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Abstract

Protocol feature words are byte subsequences within traffic payload that can distinguish application protocols,

and they form the building blocks of many constructions of deep packet analysis rules in network management,

measurement, and security systems. However, how to systematically and efficiently extract protocol feature words

from network traffic remains a challenging issue. Existing approaches like those based on n-gram or Common String

(CS), which simply breaks payload into equal-length pieces or attempts to find a frequent itemset, are ineffective in

capturing the hidden statistical structure of the payload content. In this paper, we propose ProWord, an unsupervised

approach that extracts protocol feature words from traffic traces. ProWord builds on two nontrivial algorithms. First,

we propose an unsupervised segmentation algorithm based on the modified Voting Experts algorithm, such that we

break payload into candidate words according to entropy information and provide more accurate segmentation than

existing n-gram and CS approaches. Second, we propose a ranking algorithm that incorporates different types of

well-known feature word retrieval heuristics, such that we can build an ordered structure on the candidate words and

select the highest ranked ones as protocol feature words. We compare ProWord and existing prior approaches via

evaluation on real-world traffic traces. We show that ProWord captures true protocol feature words more accurately

and performs significantly faster.

Notes: A 9-page shorter conference version of this paper appeared in IEEE INFOCOM’14 [44]. In this

journal version, we include additional evaluation results for the comparisons with existing approaches,

such as the common substring approaches and ProDecoder.

I. INTRODUCTION

To deal with the increasing variety and complexity of modern Internet traffic, operators often need

deep understanding of applications running in their networks. Today’s operators are challenged by how to
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keep pace with the explosive growth of new web and mobile applications [35]. Protocol feature words (or

feature words for short) are byte subsequences within payload that can distinguish application protocols.

If we consider each protocol as a type of communication language, feature words make up a lexicon

and form the building blocks for any deep packet analysis. Feature words are important in security and

measurement systems. For example, the Linux application classifier L7-Filter [1] uses layer-7 feature

words to build regular expressions for traffic identification. Intrusion detection systems, such as Snort [8]

and Bro [3], need feature words to construct rules and guide their engines to properly conduct application

layer protocol processing. Traffic analysis tools such as Wireshark [11] and NetDude [5] require third-

party development of additional plugins to provide feature support for new protocols. Compared with the

noise-prone and easily morphed behavioral features such as packet sizes and interval times, feature words

are more stable and distinguishable in traffic classification related applications [13], [16].

However, existing studies on protocol feature word discovery, or in machine learning terms the feature

engineering process, critically depend on manual labors when protocol specifications are undocumented.

When performing protocol reverse engineering, we need many prior experiences to discover feature word

boundaries and select candidates as feature words from continuous payload. Text-based protocols, such as

SMTP and FTP, contain human-readable feature words, and word boundaries in general can be identified

by common delimiters such as whitespaces. However, in the realm of binary protocols, extracting feature

words becomes challenging for humans without grammar and syntax prompt. Even worse, we cannot

easily tell whether a traffic trace belongs to a text or binary protocol if the protocol is totally unknown.

Thus, generating effective rules to identify traffic is labor and experience intensive. For example, L7-

Filter pattern files, which include regular expressions built with feature words, are contributed by many

researchers and developers worldwide. This motivates us to investigate how to integrate protocol reverse

engineering experiences into algorithmic design, so as to automatically extract feature words from network

traffic.

A. Related Work and Their Limitations

Traditionally, the intuition behind feature word extraction is based on frequent itemset mining. That is,

we believe that feature words must be the substrings that appear more frequently than others. Although

Apriori [24] is the most natural choice, it cannot scale well as it needs multiple scans of the original

traffic traces. Thus, many other studies have been raised, which usually break continuous payload into

small blocks and can be regarded as an attempt to build a bag-of-words model. For text protocols, using

whitespaces to delimit feature words [15] is a good choice, but is clearly ineffective for binary protocols.
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The n-gram approach can be regarded as a variation of Apriori. It has been widely used to extract

feature words in both text and binary protocols [19], [20], [25], [26], [29], [38], [39], such that it uses

a sliding window of size n bytes to break payload into equal-length pieces. However, it can tear a

feature word larger than n bytes into different pieces, or squish noise bytes into one piece with a shorter

one. Recent experimental studies show that n-gram analysis quickly becomes ineffective when capturing

relevant content features in moderately varying traffic [22].

Common substring extraction is another popular approach for feature words extraction [34], [36], [37],

[40], [42], [43]. Inspired by sequence alignment in bioinformatics for DNA analysis, this approach will

find the most common substrings within flows or packets. It selects substrings with a minimum length

and a minimum coverage in the trace. Although it can identify words of various lengths with given

frequencies, the result may include too many redundancies if we improperly set the minimum length

or the minimum coverage. For example, if a substring RCPT TO is a common substring that meets the

requirement of minimum coverage, its subset items like {RCPT T, RCPT, CPT, RCP, TO, ...}

can also be included in our results if we set the minimum length as 2. Some redundancy reduction methods

can be applied. The most natural one is the longest common substring (LCS) approach, which only selects

the longest one from a set of common substrings1. For {RCPT TO, RCPT, CPT, RCP, TO, ...},

we only choose RCPT TO as the final result. An obvious problem is that, some useful substrings with

short length are always excluded if they happen to be a part of another longer one. For example, DATA,

EXDATA are two feature words in the SMTP protocol and its extension [6], but DATA will be ignored as

EXDATA is the longest common substring. To remove redundancies, Wong et al. [41] propose an algorithm

for discovering biological non-induced patterns (or substrings) from sequences, and it excludes redundant

patterns (or substrings) by statistically induction instead of selecting the longest common ones. However,

the single threshold is empirical and limited for redundancy reduction. SANTaClass [36], [37] proposes

different rules to filter redundant common terms, but some of the rules, such as removing terms unrelated

to applications and removing bad terms, require detailed knowledge of application protocols and hence

manual interventions seem inevitable.

To wrap up, the prior studies have two limitations. The first limitation is that they are parameter sensitive

approaches. We must select the parameters properly to reach useful results. The parameters, such as n for

n-gram or the length and frequency thresholds for CS or LCS, have strong dependencies with final results.

