
NCFS: On the Practicality and Extensibility of a

Network-Coding-Based Distributed File System

Yuchong Hu†, Chiu-Man Yu‡, Yan Kit Li‡, Patrick P. C. Lee‡, John C. S. Lui‡

†The Institute of Network Coding, The Chinese University of Hong Kong, Hong Kong
‡Dept of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

ychu@inc.cuhk.edu.hk, {cmyu, ykli7, pclee, cslui}@cse.cuhk.edu.hk

Abstract—An emerging application of network coding is to
improve the robustness of distributed storage. Recent theoretical
work has shown that a class of regenerating codes, which are
based on the concept of network coding, can improve the data
repair performance over traditional storage schemes such as
erasure coding. However, there remain open issues regarding the
feasibility of deploying regenerating codes in practical storage
systems. We present NCFS, a distributed file system that realizes
regenerating codes under real network settings. NCFS transpar-
ently stripes data across multiple storage nodes, without requiring
the storage nodes to coordinate among themselves. It adopts a
layered design that allows extensibility, such that different storage
schemes can be readily included into NCFS. We deploy and
evaluate our NCFS prototype in different real network settings.
In particular, we use NCFS to conduct an empirical study of
different storage schemes, including the traditional erasure codes
RAID-5 and RAID-6, and a special family of regenerating codes
that are based on E-MBR [16]. Our work provides a practical and
extensible platform for realizing theories of regenerating codes
in distributed file systems.

Keywords—network coding, distributed file system, implemen-
tation and experimentation

I. Introduction

With the increasing growth of data to be managed, dis-

tributed storage systems provide a reliable platform for storing

massive amounts of data over a set of storage nodes that

are distributed over a network. A real-life business model

of distributed storage is cloud storage (e.g., Amazon S3 [3]

and Windows Azure [21]), which enables enterprises and

individuals to outsource their data backups to third-party

repositories in the Internet.

One key feature of distributed storage is data reliability,

which generally refers to the redundancy of data storage.

Specifically, given the pre-determined level of redundancy, the

distributed storage system must sustain normal I/O operations

within a tolerable number of node failures. In addition, in order

to maintain the required redundancy, the storage system must

support data repair, which involves reading data from existing

nodes and reconstructing essential data in the new nodes. It

is critical that the repair process is timely, so as to minimize

the probability of losing all data should more nodes be failed

before the data repair process is completed.

Recent studies (e.g., [5], [11], [16], [18]) propose a class

of fast data repair schemes based on network coding [2]

The work of Y. Hu was partially supported by a grant from the University
Grants Committee of the Hong Kong Special Administrative Region, China
(Project No. AoE/E-02/08).

for distributed storage systems. Such network-coding-based

schemes, or called regenerating codes, seek to intelligently

mix and combine data blocks in existing nodes, and regenerate

data blocks at new nodes. It is theoretically shown that

regenerating codes can improve the data repair performance

over traditional redundancy approaches such as erasure codes

(e.g., RAID-5, RAID-6).

However, there remain open issues regarding the feasibility

of deploying regenerating codes in practical distributed storage

systems. Most existing studies focus on theoretical analysis.

They mainly assume that storage nodes are intelligent, in the

sense that nodes can inter-communicate and collaboratively

conduct data repair. Some regenerating codes (e.g., [15], [19],

[20]) may even require the support of encoding/decoding

functions. Such intelligence assumptions require that storage

nodes be programmable, and hence will limit the deployable

platforms for practical storage systems. Thus, the key motiva-

tion of this paper is to explore the deployment of regenerating

codes in practical distributed storage systems.

In this paper, we present the design, implementation, and

empirical experimentation of NCFS, a network-coding-based

distributed file system. NCFS is a file system built on FUSE

[8], a programmable user-space framework that provides in-

terfaces for implementing file system operations. It acts like

a proxy that interconnects multiple storage nodes. It relays

regular read/write operations between user applications and

storage nodes. It also relays data among storage nodes during

the data repair process, so that storage nodes do not need the

intelligence to coordinate among themselves. Thus, regenerat-

ing codes can be implemented in real storage systems without

requiring additional functional changes in storage nodes.

