
CellPAD: Detecting Performance Anomalies in

Cellular Networks via Regression Analysis

Jun Wu1, Patrick P. C. Lee2, Qi Li1, Lujia Pan3,4, Jianfeng Zhang4

1Tsinghua University 2The Chinese University of Hong Kong
3Xi’an Jiaotong University 4Huawei Noah’s Ark Lab

Abstract—How to accurately detect Key Performance Indicator
(KPI) anomalies is a critical issue in cellular network manage-
ment. We present CELLPAD, a unified performance anomaly
detection framework for KPI time-series data. CELLPAD re-
alizes simple statistical modeling and machine-learning-based
regression for anomaly detection; in particular, it specifically
takes into account seasonality and trend components as well as
supports automated prediction model retraining based on prior
detection results. We demonstrate how CELLPAD detects two
types of anomalies of practical interest, namely sudden drops
and correlation changes, based on a large-scale real-world KPI
dataset collected from a metropolitan LTE network. We explore
various prediction algorithms and feature selection strategies, and
provide insights into how regression analysis can make automated
and accurate KPI anomaly detection viable.

Index Terms—anomaly detection, cellular network manage-
ment, measurement and analysis

I. INTRODUCTION

The continuing advances of cellular network technologies

make high-speed mobile Internet access a norm. However,

cellular networks are large and complex by nature, and hence

production cellular networks often suffer from performance

degradations or failures due to various reasons, such as back-

ground interference, power outages, malfunctions of network

elements, and cable disconnections. It is thus critical for

network administrators to detect and respond to performance

anomalies of cellular networks in real time, so as to maintain

network dependability and improve subscriber service quality.

To pinpoint performance issues in cellular networks, a com-

mon practice adopted by network administrators is to monitor

a diverse set of Key Performance Indicators (KPIs), which

provide time-series data measurements that quantify specific

performance aspects of network elements and resource usage.

The main task of network administrators is to identify any KPI

anomalies, which refer to unexpected patterns that occur at a

single time instant or over a prolonged time period.

Today’s network diagnosis still mostly relies on domain

experts to manually configure anomaly detection rules [25];

such a practice is error-prone, labor-intensive, and inflexible.

Recent studies propose to use (supervised) machine learn-

ing for anomaly detection in cellular networks (e.g., [3],

[8], [10], [11], [13], [34]) and search engines (e.g., [25]).

However, machine-learning-based anomaly detection is subject

to several well-known challenges [9], [25]: (i) the issues of

which machine-learning algorithms should be used and how

features should be configured depend on the actual anomaly

detection problems and are difficult to address; (ii) labeling

which time instants are anomalies for large-scale datasets is

time-consuming; (iii) differentiating between normal data and

anomalies is challenging and often requires domain knowledge

to resolve; and (iv) anomalies occur much more infrequently

than normal data, and this imbalanced nature can degrade

learning accuracy [17].

In the context of cellular networks, we need to address

additional challenges in anomaly detection. First, Internet traf-

fic often exhibits periodic diurnal patterns [35] and different

trends after long-term usage. In addition, the performance of

cellular networks depends on not only the data transmission

usage as in the traditional Internet, but also the radio resource

usage [30]. Their corresponding KPIs, and hence anomalies,

are often correlated. Such properties need to be properly

addressed in the anomaly detection design. Thus, we are

motivated to look into the following issues: (i) How should

we define useful KPI anomalies that correspond to practical

cellular network performance degradation problems? (ii) Can

we design a unified anomaly detection framework that can

incorporate various anomaly detection algorithms and detect

various types of anomalies for one or multiple KPIs? (iii) Can

our anomaly detection framework be automated with limited

manual intervention, while still achieving accurate detection?

We present CELLPAD, a unified performance anomaly

detection framework for cellular networks. CELLPAD builds

on regression analysis, which predicts the expected quantities

of KPI time-series data so as to provide prediction results for

anomaly detection. We consider two types of anomalies that

are of practical interest to cellular network management based

on our internal communication with network administrators:

sudden drops, which indicate the unexpected degradations of

a KPI, and correlation changes, which indicate the inconsis-

tency between the current and historical correlations of two

correlated KPIs. Using CELLPAD, we conduct trace-driven

evaluation to demonstrate how regression analysis achieves

automated and accurate KPI anomaly detection. To summarize,

this paper makes the following contributions:

• We first present a trace-driven analysis on a large-scale KPI

dataset from a real-world metropolitan LTE network. Our

dataset spans six KPIs, 17 weeks of duration, and 12,463

cells. We show the presence of anomalies in the dataset and

motivate the practical need of anomaly detection.

