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Abstract—Encrypted deduplication combines encryption and
deduplication in a seamless way to provide confidentiality guar-
antees for the physical data in deduplication storage, yet it incurs
substantial metadata storage overhead due to the additional
storage of keys. We present a new encrypted deduplication
storage system called Metadedup, which suppresses metadata
storage by also applying deduplication to metadata. Its idea
builds on indirection, which adds another level of metadata
chunks that record metadata information. We find that metadata
chunks are highly redundant in real-world workloads and hence
can be effectively deduplicated. In addition, metadata chunks can
be protected under the same encrypted deduplication framework,
thereby providing confidentiality guarantees for metadata as well.
We evaluate Metadedup through microbenchmarks, prototype
experiments, and trace-driven simulation. Metadedup has limited
computational overhead in metadata processing, and only adds
6.19% of performance overhead on average when storing files
in a networked setting. Also, for real-world backup workloads,
Metadedup saves the metadata storage by up to 97.46% at the
expense of only up to 1.07% of indexing overhead for metadata
chunks.

I. INTRODUCTION

Chunk-based deduplication is widely used in modern primary
[32] and backup [26], [42], [45] storage systems to achieve
high storage savings. It stores only a single physical copy of
duplicate chunks, while referencing all duplicate chunks to
the physical copy by small-size references. Prior studies show
that deduplication can effectively reduce the storage space
of primary storage by 50% [32] and that of backup storage
by up to 98% [42]. This motivates the wide deployment of
deduplication in various commercial cloud storage services
(e.g., Dropbox, Google Drive, Bitcasa, Mozy, and Memopal)
for maintenance cost savings [19].

To provide confidentiality guarantees, encrypted deduplica-
tion [9], [10] adds an encryption layer to deduplication, such
that each chunk, before being written to deduplication storage,
is deterministically encrypted via symmetric-key encryption by
a key derived from the chunk content (e.g., the key is set to
be the cryptographic hash of chunk content [16]). This ensures
that duplicate chunks remain to have identical content even
after encryption, and hence we can still apply deduplication
to the encrypted chunks for storage savings. Many studies
(e.g., [6], [9], [25], [34], [37]) have designed various encrypted
deduplication schemes to efficiently manage outsourced data
in cloud storage.

In addition to storing non-duplicate data, a deduplication
storage system needs to keep deduplication metadata. There
are two types of deduplication metadata. To check if identical
chunks exist, the system maintains a fingerprint index that
tracks the fingerprints of all chunks that have already been
stored. Also, to allow a file to be reconstructed, the system
maintains a file recipe that holds the mappings from the chunks
in the file to the references of the corresponding physical copies.

Deduplication metadata is notoriously known to incur high
storage overhead [13], [23], [31], especially for the highly
redundant workloads (e.g., backups) as the metadata storage
overhead becomes more dominant. In this work, we argue that
encrypted deduplication incurs even higher metadata storage
overhead, as it additionally keeps key metadata, such as the
key recipes that track the chunk-to-key mappings to allow the
decryption of individual files. Since the key recipes contain
sensitive key information, they need to be managed separately
from file recipes, encrypted by the master keys of file owners,
and individually stored for different file owners. Such high
metadata storage overhead can negate the storage effectiveness
of encrypted deduplication in real deployment.

A. Contributions

To address the storage overhead of both deduplication meta-
data and key metadata, we design and implement Metadedup, a
new encrypted deduplication system that effectively suppresses
metadata storage. Our contributions are summarized as follows.
• Metadedup builds on the idea of indirection. Instead of

directly storing all deduplication and key metadata in
both file and key recipes (both of which dominate the
metadata storage overhead), we group the metadata in
the form of metadata chunks that are stored in encrypted
deduplication storage. Thus, both file and key recipes now
store references to metadata chunks, which now contain
references to data chunks (i.e., the chunks of file data).
If Metadedup stores nearly identical files regularly (e.g.,
periodic backups [42]), the corresponding file and key
metadata are expected to have long sequences of references
that are in identical orders. This implies that the metadata
chunks are highly redundant and hence can be effectively
deduplicated.

• We show how metadata chunks can also be protected
by encrypted deduplication like the data chunks. We



show via security analysis that Metadedup preserves the
confidentiality guarantees for both data and metadata
chunks; in particular, we can apply a weak form of
encryption [16] on metadata chunks to achieve high
performance, yet we show that the metadata chunks remain
highly robust against the offline brute-force attack.

• We evaluate Metadedup via microbenchmarks, and show
that it incurs limited computational overhead in metadata
processing.

• We implement a Metadedup prototype and evaluate its
performance in a networked setup. Our prototype experi-
ments show that Metadedup only adds small performance
overhead when writing files to encrypted deduplication
storage. For example, the average performance overhead
of storing unique file data is 6.19% on average for different
sizes ranging from 1 GB to 20 GB.

• Finally, we conduct trace-driven simulation on two real-
world datasets. We show that Metadedup achieves up
to 97.46% of metadata storage savings in encrypted
deduplication, while incurring only up to 1.07% of
indexing overhead for metadata chunks. Our savings of
metadata storage are significantly higher than those of
existing compression approaches [31].

The source code of our Metadedup prototype is now available
at http://adslab.cse.cuhk.edu.hk/software/metadedup.

B. Paper Organization

The rest of this paper is organized as follows. Section II
motivates the need of addressing metadata storage overhead in
encrypted deduplication via mathematical analysis and trace-
driven simulation. Section III reviews related work. Section IV
presents the design of Metadedup. Section V shows the
implementation details of our Metadedup prototype. Section VI
presents our evaluation results. Finally, Section VII concludes
this paper.

II. BACKGROUND AND MOTIVATION

We first introduce the background of encrypted deduplication.
We then motivate our work by showing the high metadata
storage overhead in encrypted deduplication storage systems
via mathematical analysis and trace-driven simulation.

A. Encrypted Deduplication Storage

Deduplication is a technique for space-efficient data storage
(see [43] for a complete survey of deduplication). It partitions
file data into either fixed-size or variable-size chunks, and iden-
tifies each chunk by the cryptographic hash, called fingerprint,
of the corresponding content. Suppose that the probability
of fingerprint collision against different chunks is practically
negligible [12]. Deduplication stores only one physical copy of
duplicate chunks, and refers the duplicate chunks that have the
same fingerprint to the physical copy by small-size references.

