to compute the bit starting with
a starting bit. We denote the group associated with starting
bits p f−1,1, pg−1,1, p− f−1,2 and p−g−1,2 by S1, S2, S3, and S4,
respectively.

Lemma 3. Let the number of bits in groups S1, S2, S3 and
S4 be |S1|, |S2|, |S3| and |S4|, respectively. We have |S1|= |S3|,
and |S2|= |S4|.

Proof. We first want to show that |S1|= |S3|. The summation
in Eq. (10) ends with 2`(f −g)−1 =− f −1 mod m or 2`(f −
g)− 1 = f − 1 mod m, and the summation in Eq. (11) ends
with (2`+1)(f −g)−1 =−g−1 mod m or (2`+1)(f −g)−
1 = g−1 mod m. If 2`1(f −g)−1 =− f −1 mod m, we have
`1 = f · (2g− 2 f)−1 mod m. Otherwise, if 2`2(f − g)− 1 =
f −1 mod m, we have `2 = (m− f) · (2g−2 f)−1 mod m. On
the other hand, if (2`3 + 1)(f − g)− 1 = −g− 1 mod m, we
have `3 = f · (2g− 2 f)−1 mod m; if (2`4 + 1)(f − g)− 1 =
g−1 mod m, we have `4 = (m+ f −2g) · (2g−2 f)−1 mod m.
The number of syndrome bits in Eq. (10) and Eq. (11) is

2min{`1, `2}=
2min{ f · (2g−2 f)−1 mod m,(m− f) · (2g−2 f)−1 mod m},

and

2min{`3, `4}+1 =

2min{ f (2g−2 f)−1 mod m,(f −2g)(2g−2 f)−1 mod m}+1,

respectively. Thus, we have

|S1|= min{2`1,2`2,2`3 +1,2`4 +1}=
min{2 f (2g−2 f)−1 mod m,2(m− f)(2g−2 f)−1 mod m,

2(f −2g)(2g−2 f)−1 mod m+1}.

For the starting bit p− f−1,2, we have the bit in Eq. (14) or Eq.
(15). If the index in Eq. (14) is −2` f +2`g−1 = f −1 mod m
or −2` f +2`g−1 =− f −1 mod m, the summation in Eq. (14)
is ended. Similarly, if the index in Eq. (15) is 2`g−2` f +g−
f −1 = g−1 mod m or 2`g−2` f +g− f −1 =−g−1 mod m,
the summation in Eq. (14) is ended. If −2`

′
1 f + 2`

′
1g− 1 =

f −1 mod m, we have `
′
1 = f · (2g−2 f)−1 mod m. Otherwise,

if −2`
′
2 f +2`

′
2g−1 =− f −1 mod m, we have `

′
2 = (m− f) ·

(2g−2 f)−1 mod m. On the other hand, if 2`
′
3g−2`

′
3 f +g−

f − 1 = g− 1 mod m, we have `
′
3 = f · (2g− 2 f)−1 mod m;

if 2`
′
4g− 2`

′
4 f + g− f − 1 = −g− 1 mod m, we have `

′
4 =

(f −2g) · (2g−2 f)−1 mod m. We have

|S3|= min{2`′1,2`
′
2,2`

′
3 +1,2`

′
4 +1}=

min{2 f (2g−2 f)−1 mod m,2(m− f)(2g−2 f)−1 mod m,

2(f −2g)(2g−2 f)−1 mod m+1}= |S1|.

With the same argument for the two starting bits pg−1,1 and
p−g−1,2, we can also show that |S2|= |S4|.

By Lemma 3, we have |S1|= |S3| and |S2|= |S4|. As there
are 2(m−1) syndrome bits and each syndrome bit is in one
group, we obtain that |S1|+ |S2|= |S3|+ |S4|= m−1.