NCFS supports a specific regenerating coding scheme called

the Exact Minimum Bandwidth Regenerating (E-MBR) codes

[16], which seek to minimize repair bandwidth. We adapt E-

MBR, which is proposed from a theoretical perspective, into

practical implementation. NCFS also supports RAID-based

erasure coding schemes, so as to enable us to conduct a

comprehensive empirical study of different classes of data

repair schemes for distributed storage under real network

settings. To our knowledge, NCFS is the first work that realizes

regenerating codes in a practical distributed file system.

The contributions of this paper are summarized as follows:

• We design NCFS, a distributed file system that supports

general read/write operations in a distributed storage

setting, while enabling data repair during node failures.

• NCFS adopts a layered design that enables extensibility.

Specifically, we can implement different storage schemes

without changing the file system logic. Also, we can have

NCFS connect to different types of storage nodes without

affecting the file system design and storage schemes.

• We implement a proof-of-concept prototype of NCFS and

deploy it different local area network settings. We then

empirically compare the performance of read, write, and

repair operations of different storage schemes including

RAID-5, RAID-6, and E-MBR. This enables us to un-

derstand the overall practical performance of a storage

scheme in real deployment.

The rest of the paper proceeds as follows. Section II

describes the background and related work on regenerating

codes. Section III presents the design and implementation of

NCFS. Section IV reports empirical results of different storage

schemes based on NCFS. Section V concludes.

II. Background and Related Work

A. Definitions

We consider the design of a general distributed file system,

which can be realized as an array of n storage nodes. The

file system organizes data into fixed-size blocks. We consider

a stream of blocks, also called native blocks, that are to be

written to the file system. We divide the stream into groups,

each with m native blocks. The m native blocks are encoded

to form c code blocks. In some storage schemes (e.g., E-MBR

[16], see Section II-B), we may also create a duplicate copy for

each native/code block. We define a segment as the collection

of m native blocks, c code blocks, and any of their duplicate

copies. The entire file system is a collection of segments.

In this paper, we consider the storage schemes that are based

on a class of maximum distance separable (MDS) codes. An

MDS code is mainly defined by the parameters n and k, such

that any k (< n) out of n nodes can be used to reconstruct

original native blocks. Given an MDS(n, k) code, the repair

degree d is introduced for data repair, such that the repair for

the lost blocks of one failed node is achieved by connecting

to d nodes and regenerating the lost blocks in the new node.

B. MDS Codes in NCFS

In NCFS, we consider the following MDS codes: RAID-

5 [14] and RAID-6 [12], and exact minimum bandwidth

regenerating (E-MBR) codes [16]. Both RAID-5 and RAID-

6 are traditional erasure codes in distributed file systems,

while E-MBR uses the concept of network coding to minimize

the repair bandwidth. We summarize the relationships of the

parameters (i.e., n, k, d, m, c) for each of the MDS codes as

follows, while Figure 1 illustrates the data layout for a special

case n = 4.

RAID-5 [14]. In RAID-5, the corresponding parameters are

k = d = m = n− 1, and c = 1. RAID-5 can tolerate at most

a single node failure. In each segment, the single code block

(or parity) is generated by the bitwise XOR-summing of the

m = n− 1 native blocks. To recover a failed node, each lost

block can be repaired from the blocks of the same segment in

other surviving nodes via the bitwise XOR-summing.

20 1 c

c3 4 5

76 c 8

c10 1 c2

c22 c1 3

4c1 c2 5

10c 9 11 c16 7 c2

c28 c1 9

10c1 c2 11

20 1 c+ + =

0 1 c1+ =

0 1 c2+ 2 * =

20 1

c

+ +

=43 +

+

1412 13 c

c15 16 17

(a) RAID-5 (b) RAID-6

node0 node1 node3node2

code blocks calculation in the first segment among four codes:

10 0 2

31 3 4

c2 4 c

65 5 7

86 8 9

c7 9 c

(d) E-MBR (k=n-2)

10 0 2

31 3 4

52 4 5

76 6 8

97 9 10

118 10 11

(c) E-MBR (k=n-1)

No code blocks

native blocks: code blocks: segment: duplicate blocks: c

data file stream: 3 4 75 6 8 9 ...0 1 2 10

node0 node1 node3node2 node0 node1 node3node2 node0 node1 node3node2

Fig. 1. The layout of a file system with different implementations of the
MDS codes where n = 4.