1The formal definition of the longest common substring (LCS) approach is to find the longest substring that appears in all input strings.
The LCS approach in our description can be viewed as a variant of the formal definition, since it first extracts all (common) substrings that
meets the minimum coverage requirement and then picks the longest (common) substring.
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However, it is very difficult for an engineer to accurately build the prior knowledge. As a substitute, an

engineer with experiences of traffic and protocol analysis may believe how possible that a feature word

appears in ranges, rather than exact values, of length, frequency, or position within a trace. Thus, the first

problem is how to inject this implicit knowledge into real traffic analysis and make the process insensitive

with parameters.

The second limitation is that the prior approaches cannot scale well for large-scale traffic traces. For

example, the common substring approaches usually keep the information about substrings, say their

frequencies, in a generalized suffix tree [21], which can explode when facing a large volume of data.

In network traffic, most substrings appear only once but they can occupy the most memory. Thus, the

second problem is how to filter these low frequent items out and save memory for latent useful ones.

Supervised machine learning approaches have been widely used in traffic classification. Most studies

focus on designing effective classification algorithms based on state-of-the-art learning tools like support

vector machines [18], [28] and Naive Bayesian classifier [12], [33]. Supervised learning approaches require

a training set to classify traffic accurately, and they do not give us suggestions on feature generation or

selection. In this work, we focus on designing an unsupervised learning approach.

B. Our Contributions

We formulate the protocol reverse engineering problem as an information retrieval problem. We design

ProWord, a lightweight unsupervised mechanism that automatically and accurately extracts from traffic

traces a set of byte subsequences that are most likely to be feature words. ProWord addresses two major

challenges: (i) how to identify word boundaries within traffic traces to extract candidate feature words and

(ii) how to rank byte subsequences such that the ones that are more likely to be feature words will be as-

signed higher rank scores. To address the first challenge, our idea originates from a segmentation approach

in natural language processing, in which texts are divided into meaningful units based on statistical models.

As the target network protocol may have unknown specifications, we leverage unsupervised segmentation

that discovers word boundaries based on the statistics such as entropy or frequency. Specifically, our

work builds on the Voting Experts (VE) algorithm [14], which identifies possible word boundaries using

entropy. For example, for the message “MAIL FROM:<a@gmail.com>\r\n” in SMTP payload, our

partition result can be the set of “MAIL FROM:<”, “a@”, “gmail”, “.com”, and “>\r\n”. Compared

with existing n-gram approaches, such as the 3-gram partition {MAI, AIL, IL_, L_F, _FR, FRO,

ROM, OM:, M:<, ...}, we respect the hidden statistical structure when recognizing word boundaries.

Since the baseline VE algorithm can lead to memory explosion, we enhance the VE algorithm with less
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memory usage by filtering low-frequency subsequences, thereby making the algorithm scalable to high-

volume traffic payload.

To address the second challenge, we need to construct an ordered structure on the set of candidate words

obtained from our segmentation. Our idea is inspired by the heuristics in information retrieval such as TF-

IDF weighting [17], and we adapt such heuristics into traffic analysis. ProWord uses a ranking algorithm

that maps different dimensions of protocol feature heuristics (e.g., frequency, occurrence location, and

length) into different word scoring functions and uses the aggregate score to rank the candidates. To

maintain the compactness of our final result, ProWord filters any redundant candidates that are very

similar to some higher ranked words, and returns the top k candidates as the resulting feature words.

ProWord is designed as an offline analysis tool that extracts feature words from packet traces. Compared

with n-gram approaches, ProWord makes a trade-off of using more memory space to keep track of

occurrences of candidate feature words in the VE algorithm, so as to achieve more accurate feature word

extraction. Nevertheless, our modified VE algorithm significantly reduces the memory usage for practical

use.

In summary, we propose ProWord for unsupervised feature word extraction and make three key con-

tributions.

• Segmentation on payload: To our knowledge, this is the first work that adapts a segmentation approach

from natural language processing into traffic analysis. We present a novel unsupervised segmentation

algorithm that divides payload into a set of candidate words with respect to the hidden statistical

structure, while reducing the memory usage for scalable traffic analysis.

• Ranking on candidate words: We transform feature word selection into a ranking problem based on

our word selection experience and the actual word properties. We propose a ranking algorithm that

integrates different dimensions of prior knowledge about feature words. The algorithm also filter any

redundancy to maintain the compactness of the returned set of feature words.

• Evaluation: We conduct extensive trace-driven evaluation. Using six protocols of different types, we

compare ProWord with existing n-gram and common substring approaches. Our results show that

ProWord provides more accurate feature word extraction. ProWord also performs significantly faster

than the state-of-the-art n-gram approach ProDecoder [38], which requires extensive computations

to combine equal-length pieces into meaningful feature words.

The rest of this paper proceeds as follows. In Section 2, we describe how we extend the VE algorithm

for segmentation. In Section 3, we describe our ranking model that incorporates various heuristics. In
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Section 4, we conduct trace-driven evaluation and compare ProWord with other prior approaches. Finally,

Section 5 concludes the paper.

II. SEGMENTATION

We explore how we generate candidate feature words from a continuous stream of payload. The

challenge is how to recognize word boundaries, namely segmentation, when no lexicon is available for

word recognition.

A. Background: Voting Experts

ProWord builds on the Voting Experts (VE) algorithm [14], which is an unsupervised segmentation

approach in natural language processing. It is a local greedy algorithm that operates by sliding a relatively

small window along a continuous input stream and selecting the most possible boundary positions for

word partitioning. We leverage the VE algorithm to identify the subsequences that are potentially feature

words. In this subsection, we first provide an overview of the baseline VE algorithm.

The VE algorithm takes the votes of two experts as inputs. One expert specifies the word internal

entropy (denoted by HI), following the intuition that if a subsequence always occurs as a whole in a

stream, then it should be retained in entirety. HI is defined as:

HI(w) = − logP (w), (1)

where P (w) is the occurrence probability of subsequence w within a given stream. A low HI means that

w usually occurs in entirety and has a high probability to be a word.

Another expert specifies the word boundary entropy (denoted by HB), following the intuition that if the

successor byte of a subsequence has many variations, then we should put a word boundary in between.