From the starting bit p f−1,1, we can obtain the bit

η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+b−1− f , f ,

if |S1|= 2 f (2g−2 f)−1 mod m, (18)
η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+b f−1, f ,

if |S1|= 2(m− f)(2g−2 f)−1 mod m. (19)
η(b−1− f , f +b−1−g,g)+ ε(b f−1, f +bg−1,g)+bg−1,g,

if |S1|= 2(f −2g)(2g−2 f)−1 mod m+1, (20)

and further obtain

bm−1− f , f if (η ,ε) ∈ {(0,0),(1,1)},
|S1|= 2 f · (2g−2 f)−1 mod m,

bm−1−g,g if (η ,ε) ∈ {(1,0),(0,1)},
|S1|= 2 f · (2g−2 f)−1 mod m,

b f−1, f if (η ,ε) ∈ {(0,0),(1,1)},
|S1|= 2(m− f) · (2g−2 f)−1 mod m,

bg−1,g if (η ,ε) ∈ {(1,0),(0,1)},
|S1|= 2(m− f) · (2g−2 f)−1 mod m,

bg−1,g if (η ,ε) ∈ {(0,0),(1,1)},
|S1|= 2(f −2g)(2g−2 f)−1 mod m+1,

b f−1, f if (η ,ε) ∈ {(1,0),(0,1)},
|S1|= 2(f −2g)(2g−2 f)−1 mod m+1.

(21)
Similarly, from the starting bit p− f−1,1, we can obtain

b f−1, f if (η ,ε) ∈ {(0,0),(1,1)},
|S3|= 2 f · (2g−2 f)−1 mod m,

bg−1,g if (η ,ε) ∈ {(1,0),(0,1)},
|S3|= 2 f · (2g−2 f)−1 mod m,

bm− f−1, f if (η ,ε) ∈ {(0,0),(1,1)},
|S3|= 2(m− f) · (2g−2 f)−1 mod m,

bm−g−1,g if (η ,ε) ∈ {(1,0),(0,1)},
|S3|= 2(m− f) · (2g−2 f)−1 mod m,

bm−g−1,g if (η ,ε) ∈ {(0,0),(1,1)},
|S3|= 2(f −2g) · (2g−2 f)−1 mod m+1,

bm− f−1, f if (η ,ε) ∈ {(1,0),(0,1)},
|S3|= 2(f −2g) · (2g−2 f)−1 mod m+1.

(22)
By Lemma 3, we have |S1|= |S3| and together with Eq. (21)
and Eq. (22), we can always compute two different information
bits from two starting bits p f−1,1 and p− f−1,2. Similarly, we
can show that we can also obtain two different information bits
from two starting bits pg−1,1 and p−g−1,2. Thus, we can obtain
the four information bits bg−1,g,b f−1, f ,b−1−g,g,b−1− f , f by the

four starting bits and can further compute b−1− f , f +b−1−g,g
and b f−1, f +bg−1,g. The other information bits in columns f
and g can be computed as in STAR codes [5, Section. 4.3.3].

When f = 0, we have two starting bits bg−1,0 +b−1−g,g and
b−g−1,0 + bg−1,g and only need to compute two bits b−1−g,g
and bg−1,g by the same method of f > 0 as shown above.

Consider the example in Table I. Suppose that columns f = 1,
g = 2 and h = 3 are failed. By subtracting the information bits
in column 0 from the parity bits in columns 4 and 5, we can
obtain the following bits

b7,2 +b8,4,b0,1 +b8,4,b1,1 +b0,2,b2,1 +b1,2,

b3,1 +b2,2,b4,1 +b3,2,b5,1 +b4,2,b6,1 +b5,2,

b1,1 +b2,2,b2,1 +b3,2,b3,1 +b4,2,b4,1 +b5,2,

b5,1 +b6,2,b6,1 +b7,2,b7,1 +b8,5,b0,2 +b8,5.

By summing all the above bits, we obtain b8,4 +b8,5 = b7,1 +
b6,2+b0,1+b1,2. As f > 0, we have four starting bits b7,2+b8,4,
b0,1+b8,4, b7,1+b8,5 and b0,2+b8,5. Starting from the starting
bit b7,2 +b8,4, we can compute b0,1 by

(b7,2 +b8,4)+(b6,1 +b7,2)+(b6,1 +b5,2)+(b4,1 +b5,2)+

(b4,1 +b3,2)+(b2,1 +b3,2)+(b2,1 +b1,2)+(b8,4 +b8,5) = b0,1,

and compute b8,4 by b0,1 +(b0,1 +b8,4). Once b8,4 is known,
we can compute b8,5. All the other information bits can be
decoded iteratively.