RAID-6 [12]. In RAID-6, the corresponding parameters are

k = d = m = n− 2, and c = 2. RAID-6 can tolerate at most

two node failures with two code blocks known as the P and

Q parities. The P parity is generated by the bitwise XOR-

summing of the m = n− 2 native blocks similar to RAID-5,

while the Q parity is generated based on Reed-Solomon coding

[12]. Similar to RAID 5, if one or two nodes are failed, then

each lost block can be repaired from the blocks of the same

segment in other surviving nodes.

E-MBR [16]. In this paper, we focus on a particular case

where d = n− 1, while a recent study [15] also considers all

feasible values of n, k, and d. The number of native blocks in

each segment is m = k(2n− k− 1)/2. For each native block,

we create a duplicate copy, so the number of duplicate blocks

in each segment is also m. By encoding the native blocks of

a segment, we form c = (n − k)(n − k − 1)/2 code blocks.

We also make duplicated copies of these c code blocks. Thus,

each segment corresponds to 2(m + c) blocks, including the

native and code blocks and their duplicate copies.

In order to compare E-MBR with RAID-5 and RAID-6

under the same level of fault tolerance, we select two values

of parameter k in our implementation of the E-MBR code: (i)

k = n− 1 and (ii) k = n− 2, while we point out that E-MBR

can be generalized to other feasible values of k. Note that for

k = n − 1, we must have c = 0, so there is no code block.

On the other hand, for k = n− 2, we must have c = 1 code

block, which is generated as in RAID-5, i.e., by the bitwise

XOR-summing of all native blocks in the segment.

We now explain the block allocation mechanism of E-MBR

for k = n − 1 or k = n − 2. We consider a segment of

m native blocks M0, M1, · · ·Mm−1 and c code blocks C0,

C1, · · ·Cc−1, and their duplicate copies M0, M1, · · ·Mm−1

and C0, C1, · · · Cc−1, respectively. Thus, the total number of

blocks in one segment is 2(m+ c) = n(n− 1), implying that

each storage node stores (n− 1) blocks for each segment. To

store a segment of blocks over n nodes, NCFS first allocates

a segment size of free space, represented as (n− 1)×n block

entries, where each row corresponds to the block offset within

a segment of a node, and each column corresponds to a node.

For each block Bi (either a native or code block), we search

TABLE I
THEORETICAL RESULTS OF RAID- AND E-MBR CODES [14], [16], WITH

M ORIGINAL NATIVE BLOCKS BEING STORED.

Total storage cost Repair traffic in single-node failure
RAID-5 M/(1 − 1/n) M
RAID-6 M/(1 − 2/n) M
E-MBR

2M 2M/n
k = n− 1

E-MBR 2Mn(n−1)
(n−2)(n+1)

2M(n−1)
(n−2)(n+1)k = n− 2

for a free entry from top to bottom in a column-by-column

manner, starting from the leftmost column; for its duplicate

copy Bi, we search for a free entry from left to right in a row-

by-row manner, starting from the topmost row. The allocation

for each Bi starts with the native blocks M0, · · · ,Mm−1,

followed by the code blocks C0, · · · , Cm−1. To illustrate the

block allocation mechanism, Figures 1(c) and 1(d) show the

examples of (n = 4, k = 3, m = 6, c = 0) and (n = 4, k = 2,

m = 5, c = 1), respectively.

To repair lost blocks during a single-node failure (for n =

k − 1 or n = k − 2), we note that each native/code block

has a duplicate copy, and both the block and its copy are

stored in two different nodes. Thus, for each lost block, we

retrieve its duplicate copy from another survival node and write

it to the new node. Note that based on the block allocation

mechanism, each survival node contributes exactly one block

for each segment.

To repair lost blocks during a two-node failure (for n =

k − 2), we consider two cases. If the duplicate copy of a lost

block resides in a surviving node, we directly use it for repair;

if both the lost block and its duplicate copy are in the two

failed nodes, then we use the same approach as in RAID-5,

i.e., the lost block is repaired by the bitwise XOR-summing

of other native/code blocks of the same segment residing in

other surviving nodes.