HB is defined as:

HB(w) = −
∑
c∈C

P (c|w) logP (c|w), (2)

where C is the set of all possible successor bytes following a subsequence w, and P (c|w) is the occurrence

probability of byte c following w. For example, consider the input sequence “DATA.DAT”. The set C

of subsequence “DA” only has one element ‘T’, while that of “A” has two elements ‘T’ and ‘.’. HB

estimates the amount of uncertainty of the bytes after a subsequence. A high HB indicates that the byte

after w varies aggressively and the point after w has a high probability to be a word boundary.
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Input

DATA\r\n

RCPT TO:<Jones@BBN-VAX.ARPA>\r\n

250 OK\r\n

RCPT TO:<steven@pchome.com.tw>\r\n

Output Decision

...

R   C    P    T        T    O    :   <    J     o    n    ...

T

V

x
Decision rules: V(x) >= T

V(x-1) < V(x) > V(x+1)

Voting
V(x):    0    0    0    0 0    0    4    0    2  ...

R   C    P    T         T   O    :    <    J    o    n   ...

R   C    P    T         T   O    :    <    J    o    n   ...

Total Vote Sequence(partly): 

R   C    P    T         T   O    :    <    J    o    n   ...

:vote from EI :vote from EB

DATA\r\n

RCPT TO:<Jones@BBN-VAX.ARPA>\r\n

250 OK\r\n

RCPT TO:<steven@pchome.com.tw>\r\n

Fig. 1: Overview of the VE algorithm.

In order to compare these statistical measures among subsequences of different lengths, we normalize

them among all subsequences with the same length and denote their normalized values as EI(w) =

(HI(w) − H̄I)/σI and EB(w) = (HB(w) − H̄B)/σB, where H̄ and σ denote the mean and standard

deviation, respectively.

Figure 1 illustrates the VE algorithm. There are two key phases: voting and decision. In the voting

phase, each expert will vote one position as a possible boundary within each sliding window. The sliding

window size, which we denote by L, enables us to generate words of length less than or equal to L.

Suppose that i is the offset of the beginning of the sliding window. The internal voting point xI
i and the

boundary voting point xB
i at offset i can be represented as:

xI
i = arg min

xI
i=i+j

(EI(wi,i+j) + EI(wj+1,i+L)), (3)

xB
i = arg max

xB
i =i+j

EB(wi,i+j), (4)

where j ∈ (0, L], and wa,b represents the subsequence between offsets a and b inclusively within the input

sequence. Each point x has a vote score V (x), which can be computed as:

V (x) =
∑
i

(1(x = xI
i ) + 1(x = xB

i )), (5)

where 1(.) is the indicator function such that 1(x = y) = 1 if x = y; otherwise 1(x = y) = 0 if x ̸= y.

In the decision phase, we identify a point x as a word boundary if the following two rules are met: (i)

if the point x obtains more votes than its neighbors (i.e., V (x) > V (x − 1) and V (x) > V (x + 1)) and

(ii) if its number of votes exceeds some pre-defined threshold T (i.e., V (x) > T ).
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Fig. 2: The 2-depth Trie produced by “DATA.DAT” in the VE algorithm.

To illustrate both voting and decision phases, consider the example in Figure 1. Suppose that the input

sequence is “RCPT TO:<Jon...”. In the voting phase, the experts EI and EB vote a position as the

possible boundary. For example, in the first sliding window, both EI and EB vote the same position right

after “RCPT TO”; in the second and third sliding windows, EI votes the position after “RCPT TO”, while

EB votes the position after “RCPT TO:<”. If we collect votes for the first three sliding windows, we

can get the numbers of votes as “0, 0, 0, 0, 0, 0, 4, 0, 2 · · · ”, as shown in Figure 1. In the decision phase,

suppose that we obtain the final V (x) as “0, 0, 0, 0, 0, 1, 8, 4, 3, 2, 2, 1 · · · ” after all sliding windows are

considered (see Figure 1), and that T = 6. Then only the point after “RCPT TO”, which has eight votes,

meets both rules. Thus, we put a boundary at that point.

To implement the VE algorithm with sliding window size L, we use an (L + 1)-depth Trie (or prefix

tree) to hold all possible byte combinations occurring in the stream, in which we can calculate the

entropy values accordingly. We set the Trie depth as L + 1 since we need one more byte to calculate

the word boundary entropy HB for the longest possible word of length L. Each node at level i of the

Trie corresponds to a subsequence of length i. The children of a node have a common prefix in their

ascendants. Figure 2 shows how the sequence “DATA.DAT” produces a 2-depth Trie. The number at each

node records the occurrence count of the subsequence. For example, for all the three occurrences of ‘A’,

there are two possible successors in a window of size two, namely ‘.’ (with two occurrences) and ‘T’

(with one occurrence).

B. Limitations of the Baseline VE Algorithm

Although the VE algorithm has been successfully used in natural language processing, it is not a

scalable approach in traffic analysis. In the Trie constructed in the baseline VE algorithm, the number of

descendants of each node is at most its alphabet size. In natural language processing, the actual bound

in reality is far less than the theoretical one because the conventional language combinations can limit

the occurrence of some subsequences. For example, in English, when we meet “tio” at the end of a
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Fig. 3: Node frequency statistics in Trie construction.

word, we will predict the next character to be ‘n’ with a very high probability as “-tion” is a common

combination.

On the other hand, when analyzing traffic payload, especially for pure binary data, the kind of conven-

tional language combination is very unlikely to occur. In other words, the probability mass of subsequences

can be distributed more sparsely in network traffic. A more sparse data stream tends to produce more

new byte combinations, meaning that the stream is more difficult to compress and needs more memory

to store and manipulate. In particular, this sparsity problem will lead to the node space explosion in our

algorithm design.

To illustrate the node space explosion, we conduct some experimental studies on the frequency dis-

tributions of the Trie nodes when analyzing the SMTP and BITTORRENT traffic traces with an 8-byte

window Trie (see the trace descriptions in Section 4). The key observation is that some protocols may

have very high sparsity. As shown in Figure 3(a), as a binary protocol, BITTORRENT has significantly

more Trie nodes than SMTP and is much more sparse. Specifically, for 20K packets from real traffic,

BITTORRENT itself produces 130 million nodes, which account for over 5GB of memory.