Encrypted deduplication augments plain deduplication (i.e.,
deduplication without encryption) with an encryption layer that
operates on the chunks before deduplication, and provides
data confidentiality guarantees in deduplication storage. It

implements the encryption layer based on message-locked
encryption (MLE) [9], [10], which encrypts each chunk with a
symmetric key (called the MLE key) derived from the chunk
content; for example, the MLE key can be computed as
the cryptographic hash of the chunk content in convergent
encryption [16]. This ensures that the encrypted chunks derived
from duplicate chunks still have identical content, thereby being
compatible with deduplication.

Historical MLE [10] builds on some publicly available
function (e.g., cryptographic hash function [16]) to generate
MLE keys. It provides security protection for unpredictable
chunks, meaning that the chunks are drawn from a sufficiently
large message set, such that the content of a chunk cannot be
easily predicted; otherwise, if a chunk is predictable and known
to be drawn from a finite set, historical MLE is vulnerable to
the offline brute-force attack [10]. Specifically, given a target
encrypted chunk, an adversary samples each possible chunk
from the finite message set, derives the corresponding MLE
key (e.g., by applying the cryptographic hash function to each
sampled chunk [16]), and encrypts each sampled chunk with
such a key. If the encryption result is equal to the target
encrypted chunk, the adversary can infer that the sampled
chunk is the original input of the target encrypted chunk.

To defend against the offline brute-force attack, server-
aided MLE [9] introduces a global secret and protects the
key generation process against public access. Its idea is to
derive the MLE key of each chunk based on both the global
secret and the cryptographic hash of this chunk, such that an
adversary cannot feasibly derive the MLE keys of any sampled
chunks without knowing the global secret. Thus, if the global
secret is secure, server-aided MLE is robust against the offline
brute-force attack, and achieves security for both predictable
and unpredictable chunks; otherwise, if the global secret is
compromised, it preserves the same security guarantees for
unpredictable chunks as in historical MLE [10].

In this paper, we focus on mitigating the metadata storage
overhead in MLE-based (including both historical MLE and
server-aided MLE) encrypted deduplication storage systems.

B. Metadata Storage Overhead

Section I reviews the metadata components (i.e., deduplica-
tion metadata and key metadata) of encrypted deduplication.
We now show the high metadata storage overhead in encrypted
deduplication via both mathematical analysis and trace-driven
simulation.

Mathematical analysis. We first model the metadata storage
overhead in encrypted deduplication. We refer to the data
before and after deduplication as logical data and physical
data, respectively. Suppose that L is the size of logical data, P is
the size of physical data, and f is the ratio of the deduplication
metadata size to the chunk size. Plain deduplication incurs
f × (L+P) of metadata storage [40]–[42], where f ×L is the
size of file recipes and f ×P is the size of the fingerprint index.

Encrypted deduplication has additional metadata storage for
keys. It incurs a total of f ×(L+P)+k×L of metadata storage,



where k is the ratio of the key metadata size to the chunk size,
and k×L is the size of key recipes.

Based on the above analysis, we show via an example
how the metadata storage overhead becomes problematic in
encrypted deduplication. Suppose that the size of deduplication
metadata is 30 bytes [42], the size of key metadata is 32 bytes
(e.g., for AES-256 encryption keys), and the chunk size is 8 KB
[42]. Then f = 30 bytes

8 KB ≈ 0.0037 and k = 32 bytes
8 KB ≈ 0.0039. If

the deduplication factor (i.e., L/P) is 50× [42] and L = 50 TB,
then plain deduplication and encrypted deduplication incur
191.25 GB and 391.25 GB of metadata, or equivalently 18.67%
and 38.21% additional storage for 1 TB of physical data,
respectively.
Trace-driven simulation. Our trace-driven simulation on two
real-world datasets of backup workloads, namely FSL and VM
(see Section VI-C for the dataset details), further validates the
high metadata storage overhead in encrypted deduplication. As
in our mathematical analysis, we set the size of deduplication
metadata as 30 bytes per chunk and the size of key metadata
as 32 bytes per chunk.

We measure the cumulative metadata storage as we issue
backups to encrypted deduplication storage. Figure 1(a) shows
that the cumulative size of metadata (including the fingerprint
index, file recipes, and key recipes) increases with the number
of backups, and even exceeds that of physical data in the VM
dataset. For example, after 26 VM backups, the cumulative data
and metadata consume 168.24 GB and 615.18 GB, respectively.
Figure 1(b) further presents the breakdown of metadata storage.
We observe that the dominant components are the file recipes
and key recipes, which contribute to 99.58% and 99.81% of
the overall metadata storage in the FSL and VM datasets,
respectively.

III. RELATED WORK

Some studies organize metadata in efficient ways to improve
deduplication performance [11], [26], [30], [45] or storage
efficiency [27]. For example, DDFS [45], Sparse Index [26],
and Extreme Binning [11] are designed to effectively cache a
subset of fingerprint index entries, and mitigate the performance
bottleneck of disk access to the fingerprint index on disk.
Mandal et al. [30] transfer application metadata to block-layer
deduplication, so as to accelerate the deduplication speed. Lin
et al. [27] separate metadata from data to improve the storage
efficiency of deduplication. While the above studies address
metadata management, they do not consider how to mitigate
metadata storage overhead in deduplication.

Considering the high metadata storage overhead, several
studies reduce the amount of metadata in plain deduplication.
We discuss their limitations in encrypted deduplication.
• Grouping and re-chunking. Fingerdiff [13] starts with

small chunks, and groups adjacent duplicate small chunks
into a big chunk for space-efficient metadata management.
FBC [29] and Subchunk [36] apply deduplication on big
chunks to reduce the amount of deduplication metadata,
and re-chunk the non-duplicate big chunks into small ones
for fine-grained deduplication. Bimodal [23] generalizes

grouping and re-chunking to operate in data regions.
However, these approaches depend on the prior knowledge
of deduplication results (e.g., whether some chunks are
duplicates), which can be abused to extract secret infor-
mation [18], [19], [33] against encrypted deduplication. In
addition, they cannot compress key metadata, since each
chunk still needs to be encrypted by the key derived from
its own content.

• Compression. Meister et al. [31] propose four approaches
to replace the fingerprints in file recipes by short code-
words, so as to compress deduplication metadata (see
Section VI-C for details). However, they either cannot
apply to the key recipe that is encrypted by the file owner’s
master key, or only reduce the metadata of zero chunks.