Theoretical results. In general, E-MBR trades off a higher

storage cost for a smaller repair bandwidth as compared to the

traditional RAID schemes. To understand this, suppose that M
native blocks have been stored in the file system. Based on the

studies in [14], [16], Table I presents the total storage cost (i.e.,

the total number of blocks stored) and the amount of repair

traffic in a single-node failure (i.e., total number of blocks

retrieved from other d = n− 1 surviving nodes) for the above

MDS codes. For n = k − 1, E-MBR incurs less repair traffic

than RAID-5, but has higher storage cost. Similar observations

are made between E-MBR and RAID-6 for n = k − 2.

C. Related Work on Regenerating Codes

Regenerating codes (e.g., see survey in [6]) are a class

of storage schemes based on network coding for distributed

storage systems. With regenerating codes, when one storage

node is failed, we can repair data at a new storage node

by downloading data from surviving storage nodes. There

exists an optimal tradeoff spectrum between repair bandwidth

and storage cost in regenerating codes, where this tradeoff

has been analyzed (e.g., see [5], [22]). Minimum storage

regenerating (MSR) codes occupy one end of the spectrum that

corresponds to the minimum storage, and minimum bandwidth

regenerating (MBR) codes occupy another end of the spectrum

that corresponds to the minimum repair bandwidth.

There are generally three data repair approaches [6]: (i)

exact repair, which regenerates the exact copies of the lost

blocks of the failed node in the new node, (ii) functional

repair, which may regenerate different copies from the lost

blocks so long as the MDS property is maintained, and (iii) a

hybrid of both. In general, with functional repair, some native

blocks may no longer be kept after repair, so we need to access

all blocks in a segment to decode a native block. This may

not be desirable for general file systems as the read accesses

will be slowed down.

To achieve fast read/write operations in a file system, it is

important to maintain the code in systematic form (i.e., a copy

of each native block is kept in storage). Thus, exact repair has

received attention in literature, including the exact MSR (E-

MSR) code [19], [20] and the exact MBR (E-MBR) code [15],

[16]. The above studies focus on one-loss repair, while multi-

loss repair is studied (e.g., [11], [18]). There is another repair

model called exact repair of the systematic part [6], which is a

hybrid of exact repair and functional repair while keeping the

storage in systematic part. On the other hand, among all the

above codes, only E-MBR (with the repair degree d = n− 1)

does not require storage nodes be programmable to support

encoding/decoding operations. As a starting point, we adopt

E-MBR as a building block in our current NCFS prototype.

Most existing studies for network-coding-based distributed

storage are theoretical. Several studies (e.g., [7], [9], [13])

evaluate random linear codes for peer-to-peer storage from a

practical perspective, but they are mainly based on simulations

without actually deploying a real storage system. RACS [1]

and DEPSKY [4] are cloud storage proxies that interconnect

multiple cloud storage providers, and they are built on tradi-

tional erasure codes. To our knowledge, this paper is the first

work that evaluates the empirical performance of regenerating

codes using a practical distributed file system.

III. Design and Implementation

A. Architectural Overview

NCFS is designed as a distributed file system that intercon-

nects multiple storage nodes. Figure 2 shows the architecture

of NCFS. Our current NCFS implementation does not require

storage nodes be programmable to support encoding/decoding

functions. Thus, the connected storage nodes can be of various

types, so long as each storage node provides the standard

interface for reading and writing data. For instance, a storage

node could be a regular PC, network-attached storage (NAS)

device, or even the repository of a cloud storage provider (e.g.,

Amazon S3 [3] or Windows Azure [21]). NCFS transparently

stripes data across different storage nodes, without requiring

the storage nodes to coordinate among themselves during the

repair process as assumed in existing theoretical studies (e.g.,

see [6]). Thus, NCFS can be made compatible with most

today’s storage frameworks.

NCFS connects to storage nodes over the network (e.g.,

a local area network or the Internet), while we assume that

NCFS is deployed locally as a file system on the client

PCs NAS devices

Amazon S3

Cloud storage providers

Windows Azure

File system layer

NCFS

User applications

Coding layer

Storage layer

/mnt/ncfs

Network

Fig. 2. Architectural overview of NCFS. It is presented as a logical drive to
user applications.

machine. Thus, our goal is to improve the performance of

read/write operations between NCFS and the storage nodes.