Nevertheless, a majority of nodes have very low frequency counts. Figure 3(b) plots the frequency

distribution of all Trie nodes. It shows that 95% of nodes only occur once or twice throughout the entire

trace. Thus, although capturing all nodes requires a huge space, we only need to focus on a small subset

of them that have sufficiently high frequencies. We use this as a guideline to address the node space

explosion problem.

C. Pruning And Compensation for the VE algorithm

To address the node space explosion problem when applying the VE algorithm to traffic analysis,

we propose a pruning step for Trie construction so as to limit the memory usage. The intuition is that



10

subsequence nodes with very low frequencies are unlikely to be the true feature words. Thus, we can

prune the node space by periodically removing nodes with frequencies below some pre-defined threshold.

Our pruning step builds on the Lossy Counting Algorithm [31], an approximate counting algorithm that

can return frequency estimations of high-frequency data items over a data stream using limited memory

by periodically removing low-frequency items. In this step, one key parameter is the maximum probability

estimation error ϵ, which limits our estimation error within [0, ϵ]. Intuitively, we only prune a node if its

corresponding subsequence has an occurrence probability no more than ϵ. Since any new byte introduces

(L+ 1) new subsequence instances, we can use ϵ to compute the pruning period M = ⌈1/(ϵ× (L+ 1))⌉

and the pruning frequency threshold θ = i ×M × (L + 1) × ϵ ≈ i, where i is the number of periods

that have been processed. As each newly added subsequence in the ith period may be removed before,

its estimated frequency in this period has a difference with the true one. Thus, we add an error (i − 1)

to each Trie node as in [31], which is the maximum possible error to the frequency. We will remove a

subsequence if its frequency plus error is no more than θ ≈ i times in the current ith period.

There is a trade-off between the estimation error and memory cost. A low ϵ (or a high M ) can retain

more subsequence nodes, but will increase the risk of running out of memory in a period, while a high

ϵ may lose useful frequency information. In practice, since we do not determine the actual subsequence

distribution for a given trace, we can set M as large as possible, as long as it does not induce the

out-of-memory error in a period. Then we can determine ϵ and θ accordingly.

Our pruning step removes the low-frequency subsequences from the Trie, but we cannot exclude these

subsequences for certain when computing the entropy values in the VE algorithm. In other words, we

need to consider every subsequence within the sliding window in the entropy computations, regardless of

if the subsequence appears in the Trie or has been pruned. Here, we propose a compensation step. Here,

we assign an occurrence probability ϵ/2 to each subsequence that does not appear in the Trie, since the

occurrence probability of any pruned subsequence is at most ϵ due to the maximum estimation error.

Algorithm 1 shows the entire segmentation algorithm, which generates a set of candidate feature words

for a given protocol trace P . The function BUILDTRIE computes the occurrence frequencies for the

subsequences over each pruning period (lines 7-17) and deletes nodes if their corresponding subsequences

have frequencies below the pruning frequency threshold i (lines 18-22). The segmentation algorithm first

constructs a Trie and computes the entropy values for all subsequences in the Trie (lines 29-30). For each

packet, it slides a window over the packet payload. Within a sliding window, the algorithm first runs

the compensation step on the pruned subsequences (line 34) and computes the votes (line 35). It finally
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identifies the boundaries (lines 37-42) and extracts all candidate feature words into W (line 43).

We analyze the computational complexity of the segmentation algorithm, which dominates the load

of ProWord (see Section 4.4). Its complexity is mainly due to the Trie construction, which has two key

operations: frequency counting and periodic pruning. Consider an (L+1)-depth Trie for m bytes of input

payload. Frequency counting takes place at most m(L+1) times since any new byte can introduce at most

(L+ 1) subsequence instances into counting. Periodic pruning traverses all nodes in the Trie for pruning

at each pruning period. The total number of pruning operations can be upper bounded by 7m(L+1) [31].

To sum up, the total complexity of Trie construction is O(mL), which is actually also the complexity of

ProWord.

III. RANKING

We may extract millions of candidate feature words from the VE algorithm. It is important to identify the

words of interest that can be used as protocol features in traffic analysis. Our goal is to rank the extracted

candidate words and select the top k of them that are most likely to be feature words. Specifically, we

construct an ordered structure on the candidate words with a score function that aggregates various attribute

values of individual words based on our prior knowledge on protocol features. As a proof of concept, here

we exploit three attributes that are widely used in real-life protocol reverse engineering, namely frequency,

location, and length. First, a feature word is expected to occur in most packets or flows. To distinguish

it from others, we identify the candidate words that have relatively high frequencies. Second, we identify

the candidate words that appear at a relatively fixed location from the beginning or the end of a packet or

flow, since these words may be used as part of the protocol definitions. Finally, a possible feature word

should have a length within a reasonable range, since a very short word has weak distinguishability while

a very long word costs much resource in communication. Thus, we define an aggregate score function

(denoted by Fagg) of word w by combining all above heuristics as follows:

Fagg(w) = Ffreq(w) · Floc(w) · Flen(w), (6)

where Ffreq(w), Floc(w), and Flen(w) denote the score functions for the attributes frequency, location, and

length, respectively. In this way, we can rank all candidate words by comparing their aggregate scores.

Here, we combine the individual score functions by multiplication, as it represents proportional fairness

[27] among the score functions and brings the best result based on our experience.

We emphasize that our goal is not to find a feature word that scores high in all attributes. For example,

the header fields of HTTP may appear in different orders, and hence they may score low in the location



12

Algorithm 1 Segmentation Algorithm
1: Input: Protocol trace P; Pruning period M ; Sliding window length L; Decision threshold T
2: Output: Candidate word set W
3: TrieNode (w, f, e): w = subsequence, f = estimated frequency of w, and e = maximum error to f
4: function BUILDTRIE(P , M , L)
5: Trie T = ∅
6: for ith period of M bytes Pi for pruning do
7: for each subsequence w with length ≤ (L+ 1) in Pi do
8: fi ← frequency count of w in Pi

9: v ← vertex of w in T
10: if v = none then
11: e← i− 1
12: v ← (w, fi, e)
13: Insert v to T
14: else
15: v.f ← v.f + fi
16: end if
17: end for
18: for all v in T do
19: if v.f + v.e ≤ i then
20: Delete v from T
21: end if
22: end for
23: end for
24: return T
25: end function
26:
27: procedure SEGMENTATION(P , M , L, T )
28: ϵ = 1/(M · (L+ 1))
29: T = BUILDTRIE(P,M,L)
30: Compute EI , EB for all subsequences in T
31: W = ∅
32: for all packet in P do
33: while sliding window of L through the packet do
34: Compute EI , EB for pruned subsequences with occurrence probability ϵ/2
35: Compute votes according to EI , EB