• We design CELLPAD for anomaly detection in cellular net-ISBN 978-3-903176-08-9 ©2018 IFIP



works. CELLPAD supports various prediction algorithms,

including simple statistical modeling, linear regression, and

tree-based regression (the latter two belong to machine-

learning-based regression). In particular, it takes into ac-

count both seasonality and trend components in KPI time-

series data, and provides a feedback loop for retraining the

prediction models using prior detection results to improve

detection accuracy.

• We conduct trace-driven evaluation on CELLPAD based

on our KPI dataset to explore a range of prediction al-

gorithms and different feature selection strategies. We also

show that CELLPAD achieves more accurate sudden drop

detection than Twitter’s time-series anomaly detection tool

[2]. We make several observations, such as the accuracies

of different prediction algorithms, the robustness against

parameter choices, and the importance of prediction model

retraining for accurate anomaly detection. We find that no

single prediction algorithm is an absolute winner in both

sudden drop and correlation change detection.

The source code of CELLPAD is available for download at

http://adslab.cse.cuhk.edu.hk/software/cellpad.

The rest of the paper proceeds as follows. Section II presents

the background details and analysis of our KPI dataset and

motivates the need of anomaly detection. Section III presents

our design of CELLPAD. Section IV evaluates different pre-

diction algorithms and design choices of CELLPAD. Section V

reviews related work. Finally, Section VI concludes the paper.

II. DATASET

In this section, we provide an overview of the KPI dataset

that we collected from a production cellular network. We also

motivate the need of detecting anomalies in such a network.

A. LTE Network Architecture

In this work, we focus on the 4G LTE cellular technologies.

We first provide a high-level overview of an LTE network

architecture. An LTE network comprises three main entities:

User Equipments (UEs), the Radio Access Network (RAN),

and the Evolved Packet Core (EPC). Each UE refers to a user’s

mobile device. The RAN comprises multiple base stations

called Evolved NodeBs (eNodeBs), each of which manages

the radio resources of UEs and provides UEs with wireless

connectivity. The EPC comprises the Mobility Management

Entity (MME), the Serving Gateway (SGW), and the Packet

Data Network Gateway (PGW): the MME manages UEs’

control-plane functions (e.g., user authentication, mobility

management), while both the SGW and PGW manage UEs’

data-plane functions (e.g., data routing). To send or receive

data via the Internet, a UE first sets up a radio connection with

an eNodeB and a signaling channel with the MME. It then sets

up a data session with the EPC atop the radio connection, and

uses the data session for data transmission.

Each eNodeB serves multiple geographical areas called

cells, each of which covers a number of UEs. The size

of each cell depends on the local user population and the

TABLE I
DESCRIPTIONS OF SIX CELL-LEVEL KPIS.

KPIs Descriptions

USER It refers to the number of active users.

RRC It refers to the number of radio resource control (RRC)
connection requests between a UE and an eNodeB.
Each RRC connection works at the control plane and
carries signaling messages for managing the radio re-
sources of the UE.

ERAB It refers to the number of E-UTRAN Radio Access
Bearer (ERAB) requests between a UE and the EPC.
Each ERAB works at the data plane and carries the data
traffic of the UE.

PRB It refers to the number of physical resource blocks
allocated. It indicates the radio resource usage.

THR It refers to the data transmission throughput in the
downlink direction.

DUR It refers to the duration of active data transmission in
the downlink direction.

radio coverage. A production LTE network typically covers

thousands of cells.

B. Data Collection

Network administrators deploy probes in the EPC and every

eNodeB to periodically collect KPI values, which will be

sent to a centralized network management system (NMS).

We call each collected input an instance, which specifies the

time and value for a KPI. In this work, we collected per-cell

KPI instances from the NMS of an operational LTE network

deployed in a metropolitan city in China. Each instance is

recorded on an hourly basis and describes the performance

of a cell in the latest hour. We consider six types of KPIs,

as summarized in Table I. The six types of KPIs address

the cellular network performance in three aspects: (i) user

population (i.e., USER), (ii) radio resource usage (i.e., RRC,

ERAB, and PRB), and (iii) data transmission load (i.e., THR

and DUR).

Our KPI dataset covers three collection periods for a total

of 17 weeks: (i) November 7, 2016 to January 8, 2017, (ii)

February 13, 2017 to March 12, 2017, and (iii) April 10, 2017

to May 7, 2017. We only select the cells that have the complete

KPI data over the entire 17 weeks; in other words, each cell

has a total of 24×7×17= 2,856 instances for each of the six

KPIs. Finally, we identify 12,463 cells. To the best of our

knowledge, our dataset is among the largest being studied

in the literature (in terms of the collection period and the

number of cells being covered) regarding KPI measurements

in operational LTE networks.