B. Layered Design of NCFS

NCFS adopts a layered design, as shown in Figure 2. The

layered design enables extensibility, in which each layer can be

extended for other functionalities without affecting the logic

of other layers. We introduce the layers below and explain

how each layer accommodates extensibility.

File system layer. The file system layer is responsible for

general file system operations, such as handling the requests

of read, write and delete made by users. Each read/write/delete

request specifies a data block to be accessed on the storage

nodes (see the storage layer below). We also enhance the file

system layer to support the data repair operation. That is, if a

node is failed, then the repair operation will (i) read data from

survival nodes, (ii) regenerate lost data blocks, and (iii) write

the regenerated blocks to a new node.

The file system layer is built on FUSE [8], an open-source,

user-space framework for implementing file system operations.

It mounts different storage nodes as a logical drive (e.g.,

/mnt/ncfs). This allows user applications to access data on

the storage nodes through the mounted drive, without worrying

about how to organize data in different storage nodes.

Coding layer. The coding layer is responsible for the encod-

ing/decoding functions of fault-tolerant storage schemes based

on MDS codes. In the current implementation of NCFS, we

implement traditional erasure codes RAID 5 and RAID 6, and

regenerating codes E-MBR(k = n−1) and E-MBR(k = n−2)

(assuming d = n−1) (see Section II-B). With the above codes,

the current NCFS prototype does not require programmability

of storage nodes. On the other hand, if this assumption can

be relaxed and storage nodes are programmable (e.g., all

storage nodes are regular PCs), then the coding layer can

be extended to support other erasure/regenerating codes if

necessary. For example, we can implement a class of MSR

codes (see Section II-C) in the coding layer as well as the

storage nodes, so that we can explore the tradeoffs between

the storage cost and repair bandwidth as studied in [5], [22].

Other layers remain unaffected with such extensions.

Storage layer. The storage layer provides a common interface

for the file system to access different types of storage nodes.

Since the file system organizes data into fixed-size blocks,

each block can be uniquely identified by the mapping (node,

offset), where node identifies a particular storage node,

while offset specifies the location of the block within the

storage node. The storage layer can then access a data block

using the mapping provided by the file system, while the

access method is transparent to the file system. For example,

the storage layer can access regular PCs or NAS devices over

the Ethernet and IP networks via protocols like ATA over

Ethernet [10] or iSCSI [17], respectively; it can also access

the repositories of different cloud storage providers based on

their own semantics.

Extensions. We can also make extensions atop the existing

design of NCFS to improve its performance. In current NCFS,

each read/write request directly accesses on storage nodes. One

extension is to include a cache layer, which caches recently

accessed blocks in main memory. If the read/write requests

preserve data locality, then they can directly access the blocks

via memory without accessing the storage nodes. The cache

layer can reside between the coding layer and the storage layer

(see Figure 2), and it is transparent to the file system layer.

We pose the design issue of the cache layer as future work.

IV. Experiments

We implement our NCFS prototype in C and deploy it

in a Linux machine with Quad-Core 2.4GHz. Using our

NCFS prototype, we compare the empirical performance of

different storage schemes, including the traditional erasure

codes (i.e., RAID-5 and RAID-6) and regenerating codes (i.e.,

E-MBR(k = n − 1) and E-MBR(k = n − 2)). Note that the

overall empirical performance depends on different factors,

such as data transmissions over the network, I/O accesses

within storage nodes, and block encoding/decoding operations

within NCFS.

Topologies. We deploy NCFS on an Intel Quad-Core 2.66GHz

machine with 4GB RAM and conduct our experiments based

on three local area network topologies as shown in Figure 3:

• Figure 3(a) shows the basic setup, in which we inter-

connect NCFS via a Gigabit switch with four network-

attached storage (NAS) stations (i.e., n = 4).

• Figure 3(b) considers a larger-scale setup and studies

the scalability of NCFS. NCFS is interconnected with

eight storage nodes (i.e., n = 8), including the four NAS

stations and four regular PCs, via a Gigabit switch.

• Figure 3(c) considers a relatively more bandwidth-limited

network setting, in which NCFS interconnects with the

four NAS stations (i.e., n = 4) over a university depart-

ment network.