36: end while
37: Compute votes into V
38: for all vote point x do
39: if V (x) > V (x− 1) and V (x) > V (x+ 1) and V (x) > T then
40: Set a boundary at x
41: end if
42: end for
43: Insert all words between boundaries to W
44: end for
45: end procedure

score. However, if they still score high in both frequency and location, and hence the aggregate score,

then they can still be extracted as feature words, as shown in our evaluation (see Section 4).
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A. Score Rules and Score Functions

To construct the score functions, we formally define intuitive and reasonable score rules that should be

satisfied when determining the protocol features. In this work, our score rules and score functions build

on the information retrieval heuristics proposed for ranking web pages [17]. The novelty of our work is

to adapt the heuristics into the context of traffic analysis. In particular, when we adapt the heuristics, we

must respect the specific properties of network protocols in general, so as to accurately extract the feature

words from traffic traces.

Rules for the frequency score function. Let W be the candidate word set. For w ∈ W , let Xt(w) be

the total number of occurrences of w in all packets, and Xp(w) be the number of packets containing w.

We define two rules for the frequency score function as follows.

Rule 1: For w1, w2 ∈ W , suppose that Xt(w1) = Xt(w2). If Xp(w1) > Xp(w2), then Ffreq(w1) >

Ffreq(w2). �

Rule 2: For w1, w2 ∈ W , suppose that Xp(w1) = Xp(w2). If Xt(w1) > Xt(w2), then Xt(w1)
Xt(w2)

Ffreq(w2) >

Ffreq(w1) > Ffreq(w2). �

These two rules use Xt(w) and Xp(w) as two inputs for Ffreq(w). We would like to select a word

occurring in most packets or flows. In other words, we are interested in finding how many packets or

flows can be covered if we take a word as a feature word. Here, we only discuss the packet coverage

of a word (i.e., number of packets containing the word), while the idea can be easily extended to flow

coverage (i.e., number of flows containing the word). Rule 1 states that if two words have the same

total number of occurrences, the one with higher packet coverage is more likely to be a feature word;

Rule 2 states that if two words have the same packet coverage, we give a higher score to the one with

more occurrences. In particular, we expect that Ffreq follows a sub-linear growth with total number of

occurrences of a candidate word if its packet coverage is fixed, since subsequences occurring multiple

times within one packet tend to be trivial ones such as padded bytes and we should limit the score growth

due to a high number of occurrences. Here, we define Xt(w1)
Xt(w2)

as the linear factor that bounds the growth

of the score function. For example, there is a packet segmented as “AB|AB|AB|AB|AB|CD”, where

subsequences “AB” and “CD” appear five times and once, respectively. Then, the frequency score of a

word in “AB” should be less than five times that of “CD”. Here, we choose the logarithmic function to

define a monotonic and sub-linear function, as the logarithmic function is the most common choice for

defining ranking functions in information retrieval [32]. Based on the above two rules, we define Ffreq(w)



14

as follows:

Ffreq(w) = Xp(w) · (1 + log
Xt(w)

Xp(w)
). (7)

Rules for the location score function. For a given candidate word set W and w ∈ W , let Xp(w) be

the number of packets containing w. Also, let Xm(w) be the maximum number of occurrences of w at a

given position in all packets (i.e., we count the occurrences of w in each possible position and compute

the maximum).

Rule 3: For w1, w2 ∈ W , suppose that Xp(w1) = Xp(w2). If Xm(w1) > Xm(w2), then Floc(w1) >

Floc(w2). �

Rule 4: For w1, w2 ∈ W , suppose that Xm(w1)
Xp(w1)

= Xm(w2)
Xp(w2)

. If Xp(w1) > Xp(w2), then Floc(w1) > Floc(w2).

�

Rules 3 and 4 stem from the intuition on location centrality of feature words, in which we give a high

score to a word that appears in relatively fixed locations. Rule 3 captures the basic location centrality

heuristic, in which we score higher a word that has more instances on some fixed locations; Rule 4 scores

higher a word with more occurrences if two words have same possibilities of occurring at some fixed

points, as it shows more observable evidences in the data. Similar to above, we here use a logarithmic

function to limit the score growth to be sub-linear and define Floc(w) as follows:

Floc(w) =
Xm(w)

Xp(w)
· logXp(w). (8)

Rule for the length score function. For a given candidate word set W and w ∈ W , let |w| be the

length of w (in number of bytes). Let the range [δl, δh] be the preferable length space of feature words.

Intuitively, if w is a feature word, its length |w| is likely in the range [δl, δh].

Rule 5: For w1, w2 ∈ W , if |w1| ∈ [δl, δh] and |w2| /∈ [δl, δh], then Flen(w1) > Flen(w2). �

Rule 5 presents our heuristic of identifying feature words based on their lengths. We exclude the words

that are too short or too long, and hence define a piecewise function as follows:

Flen(w) =


|w|
δl

if |w| < δl,

1 if δl ≤ |w| ≤ δh,

δh
|w| if |w| > δh.

(9)

The range [δl, δh] can be defined according to prior knowledge. In this work, we set the range as [2, 10].
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B. Compactness

Based on our definition of Fagg, we can rank the set of candidate words and select the top k ranked

words as feature words. Here, k is a very small integer compared to the number of candidate words, and

can be chosen by users in real deployment.

On the other hand, when a protocol uses feature words to define semantics, there are some option fields

or variations that will induce redundancies, which refer to the words that have similar patterns or even

the same semantics. These redundancies may show up in the returned top k feature words. For example,

“RCPT TO:” and “RCPT TO” are two common feature words in SMTP indicating a recipient, and due

to their minor variations we may add them in our returned results as two different words. Thus, one key

requirement is to filter these redundancies and maintain the compactness of our resulting feature words.