• Key management. Dekey [24] applies deduplication to
the keys directly to reduce the amount of key metadata.
However, since the size of a key is often comparable to the
size of the additional reference (both are of tens of bytes)
to the corresponding physical copy, the storage saving of
key metadata can be negated by such additional dedupli-
cation metadata in key-based deduplication. SecDep [44]
and REED [34] generate one MLE key for a group of
chunks to reduce the total number of keys. However, since
duplicate chunks are possibly encrypted with different keys
(i.e., the resulting encrypted chunks become different and
cannot be deduplicated), these systems [34], [44] degrade
the storage efficiency achieved by deduplication.

This paper is also related to Lamassu [37] that implements
transparent metadata management in encrypted deduplication
storage. Lamassu places metadata into some reserved sections
of file data, so as to be compatible with different applications
without significant changes. However, these metadata sections
are randomly encrypted, and cannot be deduplicated along with
data for storage savings.

Some encrypted deduplication schemes [5], [8], [28], [38]
combine encryption and deduplication in different ways than
MLE, yet they incur high performance overhead and are not
readily implemented. This paper targets metadata storage in
MLE-based encrypted deduplication.

IV. METADEDUP

Metadedup is designed for an organization that outsources
the storage of users’ data to a remote shared storage system. It
focuses on the storage of backup workloads, which are known
to have high content similarity [42]. It applies deduplication
to remove content redundancies of both data (i.e., the file data
from users’ backup workloads) and metadata (i.e., deduplication
metadata and key metadata), so as to improve the overall storage
efficiency.

Figure 2 presents the architecture of Metadedup, which builds
on the client-server model. Each user installs a client on its
co-located machine for processing backup files. It uploads the
encrypted file data, as well as the corresponding deduplication
metadata and key metadata, to a remote storage system that
employs encrypted deduplication. Here, we assume that the
communication channels are carefully protected (e.g., via
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Fig. 1: Cumulative data and metadata storage of encrypted deduplication in two real-world datasets of backup workloads FSL and VM. The
x-axis shows the number of FSL/VM backups issued to encrypted deduplication storage, and the y-axis shows the cumulative data/metadata
sizes after issuing each backup.
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Fig. 2: Metadedup architecture.

SSL/TLS), so as to address network eavesdropping. The remote
storage system deploys servers for data management. The server
maintains a fingerprint index for chunk-based deduplication,
and only stores the non-duplicate chunks that have unique
content with existing chunks. It also keeps file recipes and key
recipes for the reconstruction of original files.

Metadedup aims for the following goals:

• Low storage overhead of metadata. It suppresses the
storage space of both file recipes and key recipes (which
dominate the metadata storage overhead as shown in
Section II-B), while incurring only small storage overhead
to the fingerprint index as we also apply deduplication to
metadata.

• Security for data and metadata. It preserves the security
guarantees of underlying encrypted deduplication for both

data and metadata storage.
• Limited performance overhead. It adds small perfor-

mance overhead on writing files to deduplication storage,
compared to existing encrypted deduplication storage
systems without metadata suppression.

In the following, we define the threat model of Metadedup,
and present its design in details. Finally, we present the security
analysis of Metadedup design based on our threat model.

A. Threat Model

We consider an honest-but-curious adversary that exactly
follows the storage protocol, but attempts to learn the original
content of the data and metadata in storage. Specifically, the
adversary may take the following actions.
• It can compromise the server and access the fingerprint

index, file recipes, key recipes and physical copies of the
chunks that are kept by the server (see Figure 2). It aims
to infer the original information of any data or metadata
by observing the server storage.

• In addition to the server, it can compromise some clients
and further access the original data or metadata of
the compromised clients. It aims to infer the original
information of unauthorized data or metadata that belong
to other non-compromised clients and are not permitted
for access by the compromised clients.

We ensure that our Metadedup design is compatible with
existing countermeasures [7], [14], [18], [22], [25] that address
different threats against encrypted deduplication systems (see



Section V). For example, a malicious client may abuse client-
side deduplication to learn whether other users have already
stored certain files [18], [19], and Metadedup can defeat the
side-channel leakage by adopting the countermeasure that
enforces server-side deduplication on cross-user data [25]; a
malicious server may modify or even delete stored files to
destroy the availability of outsourced files, and Metadedup is
compatible with the availability countermeasure that disperses
data across servers via deduplication-aware secret sharing [25]
(see Section V).

We do not consider the threats that exploit the leakage
of access patterns [20], although Metadedup can work in
conjunction with the related countermeasures [39]. Metadedup
can also be deployed with a private server to tolerate Byzantine
faults [15], or with data auditing protocols [7], [22] to efficiently
check the integrity of outsourced files against malicious
corruptions.

B. Design

Metadedup builds on indirection to preserve storage effi-
ciency, while minimizing the index overhead. Recall that before
deduplication, we first partition file data into chunks, which we
now call data chunks. After the data chunks are encrypted by
MLE (i.e., historical or server-aided MLE), Metadedup collects
the metadata of multiple regions of adjacent encrypted data
chunks into metadata chunks (each of which corresponds to
a region of encrypted data chunks). Both file recipes and key
recipes now store the information of metadata chunks, which
reference the physical copies of data chunks in encrypted
deduplication storage. Metadedup further applies deduplication
to metadata chunks as well. Our observation is that identical
data chunks across backups tend to be clustered together, and
form regions of duplicates [23]. Thus, we can keep only one
copy of metadata chunks for such repeated regions of data,
thereby mitigating metadata storage overhead. Since Metadedup
operates on metadata chunks, which have significantly larger
sizes than fingerprints, it introduces limited overhead to the
fingerprint index. In the following, we describe the design
decisions in Metadedup.
Segmentation. Metadedup works after the encryption proce-
dure on the client side and collects metadata information
of the encrypted data chunks to be stored. It partitions the
stream of encrypted data chunks into multiple coarse-grained
data units called segments. A simple partitioning algorithm
is fixed-size segmentation, which fixes a segment size and
puts a segment boundary on every offset that is equal to
a multiple of the segment size. Fixed-size segmentation is
fast, but is vulnerable to the boundary-shift problem [17].
Since Metadedup deduplicates the metadata of segments, the
boundary-shift problem can lead to many distinct segments
and degrades the effectiveness of metadata deduplication.

Thus, Metadedup adopts variable-size segmentation [26],
[34] to achieve high effectiveness for metadata deduplication.
Variable-size segmentation works on the fingerprints of the
encrypted data chunks, and configures the minimum, average,
and maximum segment sizes, where the average segment size

A segment of encrypted data chunks

Metadata Chunk

fingerprint keysize other fingerprint, size, other
……

……
File Recipe

key
……

……
Key Recipe

Encryption !

! ! ! !