In all topologies, NCFS communicates with the storage nodes

via the ATA over Ethernet protocol [10].

Metrics. We consider the throughput (in MB/s) of different

operations: (i) normal upload/download operations with no

failure, (ii) degraded download operations with node failures,

and (iii) repair operations during node failures. Each through-

put measurement is obtained over the average of five runs.

Experiment 1 (Normal upload/download operations). Sup-

pose that there is no node failure. This experiment studies the

pclee
Cross-Out

pclee
Note
This line is duplicate in our camera-ready version and should have been removed. We apologize for the mistake.

Gigabit

switch

NAS stations

NCFS

NAS stations

NCFS

Gigabit

switch

PCs

NAS stations

NCFS

Gigabit

switch

university

department network

(a) 4-node, Gigabit switch (b) 8-node, Gigabit switch (c) 4-node, deparment network

Fig. 3. Topologies used in our experiments.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

(a) 4-node Gigabit switch (b) 8-node Gigabit switch (c) 4-node department-network

T
h

ro
u

g
h

p
u

t
in

 M
B

/s RAID-5
RAID-6

E-MBR (k=n-1)
E-MBR (k=n-2)

(a) Normal upload

 0
 5

 10
 15
 20
 25
 30
 35
 40

(a) 4-node Gigabit switch (b) 8-node Gigabit switch (c) 4-node department-network

T
h

ro
u

g
h

p
u

t
in

 M
B

/s RAID 5
RAID 6

E-MBR (k=n-1)
E-MBR (k=n-2)

(b) Normal download

Fig. 4. Experiment 1: Throughput of normal upload/download operations.

throughput of the normal upload/download operations. Here,

we upload/download a file of size 256MB to/from the storage

nodes. Note that when we upload a 256-MB file, different

storage schemes have different actual storage sizes based on

how they introduce redundancy (see Table I). For instance,

when n = 4, the actual storage sizes of different codes are:

341MB for RAID-5, 512MB for RAID-6, 512MB for E-

MBR(k = n− 1), and 614MB for E-MBR(k = n− 2).

Figure 4(a) shows the upload throughput. E-MBR(k = n−
1) has the largest throughout among all codes, since it does not

need to access any code blocks. For other codes, when NCFS

is about to upload a native block, it needs to read and update

the corresponding code block(s) of the same segment (see

Figure 1 in Section II) on the storage nodes, and this introduces

additional read accesses. RAID-5 has the second largest upload

throughput as it transmits fewer blocks than RAID-6 and E-

MBR(k = n − 2). E-MBR(k = n − 2) outperforms RAID-6

in both 4-node and 8-node Gigabit-switch settings, but the

difference becomes small in the department network setting.

The reason is that RAID-6 uses Reed-Solomon coding to

compute the Q-parity code blocks (see Section II), so the

computation overhead dominates the transmission overhead

when the topology has high network capacity (e.g., a Gigabit-

switch setting), but becomes less significant over the more

bandwidth-limited setting (e.g., a department network).

It is interesting to see that the upload throughput is smaller

in the 8-node Gigabit-switch setting than in the 4-node one. We

conjecture that this is related to disk locality of I/O accesses.

We plan to analyze the impact of I/O accesses in future work.

Figure 4(b) shows the download throughput. In each topol-

ogy, all storage schemes have similar download throughput.

Note that download operations generally have higher through-

put than upload operations, mainly because NCFS can only

 0
 5

 10
 15
 20
 25
 30
 35
 40

(a) 4-node Gigabit switch (b) 8-node Gigabit switch (c) 4-node department-network

T
h

ro
u

g
h

p
u

t
in

 M
B

/s RAID 5
RAID 6

E-MBR (k=n-1)
E-MBR (k=n-2)

(a) Download throughput during a single-node failure

 0

 5

 10

 15

 20

(a) 4-node Gigabit switch (b) 8-node Gigabit switch (c) 4-node department-network

T
h

ro
u

g
h

p
u

t
in

 M
B

/s RAID-6
E-MBR (k=n-2)

(b) Download throughput during a two-node failure

Fig. 5. Experiment 2: Degraded download throughput.

download one copy of each native block without the need of

accessing other code blocks, or duplicate blocks (in E-MBR).