To compact our results, a straightforward approach is to recognize similar words based on the edit

distance, defined as the minimum number of edits needed to transform one string into the other, due to

the insertion, deletion, or substitution of a single character. Although this metric can reflect the similarity

between two words, it can introduce errors to our redundancy filtering. Since protocol feature words are

typically some short strings, two words with a small edit distance may actually refer to semantically

different words. For example, “250” and “220” have the same edit distance as “RCPT TO:” and

“RCPT TO”. However, “250” and “220” are actually different words in SMTP, where “250” is an

“okay” reply for a requested mail action, while “220” is a “ready” reply for the mail transfer service.

Hence, we need a conservative strategy for redundancy filtering. In this paper, we use two strict criteria

to identify redundancies. First, as a substitute of the edit distance, we check if a word is a substring of

another one. Second, as a criterion to distinguish protocol features from common data, we check if the two

words begin at the same location within packet payload. Algorithm 2 outlines our ranking algorithm on

how we select the top k feature words from a given candidate word set W . The function ISREDUNDANT

checks if two words are redundant (lines 3-10). The algorithm first computes the aggregate scores of all

words inW (lines 13-15) and sorts all words in descending order of the aggregate scores (line 16). It then

extracts the highest scored words and removes those that are redundant (lines 17-24). Finally, it returns

the set of k feature words F .

IV. EVALUATION

We evaluate ProWord on several widely used level-7 protocols. We classify the protocols into two

groups. The first group has publicly available official specifications, which we use as ground truths to
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Algorithm 2 Ranking Algorithm
1: Input: Candidate word set W; Number of output words k
2: Output: A set of k feature words F
3: function ISREDUNDANT(ŵ,F)
4: for all w ∈ F do
5: if ŵ is a substring of w and ŵ and w begin at the same location then
6: return true
7: end if
8: end for
9: return false

10: end function
11:
12: procedure RANKING(W , k)
13: for all w ∈ W do
14: Fagg(w)← Ffreq(w) · Floc(w) · Flen(w)
15: end for
16: Sort W in descending order of Fagg(w)
17: F = ∅
18: while F has less than k elements and W ̸= ∅ do
19: ŵ ← the highest scored word in W
20: if ISREDUNDANT(ŵ,F) = false then
21: F ← F + {ŵ}
22: end if
23: W ←W − {ŵ}
24: end while
25: end procedure

identify the true feature words. The second group has no specifications that document feature words, but

there exist effective rules for our verification. For example, L7-Filter contains hundreds of rules that were

manually built by volunteers and can serve as references for our validation.

We collect traffic traces from a university network gateway. We select six protocols shown in Table 1.

The protocols SMTP, POP3, FTP, and HTTP have their specifications available in the online RFC

documents. They are all text-based protocols. BITTORRENT [2] is a peer-to-peer file sharing protocol

whose official specifications are available but different client applications often have their own variations

in implementation. TONGHUASHUN [9] is one of the most popular stock trade applications in China.

It was recorded with over one hundred million users in early 2012. While its payload is encrypted, it

has identifiable patterns at the head of its flows. Both BITTORRENT and TONGHUASHUN are binary

protocols.

ProWord has a few tunable parameters as shown in Table 2. We point out that the window size and the

vote threshold, both of which are used in the VE algorithm, are related to different language properties

but not sensitive to the result. Here, we set their values based on our experience.
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TABLE I: Summary of network protocols used in evaluation.

Protocol Size(B) Packet Flow
SMTP 81,366K 95,068 547
POP3 92,077K 101,253 719
FTP 7,032K 71,068 4,549

HTTP 65,423K 48,601 1,386
BITTORRENT 50,169K 62,613 1,260

TONGHUASHUN 3,020K 9,453 165

TABLE II: Values of tunable parameters.

Parameter Value
Window size in byte L in VE 10

Vote threshold T in VE 6
Processing bytes M in a pruning period 10,000,000
Preferable word length [δl, δh] in byte [2,10]

A. Evaluation on Protocol Feature Word Extraction

We compare ProWord with state-of-the-art approaches. Firstly, we compare ProWord with existing

n-gram approaches on feature word extraction [25], [26], [29], [38], [39]. We consider three ranking

approaches based on n-gram partition: (1) frequency statistics test (e.g., in [26], [29], [38]), which selects

the words that have the highest frequencies of occurrences; (2) two-sample Kolmogorov-Smirnov (K-S)

test (e.g., in [25], [39]), which selects the words that have the most similar distributions on different traces;

and (3) ProDecoder [38], a recently proposed approach that attempts to capture the latent dependencies

of n-grams and performs the selection with the help of topic modeling. To choose n for n-gram, we

note that a larger n can generate sparse frequency distributions [38]. Thus, we choose n = 3 in our

evaluation. In addition, we also compare ProWord with the approach (denoted by “VE+Freq”) that uses

the VE algorithm for unsupervised word segmentation (see Section 2) but uses the frequency statistics test

to rank candidate words. This enables us to evaluate the effectiveness of ProWord in combining different

types of heuristics to rank different feature words.

Secondly, we also compare ProWord with typical common substring (CS) extraction approaches [34],

[36], [37], [40], [42], [43]: (1) the baseline CS approach, which selects all substrings with a minimum

length and a minimum coverage in the trace; (2) the longest common substring (LCS) approach, which

only selects the longest one among the set of results extracted with CS; and (3) LCS + 64B, in which we

limit LCS to focus on the first 64 bytes to each packet or flow (we focus on packets in this paper and it

can be extended to flows easily). We choose LCS + 64B for two reasons. First, prior studies [23], [30],

[43] conclude that this approach is a competitive choice for feature words analysis. Second, as LCS is

usually implemented with the generalized suffix tree, which implies higher space complexity for deeper
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inspection, using the first 64 Bytes of payload is a natural trade-off choice. Furthermore, we choose the

minimum coverage as 1% and set the minimum length with 2, as this setting gives the best result in

parameter selection based on our evaluation.

To fairly compare the accuracy of ProWord and state-of-the-art approaches, we are interested in two

metrics:

• Number of true feature words: We measure the number of true feature words in a set of top k

candidates, where k is the input parameter. The ranked results are considered to be effective if the

number is high. As n-gram approaches cannot output a whole word as long as n is less than the

original word length, we check their results manually and score a hit if all pieces of a true feature

word appear in the top k list.