Fig. 3: Overview of metadata management in Metadedup.

indicates a pre-defined divisor for segmentation. It sequentially
traverses each data chunk, and identifies a segment boundary
after a data chunk if (i) the size of the new segment is larger
than the minimum segment size, and (ii) the fingerprint modulo
the pre-defined divisor is equal to a fixed constant (e.g., 1) or
the inclusion of the encrypted data chunk makes the size of
the new segment larger than the maximum segment size. By
default, we fix the minimum and maximum segment sizes as
half and double of the average segment size, respectively.

Metadata management. For each segment obtained from
the segmentation algorithm, Metadedup creates a metadata
chunk that keeps the fingerprint, size, key, and other necessary
metadata information derived from each encrypted data chunk
within the segment (see Figure 3). This enables us to retrieve
and decrypt a segment of data chunks based on a metadata
chunk.

To protect metadata chunks, Metadedup adopts historical
MLE (see Section II-A) for both confidentiality and dedupli-
cation capabilities. Specifically, it computes the cryptographic
hash of each metadata chunk as a key, and uses the hash
key to encrypt this metadata chunk. The design decision
is driven from both performance and security perspectives.
From the performance perspective, historical MLE avoids the
interactions in key generation [9], [34], [44], so as to preserve
high performance. From the security perspective, we argue
that the protection by historical MLE is sufficient for metadata
chunks, because it is much more computationally expensive to
launch the offline brute-force attack against metadata chunks
than against data chunks (see Section IV-D).

Given the encrypted metadata chunks, Metadedup creates
both file and key recipes. Each entry of the file recipe keeps the
fingerprint, size and other metadata information of an encrypted
metadata chunk, while each entry of the key recipe keeps the
corresponding key. It further encrypts the key recipe with the
file owner’s master key for protection.

Metadedup applies deduplication to both encrypted data and
metadata chunks. Note that it does not further compress the
data and metadata chunks after deduplication, since they are
encrypted and have random data patterns that are less likely to
be further compressed. Also, it does not apply deduplication
to file recipes or key recipes.

C. Basic Operations

We show how we incorporate variable-size segmentation and
metadata management into basic operations. We first summarize



Algorithm 1 Write operation of Metadedup
Client input: target file f ile, client’s master key key

1: Initialize file and key recipes: f Recipe,kRecipe
2: Divide f ile into data chunks {dChunk}
3: for each dChunk do
4: dkey← key derived from dChunk
5: [dChunk]dkey← encryption of dChunk with dkey
6: end for
7: Divide {[dChunk]dkey} into segments {Seg}
8: for each Seg do
9: Initialize metadata chunk mChunk

10: for each [dChunk]dkey in Seg do
11: Add metadata of [dChunk]dkey into mChunk
12: end for
13: mkey← cryptographic hash of mChunk
14: [mChunk]mkey← encryption of mChunk with mkey
15: Add deduplication metadata of [mChunk]mkey into f Recipe
16: Add mkey into kRecipe
17: end for
18: [kRecipe]key← encryption of kRecipe with key
19: Upload:

f Recipe, [kRecipe]key,{[dChunk]dkey},{[mChunk]mkey}

Server input: fingerprint index
20: Receive:

f Recipe, [kRecipe]key,{[dChunk]dkey},{[mChunk]mkey}
21: Deduplicate {[dChunk]dkey} and {[mChunk]mkey}
22: Store unique {[dChunk]dkey} and {[mChunk]mkey}
23: Store f Recipe and [kRecipe]key

the major notations used in the presentation of Metadedup.
Suppose that a client uses its individual master key key to write
and restore a target file. We denote the file recipe and the key
recipe of the target file as f Recipe and kRecipe, respectively.
We also denote a data chunk and a metadata chunk by dChunk
and mChunk, as well as corresponding MLE keys as dkey
and mkey, respectively. We use [X ]Y to denote the encryption
output of an object X (that can be kRecipe, dChunk or mChunk)
encrypted with a key Y (that can be key, dkey or mkey) using
symmetric-key encryption (e.g., AES).

Algorithm 1 shows the interaction between a client and a
server when writing a target file into storage. The client first
divides the target file into data chunks and encrypts each data
chunk (Lines 2-6). It creates segments based on encrypted data
chunks (Line 7), collects the metadata in each segment into a
metadata chunk (Lines 9-12), and encrypts the metadata chunk
using historical MLE (Lines 13-14). It adds the deduplication
metadata and key metadata of the metadata chunk into the file
and key recipes, respectively (Lines 15-16). It further encrypts
the key recipe with its master key (Line 18), and uploads the
following information to the server (Line 19): (i) the file recipe
and encrypted key recipe, (ii) the encrypted data chunks, and
(iii) the encrypted metadata chunks.

The server performs deduplication on received (encrypted)
data and metadata chunks, and store the unique ones (Lines 21-
22). It also stores the file recipe and encrypted key recipe
(Line 23).

Algorithm 2 shows the two-round interactions for restoring a
target file. In the first round, the client requests the metadata of

Algorithm 2 Restore operation of Metadedup
Client input: full pathname name of the target file

1: Request metadata based on name

Server input: f Recipe,{[mChunk]mkey} and [kRecipe]key
2: Receive name
3: Retrieve f Recipe and [kRecipe]key based on name
4: Retrieve {[mChunk]mkey} based on f Recipe
5: Send f Recipe,{[mChunk]mkey} and [kRecipe]key

Client input: client’s master key key
6: Receive f Recipe,{[mChunk]mkey} and [kRecipe]key
7: kRecipe← decryption of [kRecipe]key with key
8: for each [mChunk]mkey do
9: mkey← corresponding key in kRecipe

10: mChunk← decryption of [mChunk]mkey with mkey
11: end for
12: Request data chunks using deduplication metadata in {mChunk}

Server input: {[dChunk]dkey}
13: Receive deduplication metadata of data chunks
14: Retrieve {[dChunk]dkey} based on deduplication metadata
15: Send {[dChunk]dkey}

Client input: {mChunk}
16: Receive {[dChunk]dkey}
17: for each [dChunk]dkey do
18: Retrieve corresponding dkey in {mChunk}
19: dChunk← decryption of [dChunk]dkey with dkey
20: end for
21: Assemble {dChunk} to original file

the file based on its full pathname (Line 1); the server retrieves
and sends the file recipe, encrypted key recipe and encrypted
metadata chunks (Lines 3-5). In the second round, the client
decrypts the key recipe and metadata chunks (Lines 7-11), and
requests file data (Line 12); the server retrieves and sends the
encrypted data chunks back to the client (Lines 14-15). The
client decrypts each data chunk based on the corresponding
key in metadata chunks (Lines 17-20), and finally assembles
the data chunks to reconstruct the original file (Line 21).