C. A First Look at the Dataset

We first examine the statistical properties of our collected

dataset, so as to understand the behaviors of the cellular

network. Our observations are summarized as follows: (i) there

exist strong seasonality and trend components in the dataset;

(ii) some KPIs are strongly correlated; and (iii) there exist

non-negligible variances in KPI values across the same hour

of different days.
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Fig. 1. Seasonality components of six KPIs. The x-axis represents the 168
hours of a week, and the y-axis represents the weekly normalized aggregated
KPI value in each hour. We plot each week of KPIs separately in grey, while
the black curve represents the average of 17 points in each hour.

Seasonality: We first analyze the seasonality component (i.e.,

the recurring patterns over a time series) in all six KPIs.

We first aggregate the KPI values at each hour across all

cells. We then normalize each aggregate result x to the range

[0, 1] as
x−min{x}

max{x}−min{x} , where max{x} and min{x} represent

the maximum and minimum of all 2,856 hours, respectively.

Figure 1 plots the weekly normalized aggregate results for all

17 weeks. We see that all six KPIs show fairly stable diurnal

patterns, albeit some abrupt increases or drops in some hours.

Trend: We next study the trend component (i.e., the increasing

or decreasing patterns over a time series) in all six KPIs. We

compute the trend component on a per-cell basis. Specifically,

for each KPI, we compute the average KPI value of a cell

at the i-th hour, denoted by yi, over a sliding time window

of 168 hours (a week) using the recent past and future KPI

values, starting from the (i-84)-th hour to the (i+83)-th hour,

where i ≥ 84. We then compute the trend variation as
max{yi}−min{yi}

ȳi
, where max{yi}, min{yi}, and ȳi denote

the maximum, minimum, and mean of the sequence of yi’s,

respectively. In our analysis, we pick the first time period

from November 7, 2016 to January 8, 2017, in which we can

compute 1,344 yi’s over the 9-week period. Intuitively, if the

trend variation is close to zero, then the time series remains

stable across any weekly cycle; otherwise, the time series has

a strong trend component. For example, if the trend variation

is larger than one, it means that the maximum differences

between the average KPI values of any sliding windows can

be larger than the overall average KPI value. Figure 2 shows

the cumulative distribution of the trend variations of all cells

for each KPI. We see that for each KPI, the trend variation is

larger than one for a non-negligible fraction of cells.

Correlation: KPIs may be correlated; for example, if the

number of active users increases, both the radio resource

usage (i.e., RRC, ERAB, and PRB) and the data transmission

load (i.e., THR and DUR) also increase. We compute the

Pearson coefficient (PC) (a measure of linear correlation of

two variables) for every pair of KPI time-series data of each

cell, and obtain the average PC across all cells. If the PC is

(a) USER (b) RRC (c) ERAB

(d) PRB (e) THR (f) DUR

Fig. 2. Trend components of six KPIs. The x-axis represents the trend
variation, and the y-axis represents the cumulative density function.

TABLE II
AVERAGE PEARSON COEFFICIENTS OF KPI PAIRS ACROSS ALL CELLS.

USER RRC ERAB PRB THR DUR

USER 1.000 0.895 0.907 0.829 0.771 0.817

RRC - 1.000 0.961 0.709 0.602 0.654

ERAB - - 1.000 0.716 0.610 0.659

PRB - - - 1.000 0.942 0.814

THR - - - - 1.000 0.776

DUR - - - - - 1.000

closer to 1.0, it implies that the two KPIs have high positive

linear correlation. Table II shows the results. We observe all

six KPIs have positive linear correlation. In particular, the pairs

(RRC, ERAB), (PRB, THR), and (USER, RRC) are the top-3

pairs with the strongest correlation.

KPI variations: KPI values may fluctuate over time due to

performance changes in cellular networks, thereby implying

the presence of performance anomalies. To understand the

frequency of such KPI variations, we calculate the coefficient

of variation (CV) (i.e., the ratio of the standard deviation to

the mean) of a KPI at each hour of a day for each cell. A

large CV implies that the specific cell has a high deviation

of the KPI. Here, we focus on USER. Figure 3(a) shows the

boxplots1 of CVs across all cells. We observe that the majority

of CVs are close to zero, yet a few cells exhibit high CVs.

Interestingly, we observe higher CVs during nighttime (from

23:00 to 06:00) than during daytime (from 08:00 to 18:00).

We also observe significant KPI variations in the correla-

tions across a KPI pair in some of the cells. We calculate the

PC of a KPI pair at each hour of a day for each cell. We

focus on USER and RRC (which show a high PC according

to Table II). Figure 3(b) shows the boxplots of PCs across

all cells. While the majority of cells show a high PC (close

to one), some cells show a negative PC, which is unexpected

and may be anomalies.