B. Decoding Algorithm without Parity Erasures

Consider that three information columns f , g and h are
erased, where 0≤ f < g < h≤ k−1, and we want to recover
the information bits in columns f , g and h. One decoding
algorithm can be summarized as follows.

Step 1. Calculate bm−1,k+1 and bm−1,k+2 by Theorem 1.
Step 2. Calculate the following 3p−1 syndromes

bi, f +bi,g +bi,h for 0≤ i≤ p−2,
bi− f , f +bi−g,g +bi−h,h for 0≤ i≤ p−1,
bi+ f , f +bi+g,g +bi+h,h for 0≤ i≤ p−1,

by subtracting the information bits in k−3 surviving
information columns from bm−1,k+1, bm−1,k+2 and the
3(p−1) parity bits.

Step 3. Find a starting point in column g and recover the
column g.

Step 4. Recover columns f and h by the decoding algorithm
of EVENODD+ in [13].

We can recover the erased three information columns after
executing the above four steps. The detailed decoding algorithm
of recovering two information columns is described in [13].
The method of finding a starting point in column g is similar
to that of RTP [15], which is omitted due to space limitation.

We note that in the proof of Lemma 2, the calculation of
bm−1,k+1 + bm−1,k+2 by summing all 2(m− 1) parity bits in
columns k+1 and k+2 is a key point in the decoding algorithm
with one parity erasure. By Lemma 2, we can always obtain
bm−1,k+1+bm−1,k+2 if the number of parity bits in column k+1

TABLE II: Update complexities of STAR+(m,7) and STAR codes.
m STAR STAR+(m,k) m STAR STAR+(m,k)
7 4.4286 4.4286 31 4.6571 3.2857

11 4.5429 3.8571 37 4.6667 3.2381
13 4.4571 3.7143 41 4.6714 3.2143
17 4.6071 3.5357 43 4.6735 3.2041
19 4.6190 3.4762 47 4.6770 3.1863
23 4.6364 3.3896 49 n/a 3.1786
29 4.6531 3.3061 53 4.6813 3.1648

(resp. column k+2) that contains bm−1,k+1 (resp. bm−1,k+2) is
an even number. This is one of the reasons we add bm−1,k+1
to the first 2b k

2c parity bits in column k+1 and add bm−1,k+2
to the last 2b k

2c parity bits in column k + 2. However, the
number of parity bits in column k+ 1 (resp. column k+ 2)
that contain bm−1,k+1 (resp. bm−1,k+2) should be no less than
2b k

2c, as we need to ensure that any k−1 information columns
and column k+1 can recover all the information bits. In the
decoding algorithm of any three information column erasures,
the computation of bm−1,k+1 and bm−1,k+2 given in Theorem 1
is critical important, as the decoding algorithm can be reduced
to that of RTP [15].

Note also that in STAR codes [5], the number of information
columns should be a prime number and the number of rows
is equal to the number of information columns minus one.
However, we relax this constraint in STAR+(m,k). When k =m,
STAR+(m,k) reduces to STAR codes.

IV. COMPARISON

In this section, we evaluate the update complexity for
STAR+(m,k).

If an information bit is changed, we need to update one
parity bit in column k and 1+(2b k

2c− 1) k−1
k(m−1) parity bits

in each of column k+1 and column k+2 on average. Thus,
the update complexity is 3 + 2(2b k

2c − 1) k−1
k(m−1) . If m� k,

then the update complexity approaches the optimal value 3+
2k−3

k(m−1) [12, Proposition 5.5]. Therefore, the update complexity
is asymptotically optimal when m is much larger than k. The
update complexity of STAR codes is 5− 2(m+k−2)

k(m−1) , which is
strictly larger than that of STAR+(m,k) if m> k. Table II shows
the update complexity of STAR codes and STAR+(m,k) when
k = 7 and m ranges from 7 to 53. We observe that STAR+(m,k)
has less update complexity than STAR codes when m > 7, and
this advantage increases with m. As m = 49 is not prime, we
do not add the result for STAR codes in Table II.