D. Security Analysis

In Metadedup, each data chunk remains protected by a
key derived from its content, so the confidentiality guarantees
for data chunks are retained in the context of encrypted
deduplication. Specifically, depending on how to derive the
MLE keys of data chunks, Metadedup achieves two security
levels (see Section II-A): If server-aided MLE is applied, it
provides confidentiality guarantees for both predictable and
unpredictable data chunks; otherwise, if historical MLE is
applied, it provides confidentiality guarantees for unpredictable
chunks. In the following, we analyze the confidentiality for
metadata chunks in both cases.

Case 1: Metadata confidentiality under server-aided MLE.
In this security level, the adversary cannot infer any original
metadata information from the encrypted data chunks. Thus,
we only need to ensure that the stored metadata chunks also
do not leak metadata information.



Suppose that an adversary can access any metadata content
that includes the key recipes, file recipes, metadata chunks, and
fingerprint index. Since the adversary cannot compromise any
master key (that is used to encrypt the key recipes) or any hash
key (that is used to encrypt a metadata chunk), the encrypted
key recipes and metadata chunks cannot be reverted. Although
the fingerprint index and file recipe are not encrypted, they
include the deduplication metadata only for encrypted chunks
and do not leak any information about the original content.

Suppose that the adversary now further obtains the master
keys and hash keys (of some metadata chunks) from some
compromised clients. Nevertheless, these compromised keys
cannot be used to decrypt other unauthorized key recipes and
metadata chunks, because this metadata information is protected
by independent keys (e.g., a per-client key for key recipes and
a per-chunk key for each metadata chunk).

Case 2: Metadata confidentiality under historical MLE.
The above analysis has shown that metadata chunks are secure
if their corresponding data chunks are fully protected. However,
in the security level under historical MLE, an adversary can
derive metadata (e.g., keys) from data chunks and arbitrarily
construct metadata chunks. Since Metadedup protects metadata
chunks using historical MLE, the adversary can launch the
offline brute-force attack (see Section II-A) to infer the original
contents in target metadata chunks.

We argue that the offline brute-force attack against encrypted
metadata chunks is much more computationally expensive than
against encrypted data chunks. Recall that each metadata chunk
consists of the metadata of multiple encrypted data chunks.
Thus, an adversary needs to include different combinations
of encrypted data chunks to construct a potential encrypted
metadata chunk for the offline brute-force attack, yet the number
of combinations is exhaustively high. In contrast, to launch the
offline brute-force attack against encrypted data chunks, the
adversary only needs to sample each possible data chunk to
test (see Section II-A).

In the following, we conduct a simple analysis to justify that
the offline brute-force attack against a metadata chunk incurs
a huge time cost and hence is computationally infeasible in
practice. Suppose that each data chunk is known to be drawn
from a finite set that includes a total of n distinct data chunks.
Let c be the average number of data chunks in a segment.

To compute the metadata of an encrypted data chunk, the
adversary applies a hash function once to derive the MLE
key, encrypts the data chunk, and applies the hash function
again to derive the fingerprint. We estimate the running time
of computing the metadata of each data chunk as:

Tmeta = 2×Thash+Tenc,

where Thash and Tenc denote the running times of the hash and
encryption functions, respectively.

To construct a metadata chunk, the adversary assembles the
metadata of c encrypted data chunks in order. In fact, each
data chunk in the finite set may contribute metadata, and we
assume that the metadata contribution of a data chunk does

not affect that of any other data chunk (i.e., the events are
mutually independent). Here, we consider the total number of
combinations of c distinct encrypted data chunks as:

Nassemble =
c−1

∏
i=0

(n− i) =
n!

(n− c)!
,

where n! and (n− c)! are the factorials of n and n− c,
respectively. Each combination corresponds to a metadata
chunk, and thus the adversary needs to test Nassemble possible
metadata chunks to see if any of them is encrypted to the target
encrypted metadata chunk based on historical MLE. Note that
the adversary may test more metadata chunks than Nassemble

in practice, in order to address the case that metadata chunks
include the metadata of duplicate encrypted data chunks. Thus,
Nassemble can be viewed as the lower bound of the number of
metadata chunks that the adversary needs to construct, and the
total construction time is:

Tconstruct = Nassemble×Tmeta.

For each constructed metadata chunk, the adversary checks
whether it is the original input of the target encrypted metadata
chunk, and each check requires one hash (to derive the MLE
key) and one encryption. This implies that the running time of
the equality check for all metadata chunks:

Tcheck = Nassemble× (Thash+Tenc).

We can now estimate the average running time of the offline
brute-force attack against metadata chunks as:

Tattack = Tconstruct+Tcheck.

We consider an example to understand how large Tattack
is. Suppose that the average segment size is 1 MB, and the
average chunk size is 8 KB. Then, c = 1 MB

8 KB = 128. According
to [1], we assume that it takes Tenc = 48µs and Thash = 37µs
to perform the encryption and hash operations on a chunk of
8 KB, respectively (the equivalent encryption and hash speeds
are 163 MB/s and 212 MB/s, respectively). We estimate Tattack
as follows.

Tattack = (3×Thash+2×Tenc)×
n!

(n− c)!
≥ (3×Thash+2×Tenc)× c!
≈ 7.94×10211s.

If the attack is implemented serially, the total running time
is at least 7.94×10211s, which is more than 10204 years. Even
the attack can be implemented in parallel, it is computationally
infeasible to work in reasonable time.

V. IMPLEMENTATION

We implement a Metadedup prototype in C++ based on our
previously built system CDStore [25], a multi-cloud storage
system that supports encrypted deduplication. CDStore encodes
each data secret on the client side into s shares via a (s, t)-
deduplication-aware secret sharing algorithm (where s≥ t > 0)
that has three properties: (i) reliability, i.e., the data chunk can
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Fig. 4: Implementation of the Metadedup prototype (the modules that
are newly added to CDStore are colored by red).

be correctly rebuilt if any t shares are available; (ii) security,
i.e., the data chunk remains confidential if no more than t−1
shares are compromised; and (iii) deduplication-aware, i.e.,
identical data chunks are encoded into identical shares that can
be deduplicated on the server side. The s shares are stored in
s distinct servers. In our experiments, we set s = 4 and t = 3.
CDStore also applies client-side deduplication on the data from
the same client, followed by server-side deduplication on that
from all clients, so as to be robust against side-channel leakage.
Note that CDStore does not apply deduplication to metadata;
the goal of Metadedup is to augment CDStore with metadata
deduplication.