D. Definitions of Anomalies

Based on our analysis and internal communication with

network administrators, we study two types of KPI anomalies,

1A boxplot shows the minimum, first quartile, median, third quartile, and
maximum of all samples.



(a) Coefficients of variation (CVs) of USER

(b) Pearson coefficients (PCs) of USER and RRC

Fig. 3. KPI variations, in terms of boxplots at different hours of a day across
all cells. Here, the x-axis represents the hour of a day (e.g., 1 means 0100).

namely sudden drops and correlation changes, that are of

practical interest to cellular network management. A sudden

drop refers to the sudden performance degradation of a KPI

instance within a cell. For example, if there exists a sudden

drop in USER, it may imply that a cell fails to provide

connectivity to a significant portion of users. In general,

a sudden drop happens when a KPI value is significantly

less than the expected one. On the other hand, a correlation

change refers to the large deviation of two correlated KPI

instances within a cell. For example, a cell failure may increase

the number of RRC request attempts (i.e., RRC), while the

number of active users (i.e., USER) remains relatively un-

changed. Thus, both sudden drops and correlation changes are

complementary to each other in characterizing performance

anomalies of cellular networks. In practice, if either one of

the KPI anomalies persists for a prolonged period (e.g., a few

hours), it may indicate the presence of network failures and

requires network administrators to investigate further. In the

following discussion, we propose a unified framework that can

effectively detect both sudden drops and correlation changes.

Our anomaly detection focuses on a per-cell basis by

inspecting the time-series instances of multiple KPIs in each

cell. In this work, we do not consider the correlation across

multiple cells. Also, we do not identify the root causes of the

anomalies due to insufficient information in our dataset. We

pose these issues as future work.

III. DESIGN

We present CELLPAD, a cellular network performance

anomaly detection framework. It takes the time-series data of

multiple KPIs as inputs, and detects both sudden drops and

correlation changes with high accuracy by taking into account

both seasonality and trend components in KPI time-series data.

It also provides a feedback loop to incrementally update the

prediction models based on the past detection outputs, thereby

Feature 

Engineering 
Predictors 

Anomaly 

Detection 

Anomaly? 
Y 

KPI Streams 

Normal  

Instances 

N 

Retrain 
Sudden 

Drop  

Correlation 

Change 

Fig. 4. CELLPAD architecture.

eliminating the manual efforts of specifying labeled data (i.e.,

ground truths) for model training.

A. Main Idea

CELLPAD builds on regression analysis to predict the

normal values of KPI instances in order to detect anomalies.

Figure 4 shows the CELLPAD architecture, which provides a

unified regression framework for detecting both sudden drops

and correlation changes. At a high level, CELLPAD takes

multiple time-series streams of KPI instances at different time

intervals (hours in our case) as inputs. It first performs feature

engineering to extract a set of features, whose values are

derived from the KPI instances that are observed up to the

current hour. The feature values serve as inputs to different

predictors, each of which performs a specific prediction algo-

rithm and outputs a predicted KPI value, which is the expected

value for a KPI at each hour in normal situations (i.e., without

anomalies). For sudden drop detection, CELLPAD returns one

predicted KPI value for each KPI instance being considered,

while for correlation change detection, it returns two predicted

KPI values for each pair of KPI instances being considered.

Finally, CELLPAD performs anomaly detection based on the

prediction at each hour by checking the deviations between

the actual and predicted KPI values. It concludes that the

current KPI instances are either anomalies (i.e., sudden drops

or correlation changes) or normal instances. For the latter case,

CELLPAD also feeds back the normal instances to retrain the

prediction models for improved detection accuracy.

One major design issue is to properly select the predictors

and features. In particular, the features depend on not only

what types of anomalies (sudden drops or correlation changes)

being detected, but also the predictors being used. In the fol-

lowing, we formulate the regression framework of CELLPAD

in detail, in which we first state the predictors that CELLPAD

supports, followed by the corresponding feature engineering

procedures.

B. Predictors

CELLPAD supports three families of predictors: simple sta-

tistical modeling, linear regression, and tree-based regression;

the latter two belong to machine-learning-based regression

approaches. Each predictor returns a predicted value for each

hour based on the underlying prediction algorithm. Here, we

summarize the algorithms that we consider under each family.

Simple statistical modeling: CELLPAD implements four

algorithms:
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Fig. 5. Regression applied in CELLPAD

• EWMA (Exponentially Weighted Moving Average) [19]: It

computes the predicted value based on the weighted values

of a set of instances, such that the weights are exponentially

decayed for older instances.

• WMA (Weighted Moving Average) [29]: Its prediction is also

based on the weighted instances as in EWMA, except that

the weights are linearly decayed.