• Conciseness [15]: We measure the ratio of the number of polymorphic candidates to the number

of true feature words. Two words are polymorphic to each other if either they are identical or one

of them is a substring of another. For example, in the top 10 candidates, if the true feature words

are {RCPT TO, MAIL FROM} while there are three polymorphic candidates {RCPT TO, RCPT

TO:, MAIL FROM}, then the conciseness value is calculated as 3/2 = 1.5. The conciseness metric

captures how frequently a true feature word and its variants appear in the final results of top k

candidates. It is desirable to have a lower conciseness value, meaning that our results have fewer

redundancies.

Figure 4 shows the results for the four protocols SMTP, POP3, FTP, and HTTP, whose official specifica-

tions provide ground truths of feature words. For the number of true feature words (see Figures 4(a)-(d)),

the VE-based approaches (i.e., “VE+Freq” and ProWord) are more effective than the n-gram ones since

the former ones identify word boundaries more accurately while the latter ones always divide words into

equal-length pieces. ProWord returns more feature words than “VE+Freq” since it includes more selection

criteria in addition to frequency. The y-axis of Figures 4(a)-(d) also shows the actual number of feature

word that appear in our traces, and we find that ProWord can detect 82-94% of feature words, significantly

higher than other approaches. For conciseness (see Figures 4(e)-(h)), VE-based approaches also have lower

conciseness than n-gram ones, and ProWord further reduces the conciseness of “VE+Freq” by 12%.

The number of true feature words that can be captured heavily depends on the available traces and

the number of feature words in protocol specification in addition to the value of k. We point out that

although ProWord only identifies around 13-18 true feature words in the top 100 list, these feature words

can actually cover the protocol trace with a very high accuracy. For each protocol we consider, 98%
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Fig. 4: Number of true feature words captured (figures (a)-(d)) and conciseness (figures (e)-(h)) versus k
for SMTP, POP3, FTP, and FTTP. For the y-axis of figures (a)-(d), we also show the actual number of
feature words that appear in our traces.
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Fig. 5: Comparison between ProWord and approaches based on common substrings. Number of true
feature words captured (figures (a)-(d)) and conciseness (figures (e)-(h)) versus k for SMTP, POP3, FTP,
and HTTP. For the y-axis of figures (a)-(d), we also show the actual number of feature words that appear
in our traces.

of packets contains at least one of the feature words identified by ProWord. Furthermore, we dig into

the non-feature words returned. For HTTP, we find that a majority of them are format marks (e.g.,

“\r\n”, “://”), conventional words (e.g., “google”, “com”), and random strings (e.g., padding bytes

or numbers). We can filter them easily through manual inspection.
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TABLE III: Ranks for different feature words based on L7-Filter rules.

Protocol 3-gram 3-gram 3-gram CS LCS LCS VE ProWord
(”feature words”) +Freq +KS +ProDecoder +64B +Freq

SMTP(”220”) 37 34 25±5 160 223 51 12 4
POP3(”+OK”) 1 1 4±1 1 6 7 1 1
POP3(”-ERR”) 114 113 >100 >500 >500 >500 43 7

FTP(”FTP”) 162 160 >100 440 203 233 47 25
HTTP(”HTTP”) 63 60 >100 69 16 1 3 2
BITTORRENT >500 >500 >100 >500 149 17 8 4

TONGHUASHUN >500 >500 >100 462 55 55 8 6

Figure 5 shows the number and conciseness of true feature words identified comparison between

ProWord and various common substring approaches. For the number of true feature words (see Fig-

ures 5(a)-(d)), ProWord outperforms the CS-based approaches (i.e., CS, LCS, and LCS + 64B) by 2-3

times. There are two reasons to explain this result. First, CS-based approaches will rank higher many

noise words that are induced by some more trivial substrings. Take LCS for example, \r\n is a very

trivial substring in text-based traffic, while substrings induced by it like n\r\n or s\r\n (which usually

appear at the end of a line and n or s are the ending letters of many words) can also be assigned a

higher rank in LCS. Thus, LCS will assign high ranks to many redundant words. However with ProWord,

it may include \r\n only once and its induced substrings can be filtered out during payload segmented

in VE. Second, ProWord adopts an effective ranking mechanism, which comprehensively take frequency,

location, and length of a candidate word into account. For conciseness (see Figures 5(e)-(h)), although

ProWord has a close conciseness with CS-based approaches in the low top ks, it is more stable with the

increase of the number of extracted feature words.

In addition to official specifications, L7-Filter rules also provide some ground truths. Table 3 shows

the rank comparisons for capturing and ranking a specific set of feature words we consider based on L7-

Filter rules. We also consider the binary protocols BITTORRENT and TONGHUASHUN, whose feature

words we choose are “d1:ad2:id20:” and “\xfd\xfd\xfd\xfd\x30\x30\x30\x30\x30” re-

spectively. Here rank 1 refers to the highest. A smaller rank value implies that a word is more likely to be

excluded from the top-k list for small k. We see that ProWord gives a higher rank than other approaches,

especially for long feature words of BITTORRENT and TONGHUASHUN. In addition, ProWord further

reduces the rank range of “VE+Freq” by about 36% on average.
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B. Evaluation on Flow Coverage of Protocol Feature Words in ProWord

In the previous subsection, we argue that ProWord has high packet coverage. Here, we show that

ProWord also has high flow coverage, defined as the percentage of flows that contain one keyword

identified by ProWord. Figure 6 shows the flow coverage for all protocols we consider (including text and

binary protocols) versus the number of top candidates being selected. We see that if we set k = 15 (i.e.,

the top 15 candidates), ProWord can cover almost all flows.

C. Evaluation on Ranking Model

To evaluate the effect of the ranking functions used in ProWord, we compare different ranking functions

and their combinations using the HTTP trace. Figure 7 shows the results. All feature words (x-axis) get

higher ranks (i.e., smaller rank values) with the frequency score function used in ProWord compared

to the results obtained from the pure frequency function (PureF) that simply counts the occurrences, as

ProWord frequency function will score higher to a word occurring in most packets or flows. Also, when

combining all three score functions as ProWord, all feature words rank even higher and are more easily

distinguished.
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TABLE IV: Running speeds (in KB/s) of ProWord.