In our Metadedup implementation, we treat each share as
an encrypted data chunk. Thus, we generate s share streams
that are written to s servers. For each of the s share streams,
we generate metadata chunks as well as the corresponding file
recipe and key recipe (i.e., we have s file recipes and s key
recipes in total).

We follow the modular approach as in CDStore to implement
Metadedup. Figure 4 shows how Metadedup adds new modules
to CDStore. We use OpenSSL 1.0.2p [3] to implement the
cryptographic operations in Metadedup. The current Metadedup
prototype, including the original CDStore modules, contains
about 7,500 lines of code.

A. Modules

We elaborate how Metadedup augments CDStore to realize
the write and restore operations with metadata deduplication.

Write. As in CDStore, a client writes a file by partitioning it
into data secrets via the chunker module, which implements
Rabin fingerprinting [35] for variable-size chunking. Rabin
fingerprinting takes the minimum, average and maximum sizes
of chunking as inputs, which we now fix as 2 KB, 8 KB and
16 KB, respectively. Also, the client encodes each data secret
into s shares via the coder module.

Metadedup introduces a new metadata chunk construction
module. It takes s share streams as input, where each share is
treated as an encrypted data chunk. It partitions each of the
share streams into segments using variable-size segmentation,

and generates a metadata chunk for each segment. It encrypts
metadata chunks using historical MLE. It finally prepares a
file recipe and a key recipe for each of the s share streams,
where each key recipe is encrypted by the client’s master key.

Metadedup adds a MetaComm module for the commu-
nication of metadata chunks with servers, in addition to
the original DataComm module for data communication in
CDStore. Specifically, in MetaComm, it performs intra-user
deduplication on encrypted metadata chunks, and only sends
(i) unique encrypted metadata chunks, (ii) file recipes, and (iii)
encrypted key recipes to corresponding servers. To mitigate the
network transmission overhead, we batch the uploaded content
in an in-memory buffer of size 4 MB, and upload the buffered
content when the buffer is full.

On the server side, when a server receives the shares and
metadata chunks from a client, it applies deduplication to
them in the DataDedupCore and MetaDedupCore modules,
respectively. Each module maintains an independent fingerprint
index implemented based on the key-value store levelDB [2],
which maps a fingerprint to an ID of a container (see below)
that stores the corresponding data share or metadata chunk.

In the container manager, the server writes the unique
content, as well as the file and key recipes, in the units of
containers. Each container is now configured with a fixed size
of 4 MB. This mitigates the disk access overhead due to the
frequent accesses to the data shares or metadata chunks that
have smaller sizes of several kilobytes (e.g., 8 KB).

Restore. To restore a file, a client connects to any t out of
s servers to request for the shares of the file in a two-round
manner (see Algorithm 2 in Section IV-C). Each server first
returns the metadata, including the file recipe, the encrypted
key recipe, and the encrypted metadata chunks, to the client.
The client decrypts the key recipe and metadata chunks, and
reconstructs the deduplication metadata and key metadata of
data shares. Then the client retrieves the data shares from the
server. It recovers the data secret from t shares. Finally, it
assembles the recovered data secrets to the original file.

B. Discussion

We discuss several implementation details in our prototype
implementation.

Parallelization. We follow CDStore to parallelize the opera-
tions of Metadedup through multi-threading. We first parallelize
the processing of different modules. In addition, we apply multi-
threading to the encoding and decoding operations for the secret
sharing algorithm (see [25] for details).

Filename protection: Our current implementation uses the
full pathname of a file to write and restore the corresponding
file data. We can use an obfuscated name (e.g., encoded by
a salted hash function) to access the file, while including the
real filename into the key recipe that is protected together with
the key metadata.

Restore optimization: Our current implementation needs two
rounds of interactions between client and servers to restore
a file (i.e., the client first retrieves the metadata, followed by



TABLE I: Metadedup’s microbenchmarks of metadata flow for
different average segment sizes.

Procedures/Steps 512KB 1MB 2MB 4MB

Write

Segmentation 0.394s 0.391s 0.395s 0.404s
Metadata handling 3.084s 0.632s 0.611s 0.627s
Recipes handling 0.441s 0.427s 0.425s 0.439s
Throughput (GB/s) 4.84±0.12 9.45±0.01 9.65±0.00 9.39±0.01

Restore
Recipes restore 0.005s 0.003s 0.001s 0.001s
Metadata restore 5.085s 2.664s 1.437s 0.858s
Throughput (GB/s) 1.96±0.00 3.75±0.00 6.95±0.00 11.65±0.01

Note: The write and restore throughputs are computed based on original data
size (i.e., 10 GB).

retrieving the shares). How to further optimize the restore
performance is our future work.

VI. EVALUATION

We conduct microbenchmarks, prototype experiments, and
trace-driven simulation on Metadedup. Our evaluation goal is
to answer three high-level questions:
• What is the performance penalty of Metadedup compared

to the conventional encrypted deduplication approach that
does not apply metadata deduplication?

• Can Metadedup achieve storage savings through metadata
deduplication?

• Can Metadedup further improve storage savings when
being combined with existing compression approaches?

A. Microbenchmarks

We first implement the metadata workflow of Metadedup
algorithms and study the computational performance of each
processing step. Here, we do not consider the client-server
communication as in our prototype evaluation (which is
addressed in Section VI-B).

We create 10 GB of unique data without any content
redundancy, which enables us to perform stress-tests with the
maximum amount of metadata. We generate the corresponding
data chunks and their metadata that are to be processed by
Metadedup algorithms. We conduct microbenchmarks on a
local machine equipped with 2.40 GHz Intel(R) Xeon(R) E5-
2620 v3 and 32 GB memory.

We measure the time consumed in each step of metadata
write and restore procedures. Specifically, the write procedure
includes: (i) segmentation, which groups data chunks into
segments; (ii) metadata handling, which creates, encrypts, and
deduplicates metadata chunks; and (iii) recipe handling, which
collects both file and key recipes and further encrypts the key
recipe. The restore procedure includes: (i) recipe restore, which
reconstructs both the file recipe and the key recipe; and (ii)
metadata restore, which recovers all metadata chunks.

Table I presents the evaluation results averaged over 10
runs, including the 90% confidence intervals for the throughput
results. We observe that the most time-consuming step in
the write procedure is metadata handling, which takes 42.65-
78.69% of the overall time. In addition, the write throughput
generally increases with the average segment size, since the
number of metadata chunks to be handled is reduced with

fewer segments. For example, when the average segment size
is at least 1 MB, the write throughput is above 9 GB/s.