• HW (Holt-Winters) [37]: It is a triple exponential smoothing

method that extends EWMA to deal with seasonality and

trend. It computes the predicted value as a function of the

weighted inputs of both instances as well as the seasonality

and trend components. It also estimates the seasonality and

trend components from the instances using EWMA.

• LCS (Local correlation score) [28]: It measures the corre-

lation of two time-series. It holds two synchronous sliding

windows to compute the auto-covariance matrices continu-

ously and then aggregates the matrices using their exponen-

tially weighted averages. We mainly use LCS for detecting

correlation changes.

Linear regression: CELLPAD implements two linear regres-

sion algorithms to model the linear relationships between

features and predicted values:

• SLR (Simple linear regression) [5]: It computes the predicted

values based on the optimal linear combination of the values

of a feature that can minimize the mean square deviation.

• HR (Huber regression) [21]: It enhances simple linear

regression to be robust against noise, by controlling whether

instances are classified as outliers via an epsilon parameter

(a smaller epsilon is more robust to outliers). For example,

Figure 5(a) shows how Huber regression excludes outliers

from modeling as opposed to simple linear regression.

Tree-based regression: To model the non-linear relationships

between features and predicted values, CELLPAD also imple-

ments two tree-based regression algorithms:

• RT (Regression tree) [7]: It organizes the feature space

into a tree structure, in which each non-leaf node is a

decision-making process that splits the feature space based

on a selected feature, while each leaf node holds a local

predictor that averages all instances that fall into the feature

partition. Figure 5(b) shows a regression tree example, in

which we choose the hour and day indexes as the features

(see Section III-C for details). The predicted value is 10

if the features satisfy “(Hour == 5) and (6 ≤ Day ≤ 7)”.

Choosing which feature for decision making and how to split

the feature space can be controlled by a set of parameters,

which we omit details here.

• RF (Random forest) [6]: It is an ensemble learning algo-

rithm. It samples different subsets of instances and features

to form multiple regression trees and take their average

prediction result. It is robust against irrelevant features and

noises than a single regression tree in general.

Discussion: Simple statistical modeling is easy to implement,

as it can return the predicted values based on the observed

instances. However, it has the major limitation that the pre-

diction accuracy heavily depends on the parameter settings.

In contrast, both linear regression and tree-based regression

are less dependent on parameters, which can be “learned”

from input instances. However, they require careful feature

engineering for the regression analysis, as we will explain in

the next subsection.

C. Feature Engineering

We now elaborate the feature engineering process for lin-

ear regression and tree-based regression. CELLPAD extracts

different features for sudden drop and correlation change

detection. We also describe how we address seasonality and

trend.

Sudden drops: CELLPAD uses two types of features for sud-

den drop detection. The first type is called indexical features,

in which we use the time indexes of each KPI instance as

features. To take into account seasonality, we index the hour

and day from 0 to 23 and from 0 to 6, respectively, and use

the hour and day indexes as the features (called Hour and

Day, respectively). Intuitively, if we group the instances by

the same Hour only, we capture daily seasonality; if we group

the instances by both the same Hour and Day, we capture

weekly seasonality. In this work, we mainly focus on weekly

seasonality. The indexical features are mainly used by tree-

based regression (see Figure 5(b)).

The second type is called numerical features, in which we

apply some numerical operations to KPI instances to extract

features. We define each numerical feature as 〈win, oper〉, in

which we run oper on the KPI instances in the past win weeks.

For instance, 〈5,mean〉 means that we take the mean of KPI

values in the past five weeks. By sampling different values of

win and types of oper, we can generate a number of numerical

features. To account for weekly seasonality, we only pick the

KPI instances with the same Hour and Day. The numerical

features can be used by both linear regression and tree-based

regression.

Correlation changes: For correlation change detection (say,

for KPI1 and KPI2), CELLPAD trains two predictors, one for

KPI1 and one for KPI2. The predictor for KPI1 (resp. KPI2)

takes the value of the current instance of KPI2 (resp. KPI1) as

a feature. The rationale is that if the two KPIs are correlated,

each KPI instance is dependent on another KPI instance at any

given time. Linear regression uses this feature for prediction,

while tree-based regression additionally takes Hour and Day

as features for prediction.



Trend removal: As the changes in the KPI values caused by

the trend component affect anomaly detection accuracy, we

provide an option of removing the trend component from the

raw KPI time-series. CELLPAD removes the trend component

before extracting the features based on the idea of time-series

decomposition [22]. Specifically, for a given KPI instance at

some hour, CELLPAD computes the average KPI value of

over a sliding window of 168 hours using the recent past

and future KPI values as in Section II-C (note that we do

not start anomaly detection until we collect enough past KPI

instances for trend removal). To remove the trend component,

CELLPAD divides the raw KPI value by the computed average

value and feeds the result to feature engineering. Note that we

can treat the trend component as additive or multiplicative, yet

we choose the latter as it achieves better detection accuracy

after trend removal based on our experience. We study the

effect of trend removal in Section IV.