Experiment 2 (Degraded download operations). We now

consider the performance of download operations when some

storage nodes are failed. In the experiment, we first upload a

256MB file to all storage nodes. We then pick one/two nodes

to disable, and then evaluate the throughput of downloading

the 256MB file. Here, we pick the leftmost nodes in the array

(see Figure 1) to disable, while our observations are similar if

we disable other nodes.

Figure 5(a) shows the download throughput during a single-

node failure. We observe that the E-MBR codes have higher

download throughput than RAID codes. The reason is that for

each lost native block, there must be a corresponding duplicate

copy (see Figure 1), which could be used for download. On

the other hand, RAID codes need to additionally access the

corresponding code block of the same segment to recover each

lost native block.

Figure 5(b) shows the download throughput during a two-

node failure (for RAID-6 and E-MBR(k = n − 2) only). E-

MBR(k = n − 2) outperforms RAID-6 in the Gigabit-switch

settings, mainly because RAID-6 uses Reed-Solomon coding

to recover lost native blocks and incurs higher computation

overhead than E-MBR. Using the same reasoning as in Ex-

periment 1, E-MBR(k = n − 2) has higher throughput than

RAID-6 in well-connected settings.

Experiment 3 (Repair operations). Recall in Section III-B

that the repair operation of a failed node includes three steps:

(i) transmission of the existing blocks from survival nodes to

NCFS, (ii) regeneration for lost blocks of the failed node in

NCFS, and (iii) transmission of the regenerated blocks from

NCFS to a new node. If there is more than one failed node,

then we apply the repair operation for each failed node one-

by-one. In this experiment, we evaluate the performance of the

repair operation (i.e., from step (i) to step (iii)). For the single-

node failure case, we consider the throughput of repairing the

failed node. For the two-node failure case, we only consider

the throughput of repairing the first failed node, since after we

repair the first failed node, repairing the second failed node is

reduced to the single-node failure case.

Note that each segment contains both original native blocks

 0

 1

 2

 3

 4

 5

 6

 7

(a) 4-node Gigabit switch (b) 8-node Gigabit switch (c) 4-node department-networkE
ff

e
c
ti
v
e

 t
h

ro
u

g
h

p
u

t
in

 M
B

/s
RAID-5
RAID-6

E-MBR (k=n-1)
E-MBR (k=n-2)

(a) Repairing a single-node failure

 0

 0.5

 1

 1.5

 2

 2.5

 3

(a) 4-node Gigabit switch (b) 8-node Gigabit switch (c) 4-node department-networkE
ff

e
c
ti
v
e

 t
h

ro
u

g
h

p
u

t
in

 M
B

/s

RAID-6
E-MBR (k=n-2)

(b) Repairing the first failed node in a two-node failure

Fig. 6. Experiment 3: Repair throughput.

as well as redundant blocks (e.g., code blocks, or duplicate

blocks). For fair comparison, we here consider the effective

throughput of repair that we define as follows. If each segment

contains a fraction f (where 0 < f < 1) of redundant

blocks and the time to repair a total of N -MB all lost blocks

(including both original native blocks and redundant blocks)

of a failed node is T s, then the effective throughput of repair

is defined as (1− f)N/T (in MB/s).

Figure 6(a) shows the repair throughput of a single-node

failure. We observe that in the Gigabit-switch settings, E-

MBR codes achieve significantly higher repair throughput

than RAID codes. For example, the repair throughput of E-

MBR(k = n− 1) is 1.91× and 2.61× over that of RAID-5 in

4-node and 8-node Gigabit switch settings, respectively. The

main reason is that E-MBR codes retrieve fewer blocks than

RAID codes for repair. On the other hand, in the department

network setting, the throughput improvement of E-MBR codes

over RAID codes becomes less significant. The reason is that

the performance bottleneck now lies on the transmission of

regenerated blocks from NCFS to the new node. Since E-MBR

stores more redundant blocks than RAID codes in a storage

node, it needs more time to transmit blocks from NCFS to the

new node. This reduces the effective throughput of E-MBR.

Figure 6(b) shows the repair throughput for the first failed

node during a two-node failure (for RAID-6 and E-MBR(k =
n−2) only). We make similar observations as in the two-node

failure degrade download case (See Figure 5(b)).