In the restore procedure, the performance bottleneck is
metadata restore, which takes more than 99% of the total
time. When the average segment size is 4 MB, the restore
throughput achieves 11.65 GB/s.

B. Prototype Experiments

We now study the performance of our Metadedup prototype
and compare it with CDStore, which does not support metadata
deduplication. Our evaluation setting of both Metadedup and
CDStore is as follows. We deploy a client instance on a machine
that has a 24-core 2.40GHz Intel(R) Xeon(R) CPU E5-2620
v3 and 32 GB RAM, and four server instances on a different
machine that has a 20-core 2.40GHz Intel(R) Xeon(R) CPU
E5-2640 v4 and 32 GB RAM. We distinguish different server
instances in the same machine by distinct ports. Both client
and server machines are connected via a 1 Gb/s switch.

Like the prior work [25], we configure the coder module
(of both Metadedup and CDStore) with two threads to boost
performance. For performance tests, we present the average
results over 10 runs with the 90% confidence intervals.
Experiment A.1 (Performance impact of segment size). We
evaluate Metadedup under different average segment sizes,
and compare the results with those of CDStore. We create
and upload 10 GB of unique data to four servers, and then
download them from any three servers. We evaluate the write
and restore speeds.

Figure 5 presents the comparison results. The write speed of
Metadedup approximates that of CDStore. For example, when
the average segment size is 1 MB, Metadedup achieves the
write speed of 60.33 MB/s, only 2.54 MB/s less than that of
CDStore; this implies that the additional overhead is 4.05%.

In addition, the restore speed of Metadedup increases with
the average segment size, because the number of metadata
chunks to be restored is reduced. When we increase the average
segment size to 4 MB, the restore speed of Metadedup achieves
93.62 MB/s, slower than that of CDStore by 13.85%. This
reason is that Metadedup needs to serially retrieve metadata,
followed by data.
Experiment A.2 (Scalability to data size). We now evaluate
the scalability of Metadedup, and also compare the results
with those of CDStore. We fix the average segment size of
Metadedup as 1 MB, and examine the write and restore speeds
for processing the unique data under different sizes.

Figure 6 shows the evaluation results. We observe that both
write and restore speeds of Metadedup degrade with the total
size of unique data, because Metadedup needs to process more
metadata chunks. For example, when we vary the size of
unique data from 1 GB to 20 GB, the write and restore speeds
drop from 63.30 MB/s and 87.92 MB/s to 45.51 MB/s and
70.69 MB/s, respectively. Although Metadedup suffers from
speed degradation as the size of unique data increases, when
being compared to CDStore, Metadedup only adds small write
overhead (e.g., by 6.19% on average) and medium restore
overhead (e.g., by 23.23% on average).
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C. Trace-driven Simulation

We now evaluate the storage savings of Metadedup via
trace-driven simulation.

Datasets. We use two real-world datasets.

• FSL: This is a public dataset collected by the File systems
and Storage Lab (FSL) at Stony Brook University [4],
[40], [41]. We focus on the fslhomes, which contains
the snapshots of students’ home directories from a shared
network file system. Each FSL snapshot is represented
by 48-bit fingerprints of variable-size chunks, as well as
corresponding metadata information. We pick all snapshots
from January 22 to June 17, 2013, aggregate them in a
daily basis and obtain 115 daily backups (that are not
continuous). The dataset takes 56.20 TB of data before
deduplication.

• VM: This is our private dataset collected by ourselves and
is also used in the evaluation of our previous work [25],
[34]. It consists of the virtual machine (VM) image snap-
shots that capture the three-month programming activities
of students enrolling in a university programming course.
It includes 156 VM image snapshots, each of which is
of 10 GB and represented by the SHA-1 fingerprints of
4 KB fixed-size chunks. We aggregate all snapshots on
a daily basis, and obtain 26 full daily backups for the
VM images. The dataset contains 39.61 TB of data before
deduplication.

Methodology. To conduct trace-driven simulation, we build
a simulator based on the metadata size assumptions in Sec-
tion II-B. The simulator adds the FSL or VM backups to storage
in the order of their creation times, and evaluates two metrics:
(i) storage saving, the percentage of the total size of metadata
(excluding the fingerprint index) reduced by the approaches we
consider; and (ii) index overhead, the percentage of additional
storage cost to the fingerprint index.

Experiment B.1 (Storage impact of segment size). We first
study the impact of the average segment size in Metadedup.
Table II presents the simulation results of storage saving and
index overhead after storing all backups, where raw denotes the
original metadata size without deduplication or compression.

TABLE II: Experiment B.1 (Storage impact of segment size).
Components/Metrics Raw 512KB 1MB 2MB 4MB

FSL

File recipes (GB) 178.191 1.932 0.965 0.481 0.240
Key recipes (GB) 190.070 2.061 1.030 0.513 0.256
Fingerprint index (GB) 1.385 1.412 1.400 1.393 1.390
Metadata chunks (GB) – 6.806 7.372 8.041 8.818
Total (GB) 369.646 12.211 10.767 10.428 10.704
Storage saving – 97.07% 97.46% 97.55% 97.47%
Index overhead – 1.94% 1.07% 0.60% 0.33%

VM

File recipes (GB) 297.070 0.579 0.290 0.145 0.073
Key recipes (GB) 316.875 0.618 0.309 0.155 0.077
Fingerprint index (GB) 1.232 1.256 1.244 1.241 1.237
Metadata chunks (GB) – 24.985 25.138 36.359 40.817
Total (GB) 615.177 27.438 26.981 37.900 42.204
Storage saving – 95.74% 95.81% 94.03% 93.33%
Index overhead – 1.91% 0.96% 0.70% 0.39%

For both datasets, the storage saving first increases with
the average segment size, because a larger segment size (and
hence larger metadata chunks) reduces the metadata of metadata
chunks. For example, when the average segment sizes are 2 MB
and 1 MB, the FSL and VM datasets achieve the highest storage
savings of 97.55% and 95.81%, respectively. The storage saving
decreases due to a small deduplication factor for large metadata
chunks. Nevertheless, the storage savings under all average
segment sizes are higher than 93%. In addition, the index
overheads decrease with the average segment size and are
lower than 2%.
Experiment B.2 (Storage comparison with compression
approaches). We fix the average segment size of Metadedup at
1 MB, and compare its storage efficiency and index overhead
with those of file recipe compression approaches [31]. We
do not consider other approaches for comparison, as they
either require the deduplication information of chunks [13],
[23], [29], [36] that leads to side-channel leakage in encrypted
deduplication or add additional metadata [24] and data [34],
[44] overheads (see Section III). We elaborate how we configure
the baseline compression approaches [31], followed by the
evaluation results.
• Zero compression (ZC) replaces the metadata of zero-filled

chunks by one-byte special codes, so as to reduce the
sizes of file recipe and key recipe.