D. Anomaly Detection

To perform anomaly detection, we first calculate the degree

of deviation. For sudden drop detection, CELLPAD computes

the drop ratio D =
KPIa−KPIp

KPIp
, where KPIa and KPIp denote

the actual and predicted KPI values, respectively. If D is much

less than 0, it likely implies a sudden drop. To detect corre-

lation changes of two KPIs (say, KPI1 and KPI2), CELLPAD

computes the change ratio for KPI1 by C1 =
KPI1a−KPI1p

KPI1p
, and

that for KPI2 by C2 =
KPI2a−KPI2p

KPI2p
, where KPI1a and KPI1p

(resp. KPI2a and KPI2p) denote the actual and predicted KPI

values of KPI1 (resp. KPI2), respectively.

CELLPAD uses the “N -sigma rule” for anomaly detection,

in which an anomaly is expected to deviate from the mean by

a significant number N of standard deviations. At each hour,

we calculate the mean µ and standard deviation σ for the drop

ratios or change ratios in the last 168 hours. We call a KPI

instance a sudden drop if D < µ − Nσ, and call two KPI

instances a correlation change if C1 /∈ [µ − Nσ, µ + Nσ] or

C2 /∈ [µ − Nσ, µ + Nσ]. By default, we set N = 3, yet we

also consider different values of N for the threshold selection.

Finally, CELLPAD outputs the anomalies, or feeds back the

remaining normal instances to retrain the prediction model (see

Figure 4), which extracts features from the normal instances

for prediction.

IV. EVALUATION

We have implemented a CELLPAD prototype in Python.

For EWMA, WMA, and LCS, we implement their algorithms

directly; for HW, we use the open-source code [26], which

selects the optimized weights that minimize a loss function;

for SLR, HR, RT, and RF, we implement them using scikit-

learn [1].

We evaluate the anomaly detection accuracy of CELLPAD,

and compare CELLPAD with Twitter’s open-source time-

series anomaly detector [2] (called TWITTER for short). We

address the following questions: (i) What is the accuracy of

different predictors in sudden drop and correlation change

detection? (ii) How do seasonality and trend affect detection

accuracy? (iii) How is CELLPAD compared with TWITTER?

A. Methodology

It is a labor-intensive task for network administrators to

identify real anomalies (i.e., labels) from our dataset, which

is large and complex by nature; the same problem is also

reported by previous work [3], [8], [24], [36]. Thus, we

resort to injecting synthetic anomalies into the raw data of

our dataset for evaluation. Specifically, we randomly select

80 cells from our dataset for evaluation. We aggregate the

three collection periods into a continuous 17-week period (see

Section II-B). In each cell, we randomly pick 1.5% of hours

and three continuous segments with a uniformly distributed

length of 3 to 24 hours each to inject anomalies. For sudden

drops, we decrement the KPI values of each anomaly hour by

a percentage uniformly distributed from 30% to 100%. For

correlation changes, we pick one of the two KPIs of each

anomaly hour, and either increments or decrements its value

by a percentage uniformly distributed from 30% to 100%.

We also apply a simple rule-based method to label the

obvious anomalies from the dataset based on the raw values.

For sudden drops, we treat a KPI instance whose raw value is

75% smaller than either one of the KPI values at the same hour

and day in the past two weeks as a sudden drop. For correlation

changes, we compute and rank the ratios of the values of all

KPI instance pairs, and treat the top 0.5% and lowest 0.5% of

pairs as correlation changes. Finally, we have roughly 3-4% of

anomalies in the whole 17-week dataset in each cell, and this

percentage is consistent with the real-world scenarios based

on our internal discussion with network administrators.

We use the first two weeks of KPI instances, including both

normal instances and synthetic anomalies, to bootstrap our

predictors. We then start our evaluation from the third week

onwards. We do not exclude the synthetic anomalies in our

bootstrapping process; instead, we rely on prediction model

retraining to improve the robustness of our prediction.

B. Sudden Drop Detection

We first evaluate CELLPAD in sudden drop detection. We

consider the metric PRAUC (Area Under Precision-Recall

Curve), which is shown to be robust when the distributions of

normal instances and anomalies are highly imbalanced [15].

Here, we use the drop ratio (see Section III-D) as the predic-

tion input to PRAUC, which computes various precision and

recall pairs against different thresholds to obtain an accuracy

measure between 0 and 1 (higher means more accurate). We

only present the results for the KPI USER.