Note that we only add the adjuster bit to some parity bits
in the last two parity columns in our STAR+(m,k), while
the adjuster bit is added to all the parity bits in the last
two parity columns in STAR codes. STAR+(m,k) have lower
encoding/decoding complexities compared to STAR codes.

V. CONCLUSION

In this paper, we present a new construction of STAR codes
such that the update complexity of the newly constructed STAR
codes is asymptotically optimal and the encoding/decoding
complexity is slightly less than that of original STAR codes.

REFERENCES

[1] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz, “Introduction
to Redundant Arrays of Inexpensive Disks (RAID),” in Proc. IEEE
COMPCON, vol. 89, 1989, pp. 112–117.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Computers, vol. 44, no. 2, pp. 192–202, 1995.

[3] L. Xu and J. Bruck, “X-code: MDS array codes with optimal encoding,”
IEEE Transactions on Information Theory, vol. 45, no. 1, pp. 272–276,
1999.

[4] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,” in
Proc. of the 3rd USENIX Conf. on File and Storage Technologies (FAST),
2004, pp. 1–14.

[5] C. Huang and L. Xu, “STAR: An Efficient Coding Scheme for Correcting
Triple Storage Node Failures,” IEEE Transactions on Computers, vol. 57,
no. 7, pp. 889–901, 2008.

[6] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy, “The EVENODD
code and its generalization: An effcient scheme for tolerating multiple
disk failures in RAID architectures,” in High Performance Mass Storage
and Parallel I/O. Wiley-IEEE Press, 2002, ch. 8, pp. 187–208.

[7] H. Jiang, M. Fan, Y. Xiao, X. Wang, and W. Yu, “Improved decoding
algorithm for the generalized evenodd array code,” in Computer Science
and Network Technology (ICCSNT), 2012 2nd International Conference
on, 2012.

[8] H. Hou, Y. S. Han, K. W. Shum, and H. Li, “A Unified Form of
EVENODD and RDP Codes and Their Efficient Decoding,” IEEE Trans.
Communications, vol. 66, no. 11, pp. 5053–5066, 2018.

[9] H. Hou, P. P. C. Lee, Y. S. Han, and Y. Hu, “Triple-Fault-Tolerant
Binary MDS Array Codes with Asymptotically Optimal Repair,” in 2017
IEEE International Symposium on Information Theory (ISIT), 2017, pp.
839–843.

[10] H. Hou, Y. S. Han, P. P. C. Lee, Y. Hu, and H. Li, “A New Design of
Binary MDS Array Codes with Asymptotically Weak-Optimal Repair,”
IEEE Transactions on Information Theory, vol. 65, no. 11, pp. 7095–7113,
2019.

[11] H. Hou and P. P. Lee, “Binary mds array codes with optimal repair,”
IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1405–1422,
2020.

[12] M. Blaum and R. M. Roth, “On lowest density MDS codes,” IEEE Trans.
on Information Theory, vol. 45, no. 1, pp. 46–59, 1999.

[13] H. Hou and L. P. P. C., “A New Construction of EVENODD Codes
with Lower Computational Complexity,” IEEE Communications Letters,
vol. 22, no. 6, pp. 1120—-1123, 2018.

[14] Y. Zhang, C. Wu, L. Jie, and M. Guo, “TIP-Code: A Three Independent
Parity Code to Tolerate Triple Disk Failures with Optimal Update
Complextiy,” in IEEE/IFIP International Conference on Dependable
Systems & Networks, 2015.

[15] A. Goel and P. Corbett, “RAID Triple Parity,” ACM Sigops Operating
Systems Review, vol. 46, no. 3, pp. 41–49, 2012.