Protocol Segmentation Ranking
SMTP 13.8 1,255
POP3 16.0 1,787
FTP 16.7 2,344

HTTP 11.8 2,128
BITTORRENT 16.5 2,144

TONGHUASHUN 12.7 1,399

D. Evaluation on Running Speed

We evaluate the running speed of ProWord. We benchmark ProWord on a server that has four Intel

Xeon CPUs running at 2.50GHz with 16GB RAM. Table 4 summarizes the running speeds (in KB/s)

of both segmentation and ranking phases. We see that segmentation has a significantly lower speed than

ranking, and dominates the overall load of ProWord. The running speed of segmentation is 10-20KB/s.

Note that ProWord is designed as an offline analysis tool and its running speed is lower than the network

line rate.

Nevertheless, ProWord runs significantly faster than the state-of-the-art n-gram approach ProDecoder

[38], and hence allows more scalable analysis. ProDecoder is evaluated on a testbed with similar hardware

configurations to as ours, and it needs almost 3 hours for keywords inference of 5,000 SMTP packets

with a total of 340KB (see Table I of [38]). This translates to a running speed of only 0.31KB/s, while

ProWord achieves 13.8KB/s, which is at least 40 times faster. The main reason is that ProDecoder, which

builds on n-gram, breaks feature words into pieces. It needs more computational cycles to recover the

correlation among the pieces and rebuild the feature words. On the other hand, ProWord uses a more

lightweight approach for segmentation.

E. Evaluation on Space Usage

Recall from Section 2.3 that ProWord uses the Lossy Counting Algorithm (LCA) [31] to prune the Trie

so as to limit the memory requirement while minimizing the errors of frequency estimation. Here, we

evaluate the memory saving of ProWord when using LCA. Figure 8 shows the results for the protocols

SMTP and BITTORRENT. We see that LCA reduces the number of Trie nodes by an order of magnitude.

Also, LCA maintains the number at a low level even after the traces have been processed for a long time.

One tradeoff that ProWord makes is to require more memory space than n-gram approaches. In

comparison, for the BITTORRENT trace, n-gram approaches only need about 200MB of memory, while

ProWord uses 3GB after pruning the Trie. On the other hand, n-gram approaches cost significantly more
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Fig. 8: Node space reduction with Lossy Counting Algorithm (LCA).

time than ProWord to get useful results.

F. Evaluation on Hybrid Traffic

To the best of our knowledge, all prior protocol feature extraction approaches have a strong assumption

that they require a single-protocol trace as the input. That is, we must pre-process the trace data so that

only the packets or flows that belong to the target protocol are retained and all unrelated packets or flows

are filtered. In the following, we use real traffic trace composed of a mix of different protocols as the

input and show how ProWord can play in a complicated environment.

We collect a new trace from our institute gateway. The trace lasts for one hour. It contains 32GB

of traffic composed of 43M packets and 875K flows. To provide a ground truth for the trace, we first

apply protocol classification to it using conventional rules like transport layer ports and L7-filter rules.

Figure 9 shows the 5-tuple flow-level composition of the trace. We see that the top 3 protocols include

DNS, BitTorrent, and HTTP. The Link Local Multicast Name Resolution (LLMNR) [4] is a domain name

resolution protocol based on DNS for both IPv4 and IPv6 hosts on the same local link. The Simple

Service Discovery Protocol (SSDP) [7] is a network protocol for advertisement and discovery of network

services and presence information. Corel VNC [10] is a protocol for graphical desktop sharing provided

by Canadian developer Corel. To our knowledge, the trace has a larger volume and is more diverse than

those being used in the evaluation of prior protocol feature extraction approaches.

In our evaluation, we do not conduct any preprocessing, but instead directly run ProWord on the trace

and examine the robustness of ProWord. Table 5 presents the top 20 feature words output by ProWord,

as well as their flow coverage (i.e., percentage of all flows in the trace that contain the corresponding

feature word) and main protocol source. We find that the top 20 feature words cover about 78% of all

flows. Note that the encrypted protocol Corel VNC has no feature words found in ProWord. Similar to
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TABLE V: Top 20 feature words extracted from hybrid traffic trace

Ranks Keywords Flow Coverage(*100%) Main Protocol Source
1 ”d1:ad2:id20:” 12.74% BITTORRENT
2 ”\x03com\x00\x00\x01\x00\x01” 11.38% DNS
3 ”6:target20:” 10.26% BITTORRENT
4 ”GET /” 10.10% HTTP
5 ”HTTP/1.1” 12.11% HTTP
6 ”\x04wpad\x00\x00\x01\x00\x01” 5.34% LLMNR
7 ”\x1c\x00\x01” 9.99% DNS&LLMNR
8 ”Host: ” 4.34% HTTP&Others
9 ”\xc0\x0c\x00\x05\x00\x01\x00\x00” 8.50% BITTORRENT
10 ”\x00\x00\x01\x00\x01” 17.30% DNS&NetBIOS
11 ”\x02cn\x00\x00\x01\x00\x01” 3.82% DNS
12 ”239.255.255.250:1900\r\n” 2.79% SSDP
13 ”d1:rd2:id20:” 2.79% BITTORRENT
14 ”\x04wpad\x00\x00\x01” 4.06% LLMNR
15 ”\x05baidu” 3.64% DNS
16 ”M-SEARCH * ” 2.44% SSDP
17 ”\x02\x00\x00\x00\x00” 3.67% DNS
18 ”9:info hash20:” 1.91% BITTORRENT
19 ”2:ip4:\x9f\xe2+” 1.88% BITTORRENT
20 ”POST /” 1.87% HTTP

the previous results, the running speed is around 15.9KB/s and the space usage is 2.8GB. Therefore, we

conclude that ProWord still works as expected even in a hybrid trace with a mix of different protocols.

V. CONCLUSIONS

This paper presents ProWord, an unsupervised approach that automatically extracts protocol feature

words from network traffic traces. It builds on a modified word segmentation algorithm to generate

candidate feature words, while limiting the memory space by filtering low-frequency subsequences. It also

builds on a ranking algorithm that incorporates protocol reverse engineering experiences into extracting

the top-ranked feature words, and removes redundancies to maintain the compactness of the results. Trace-
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driven evaluation shows that ProWord is more effective than n-gram and common substring approaches, in

terms of accuracy and speed, in extracting feature words from real-life protocol traces. Our work explores

a design space of how the domain knowledge of natural language processing can be adapted into traffic

analysis.
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