We consider the following predictors:

• EWMA, WMA, and HW: We compute the average using the

values with the same hour and day indexes from the first

week to the previous week. For EWMA, we set the weight

to 0.8; for WMA, the weights are set based on the number

of previous weeks; for HW, we set the seasonal period as

168 weeks and use it to compute the optimized weights [26].



(a) With trend removal

(b) Without trend removal

Fig. 6. PRAUC of different predictors in sudden drop detection.

• SLR and HR: The features are the mean and median of the

values with the same hour and day indexes in the past w
weeks, where w is sampled at w = 3, 5, 7, 10, 13; for HR,

we set ǫ = 1.35.

• RT and RF: We consider four variants for each of RT and

RF. (i) RT time and RF time, which use the hour and day

indexes as indexical features; (ii) RT mean and RF mean,

which use the mean and median features as in SLR; (iii)

RT ma and RF ma, which use the moving averages of both

EMWA and WMA as features; and (iv) RT all and RF all,

which use all features as described in (i), (ii), and (iii). For

RF, we set the number of trees as 100.

Figure 6 shows the boxplots of PRAUC for different

predictors. Figure 6(a) first considers the case in which we

remove the trend components. Simple statistical modeling and

tree-based regression generally achieve good accuracy; for

example, EWMA, WMA, RT time, RF time, and RF all have

an average PRAUC of more than 0.9. On the other hand, HW,

SLR, and HR have low accuracy, with an average PRAUC

of below 0.8. We note that RF maintains high accuracy using

different features (with a mean of at least 0.86).

Figure 6(b) shows the results when we do not remove trend

components. We see that the accuracy of all predictors drops

significantly. This justifies the necessity of removing trend

components in sudden drop detection.

C. Correlation Change Detection

We now study correlation change detection, in which

we consider the following predictor implementations in

CELLPAD:

• LCS: We set the sliding window size as 20 hours and the

smoothing constant as 0.8.

• SLR and HR: For each of the predictors of a KPI, we set

the value of another KPI as the only feature.

(a) With trend removal (b) Without trend removal

Fig. 7. PRAUC of different predictors in correlation change detection.

• RT and RF: We consider two variants for each of RT and

RF. (i) RT and RF, which use the value of another KPI as

the only feature as in SLR and HR; and (ii) RT+ and RF+,

which use the value of another KPI as a feature as well

as the hour and day indexes as the indexical features. The

rationale of using indexical features in RT+ and RF+ is to

take into account weekly seasonality.

We use PRAUC as the accuracy metric. We use the average

of two absolute change ratios 1

2
(|C1|+|C2|) (see Section III-D)

as the input to PRAUC. Here, we focus on the KPI pairs

(USER, RRC).

Figure 7 shows the boxplots of PRAUC for different pre-

dictors. Depending on the predictors, the accuracy may be

improved or degraded with trend removal. As opposed to

sudden drop detection, RF does not achieve high accuracy

here, even though using different features. Overall, HR without

trend removal (i.e., using the raw KPI data for anomaly

detection) achieves the highest PRAUC (with a mean 0.93).

D. Comparisons with TWITTER

We now compare CELLPAD with TWITTER [2] in sudden

drop detection. TWITTER is an open-source anomaly detection

system that also takes into account the seasonality and trend

components in the anomaly detection of time-series data. Since

TWITTER is designed for anomaly detection in a single time-

series (as opposed to two time-series in correlation change

detection), we only focus on sudden drop detection. Also,

TWITTER only tells if a time point is an anomaly, but does

not return an anomaly measure for us to compute PRAUC for

different thresholds. Thus, we consider the following accuracy

metrics instead: (i) precision, (ii) recall, and (iii) F1-score (i.e.,

2×Precision×Recall / (Precision + Recall)). For CELLPAD,

we pick RF all (with trend removal) as the predictor.

Figure 8 compares CELLPAD and TWITTER in sudden drop

detection for the KPI USER. CELLPAD has much higher

precision than TWITTER, but with slightly lower recall. Over-

all, CELLPAD achieves higher F1-score than TWITTER (with

means 0.90 and 0.82, respectively). One possible reason is

that TWITTER builds on statistical modeling, while CELLPAD

uses random forest regression here to achieve high accuracy;

we pose further investigations as future work.

E. Effects of Model Retraining

Finally, we study the effect of retraining the predictor by

feeding back the prior detection results. Here, we consider
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Fig. 8. Comparisons between CELLPAD and TWITTER.

(a) Sudden drop

(b) Correlation change

Fig. 9. Effects of model retraining.

two cases: (i) the baseline case, which uses all instances

(including normal instances and anomalies) to update the

predictor and (ii) our CELLPAD design, which uses only

the normal instances to update the predictor. In addition,

we test different thresholds in anomaly detection by varying

the number of standard deviations from the mean; here, we

consider 2σ, 2.5σ, and 3σ. We use RF all (with trend removal)

and HR (without trend removal) as the predictors for sudden

drop detection and correlation change detection, respectively.