Lessons learned. We study the empirical performance of

different storage schemes in different network settings. In

repair, E-MBR significantly outperforms RAID codes in the

Gigabit-switch settings, mainly because it downloads fewer

blocks and has lower coding complexity. This conforms to the

findings in existing theoretical studies. On the other hand, it

is important to mitigate the transmission bottleneck between

NCFS and the new storage nodes, which can degrade the repair

throughput as shown in the department-network setting.

E-MBR seeks to minimize repair bandwidth with a tradeoff

of higher storage overhead. It is interesting to explore other

classes of regenerating codes, such as MSR codes (e.g., [19],

[20]) that seek to minimize storage overhead, with the relaxed

assumption that storage nodes are programmable to support

encoding/decoding functions.

V. Conclusions

We present NCFS, a distributed file system that realizes

storage schemes based on traditional erasure codes and re-

generating codes in practice. NCFS complements existing

theoretical studies on network coding for distributed storage

from a practical perspective. It adopts a layered design that

allows extensibility of new functionalities. We use NCFS to

evaluate different storage schemes under real network settings,

in terms of the throughput of upload, download, and repair op-

erations. NCFS provides a practical and extensible platform for

researchers to evaluate the empirical performance of various

storage schemes. We believe that researchers can benefit from

NCFS in conducting applied research in network-coding-based

distributed storage systems.

The source code of NCFS is published for academic use at:

http://ansrlab.cse.cuhk.edu.hk/software/ncfs.

REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: A case
for cloud storage diversity. In Proc. of ACM SOCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information
flow. IEEE Trans. on Information Theory, 46(4):1204–1216, Jul 2000.

[3] Amazon S3. http://aws.amazon.com/s3, 2010.
[4] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DEPSKY:

Dependable and Secure Storage in a Cloud-of-Clouds. In Proc. of ACM

EuroSys, 2011.
[5] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-

dran. Network coding for distributed storage systems. IEEE Transactions

on Information Theory, 56(9), Sep 2010.
[6] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on

network codes for distributed storage. In arXiv:1004.4438v1 [cs.IT],
2010.

[7] A. Duminuco and E. Biersack. A practical study of regenerating codes
for peer-to-peer backup systems. In Proc. of IEEE ICDCS, 2009.

[8] FUSE. http://fuse.sourceforge.net/, 2010.
[9] C. Gkantsidis and P. Rodriguez. Network coding for large scale content

distribution. In Proc. of INFOCOM, 2005.
[10] S. Hopkins and B. Coile. AoE (ATA over Ethernet). http://support.

coraid.com/documents/AoEr11.txt, Feb 2009.
[11] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative recovery of

distributed storage systems from multiple losses with network coding.
IEEE JSAC, 28(2):268–276, Feb 2010.

[12] Intel. Intelligent RAID6 Theory Overview and Implementation, 2005.
[13] M. Martaló, M. Picone, M. Amoretti, G. Ferrari, and R. Raheli. Ran-

domized Network Coding in Distributed Storage Systems with Layered
Overlay. In Information Theory and Application Workshop, 2011.

[14] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays
of inexpensive disks (raid). In Proc. of ACM SIGMOD, 1988.

[15] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction. In arXiv:1005.4178v1 [cs.IT], 2010.

[16] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran. Explicit
construction of optimal exact regenerating codes for distributed storage.
In Proc. of Allerton Conference, 2009.

[17] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner.
Internet small computer systems interface (iscsi), Apr 2004. RFC 3720.

[18] K. W. Shum. Cooperative regenerating codes for distributed storage
systems. In Proc. of IEEE ICC, 2011.

[19] C. Suh and K. Ramchandran. Exact-repair mds codes for distributed
storage using interference alignment. In Proc. of IEEE ISIT, 2010.

[20] C. Suh and K. Ramchandran. Exact regeneration codes for distributed
storage repair using interference alignment. In Proc. of IEEE ISIT, 2011.

[21] Windows Azure. http://msdn.microsoft.com/en-us/windowsazure/
default.aspx, 2010.

[22] Y. Wu, A. G. Dimakis, and K. Ramchandran. Deterministic regenerating
codes for distributed storage. In Allerton Conference on Control,

Computing and Communication, 2007.