• Page-based compression (PC) assumes the availability of
fingerprint index, and replaces the deduplication metadata
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Fig. 7: Experiment B.2 (Storage comparison with compression approaches).

of each chunk by a codeword derived from its index offset.
We configure the length of each codeword at 4 bytes [31].

• Statistical directory (SD) encodes the deduplication meta-
data of low-entropy chunks by fixed-size codewords. Like
the prior work [31], we derive the entropy information
from the first backup, and allocate each codeword with 3
bytes.

• Statistical prediction (SP) exploits the locality of neigh-
boring chunks under the logical order. For each chunk, it
stores u codewords that are mapped from the deduplication
metadata of the most likely neighbors of this chunk. For
compression, it replaces the deduplication metadata of
these neighbors by corresponding codewords. Like the
prior work [31], we derive the neighboring information
from the first backup, and set u to 2.

Figure 7 shows the cumulative storage savings and index
overheads of all considered approaches for the FSL and VM
datasets. The storage savings of Metadedup increase with
the number of backups and significantly outperform those of
baseline approaches. For example, they finally achieve 97.46%
and 95.81% for the FSL and VM datasets, respectively. In the
baseline approaches, the savings of ZC are almost unchanged,
such as 7.58-8.29% for the FSL dataset and 52.14-52.74%
for the VM dataset. The savings of PC gradually increase
during backup periods, since some metadata in later backups
have already been encoded, and they finally achieve 41.51%
and 41.71% for the FSL and VM datasets, respectively. SD
and SP only have savings after the initial backups, since they
need to first extract the entropy and neighboring information,
respectively [31]. One special note is that SD even incurs
additional overheads of 16.11% and 0.42% for the initial FSL

and VM backups, respectively. The reason is that it maintains
a codeword index to map assigned codewords back to the
corresponding deduplication metadata [31]. Such overhead can
be covered in following backups, and SD finally achieves the
savings of 27.99% and 40.79% for the FSL and VM datasets,
respectively. The corresponding final savings of SP also reach
35.20% and 40.81%, respectively.

In addition, we observe that Metadedup, PC, and ZC incur
low index overheads, such as less than 3.33% in both datasets,
during the whole backup time. SD and SP incur relatively
high index overheads in initial backups, since they need to
store some fingerprint-to-codeword mappings in the fingerprint
index. For example, SP stores u mappings in each fingerprint
index entry to map the fingerprints of some chunks that are
most likely to come after the corresponding chunk to short
codewords; this leads to the index overheads of 97.34% and
110.76% for the FSL and VM datasets, respectively. Such
overhead can be amortized in following backups. The index
overheads of SP finally decrease to 55.35% and 8.04% for the
FSL and VM datasets, respectively, while those of SD drop
down to 3.38% and 0.73%.

Experiment B.3 (Combined with compression). We finally
examine the effectiveness of combining Metadedup with the
baseline compression approaches [31] to reduce the size of
recipes. We focus on two combined approaches: (i) Metadedup
+ ZC and (ii) Metadedup + PC, which apply Metadedup first
and then use ZC and PC to suppress the metadata of metadata
chunks, respectively. We do not consider other combination
options as they either incur high index overhead (e.g., combined
with SP) or lead to small storage savings (e.g., combined with
SD). We fix the average segment size of Metadedup as 1 MB.



TABLE III: Experiment B.3 (Combined with compression).
Components/Metrics FSL VM

Metadedup only

File recipes (GB) 0.965 0.290
Key recipes (GB) 1.030 0.309
Fingerprint index (GB) 1.400 1.244
Metadata chunks (GB) 7.372 25.138
Total (GB) 10.767 26.981
Storage saving 97.46% 95.81%
Index overhead 1.07% 0.96%

Metadedup + ZC

File recipes (GB) 0.923 0.145
Key recipes (GB) 0.984 0.155
Fingerprint index (GB) 1.400 1.244
Metadata chunks (GB) 7.372 25.138
Total (GB) 10.679 26.682
Storage saving 97.48% 95.86%
Index overhead 1.07% 0.96%

Metadedup + PC

File recipes (GB) 0.129 0.039
Key recipes (GB) 1.030 0.309
Fingerprint index (GB) 1.401 1.244
Metadata chunks (GB) 7.372 25.138
Decoding mapping (GB) 0.017 0.013
Total (GB) 9.949 26.730
Storage saving 97.68% 95.85%
Index overhead 1.11% 1.00%

Note that PC needs to store page offsets in fingerprint index entries for
encoding, and maintain a reverse mapping for decoding [31].

Table III presents the simulation results after storing all
backups, and we also include the results of Metadedup only
for reference. By combining Metadedup with ZC, we can
further reduce the sizes of both file recipe and key recipe,
from 0.97 GB and 1.03 GB to 0.92 GB and 0.98 GB in the FSL
dataset, as well as from 0.29 GB and 0.31 GB to 0.15 GB and
0.16 GB in the VM dataset, respectively. Such recipe reduction
is more effective (e.g., about 50%) for the VM dataset, as
VM images include large regions of zero chunks [21]. This
only leads to negligible storage savings of metadata, such as
0.02% and 0.05% for the FSL and VM datasets, respectively.
Similarly, the combination of Metadedup and PC brings few
additional savings by about 0.22% for the FSL dataset and
0.04% for the VM dataset.

Our results suggest that Metadedup can only be marginally
improved by compression approaches, as compression cannot
apply to the physical metadata chunks that take more than
60% of overall metadata in Metadedup (see Table II). Thus,
Metadedup itself sufficiently achieves high storage saving of
metadata.

VII. CONCLUSION

We present Metadedup, which exploits the power of indi-
rection to realize deduplication to metadata. It significantly
mitigates the metadata storage overhead in encrypted dedu-
plication, while preserving confidentiality guarantees for both
data and metadata. We extensively evaluate Metadedup from
microbenchmarks, prototype experiments, and trace-driven sim-
ulation. We show that Metadedup significantly suppresses the
storage space of metadata, while incurring limited performance
and indexing penalties.
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