Figure 9 shows the results for both sudden drop and

correlation change detection; the former considers all six KPIs,

while the latter considers six KPI pairs which show high PC

(see Table II). We make the following observations. First, both

RF all and HR maintain high accuracy for different KPIs and

KPI pairs in sudden drop detection and correlation change

detection, respectively. Second, the baseline and CELLPAD

do not show significant difference in sudden drop detection,

while CELLPAD achieves higher accuracy than the baseline

in correlation change detection. This justifies the need of

retraining the predictor using normal instances only. Finally,

we do not see significant difference for different thresholds

in CELLPAD, meaning that CELLPAD remains robust in

threshold selection.

F. Summary

We summarize our main findings as follows:

• In sudden drop detection, random forest regression with

trend removal achieves high PRAUC using different fea-

tures, although some simple statistical modeling algorithms

such as EWMA and WMA can also achieve high PRAUC.

• In correlation change detection, Huber regression without

trend removal achieves the highest PRAUC across all pre-

dictors.

• Trend removal improves detection accuracy in sudden drop

detection across all predictors, while its accuracy varies

across predictors in correlation change detection.

• CELLPAD achieves higher F1-Score than TWITTER in

sudden drop detection (note that TWITTER currently does

not support correlation change detection).

• Retraining the predictor with normal instances only im-

proves PRAUC in correlation change detection.

• CELLPAD remains robust for different choices of thresholds

in anomaly detection.

V. RELATED WORK

In this section, we review related work on performance

characterization and anomaly detection specifically in the

context of cellular networks.

Performance characterization: Several measurement stud-

ies analyze real-world traffic traces collected at the cellular

network core. Most studies focus on production 3G UMTS

cellular networks. For example, Qian et al. [30] characterize

the cellular network state machine and analyze how control

parameters affect radio resource usage and mobile devices’

energy consumption. He et al. [18] and Qian et al. [31] study

the interactions between cellular data traffic and signaling

overhead. Chen et al. [10] uses the supervised regression

approach RuleFit [16] to how the round-trip time and loss

rates are influenced by different factors such as traffic load

and application types. Shafiq et al. [32] study the performance

degradations in two crowded events. Given the emergence

of 4G LTE, Huang et al. [20] study the TCP performance

based on 10-day traffic traces collected in an LTE network

and identify the limitations of TCP over LTE. Our work also

analyzes real-world traces based on the measurements at the

network core, with specific emphasis on anomaly detection.

Anomaly detection: Some measurement studies pay special

attention to anomaly detection in cellular networks. For exam-

ple, Theera-Ampornpunt et al. [34] use classification models

to predict network drops and drop duration. Chen et al. [11]

use customer care calls to infer anomalies through regression.

Ahmed et al. [3] infer end-to-end performance degradations in

four aspects: user locations, content providers, device types,

and application types, and their inference models build on

robust regression and associative mining. Casas et al. [8] apply

decision-tree-based classification for anomaly detection, and

specifically focus on DNS query performance.

Prior studies perform anomaly detection based on cellular

KPIs as in our work. Ciocarlie et al. [13] propose an adaptive



ensemble learning method to address concept drifts in cell

anomaly detection. Some studies [4], [14], [23], [27], [33]

present automated diagnosis to further identify the root causes

of detected KPI anomalies. Chernogorov et al. [12] propose a

data mining approach to detect unavailable cells that do not

trigger alarms. Besides cellular network management, Twitter

[2], [36] proposes an anomaly detection framework for long-

term time-series data by addressing seasonality and trend

components, yet our evaluation shows that it cannot achieve

high detection accuracy as in CELLPAD based on our KPI

dataset. Opprentice [25] focuses on KPI anomaly detection in a

global search engine and applies machine learning techniques

for anomaly detection. In contrast, CELLPAD focuses on

providing a unified framework to detect both sudden drops

and correlation changes, while correlation changes are not

considered by any previous work.

VI. CONCLUSIONS

We study the problem of detecting performance anomalies

in cellular networks, and motivate the problem based on a

large-scale real-world KPI dataset collected from an opera-

tional LTE network. We present CELLPAD, a unified per-

formance anomaly detection framework for cellular networks.

CELLPAD targets two types of anomaly detection problems,

namely sudden drop detection and correlation change de-

tection. It has the following design elements: (i) support

of various statistical and machine-learning-based regression

algorithms, (ii) addressing the seasonality and trend patterns

in anomaly detection, and (iii) providing a feedback loop

for prediction model retraining. Our trace-driven evaluation

demonstrates how CELLPAD achieves automated and accurate

anomaly detection.
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