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Abstract—Open-source cloud platforms provide a feasible
alternative of deploying cloud computing in low-cost commodity
hardware and operating systems. To enhance the reliability of an
open-source cloud, we propose CloudVS, an add-on system that
enables version control for virtual machines (VMs). CloudVS
targets a commodity cloud platform that has limited available
resources. It exploits content similarities across different VM
versions using redundancy elimination (RE), such that only non-
redundant data chunks of a VM version are transmitted over the
network and kept in persistent storage. Using RE as a building
block, we propose a suite of performance adaptation mechanisms
that make CloudVS amenable to different commodity settings.
Specifically, we propose a tunable mechanism to balance the
storage and disk seek overheads, as well as various I/O opti-
mization techniques to minimize the interferences to other co-
resident processes. Using a 3-month span of real VM snapshots,
we experiment CloudVS in an open-source cloud testbed built on
Eucalyptus. We demonstrate how CloudVS leverages RE to save
the storage cost and the VM operation time than simply keeping
full VM images. More importantly, we show how CloudVS can
be parameterized to balance the performance trade-offs between
version control and normal VM operations.

I. INTRODUCTION

With the advent of cloud computing, people can pay for

computing resources from commercial cloud service providers

in a pay-as-you-go manner [1]. Open-source cloud platforms,

such as Eucalyptus [11] and OpenStack [12], provide an

alternative of using cloud computing with the features of

self-manageability, low deployment cost, and extensibility.

Using open-source cloud software, one can deploy an in-house

private cloud, while preserving the inherent features of existing

public commercial clouds such as virtualization and resource

management. In addition, an open-source cloud is deployable

in low-cost commodity hardware and operating systems that

are readily available to general users. Its open-source nature

also provides flexibility for developers to extend the cloud

implementation with new capabilities.

To deploy an open-source cloud (as a private cloud) in

practice, a major challenge is to ensure its reliability toward

software/hardware failures, especially with the fact that the

cloud infrastructure is now self-managed. Here, we propose

to enable version control for virtual machines (VMs), in

which we take different snapshots of individual VM images
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launched within the cloud and keep different VM versions.

Applying version control for VMs enables users to save

work-in-progress jobs in persistent storage. From a reliability

perspective, one can roll-back to the latest VM version due to

software/hardware crashes, and perform forensic analysis in

the past VM versions should malicious attacks happen.

However, there are several design challenges of enabling

version control for VMs in an open-source cloud platform:

• Scalability to many VM versions. We need to store and

maintain a large volume of VM versions within a cloud,

given that the cloud may handle the VMs of many users,

and each VM may create many VM versions over time.

• Limited network bandwidth. There could be a huge net-

work transmission overhead of transmitting VM snapshot

versions from different compute nodes in the cloud to the

repository that stores the snapshots.

• Compatibility with commodity settings. The version con-

trol mechanism must be compatible with the cloud infras-

tructure, such that the performance of the normal cloud

operations is preserved. Since an open-source cloud is de-

ployable in commodity hardware and operating systems,

we require that the version control mechanism be able

to take into consideration the performance constraints of

storage, computation, and transmission bandwidth.

In this paper, we propose CloudVS, a practical version

control system for storing and managing different versions

of VMs designed for an open-source cloud deployed under

commodity settings. CloudVS incrementally builds different

VM snapshot versions using redundancy elimination (RE),

such that only the new and modified chunks of the current

VM image are transmitted over the network and stored in the

backend. A particular VM version can be constructed from

prior VM versions. We demonstrate how RE can be used to

minimize the overheads of transmission and storage in the

version control for VMs in an open-source cloud platform.

On top of RE, we propose a suite of adaptation mecha-

nisms that make CloudVS amenable to different commodity

settings. One major challenge of using RE is that it introduces

fragmentation, i.e., the content of a VM image is scattered in

different VM versions. Fragmentation increases the disk seek

overhead. Thus, we propose a simple tunable mechanism that

can trade between storage and fragmentation overheads via a

single parameter. Also, we propose various I/O optimization

techniques to mitigate the performance interferences to other

co-resident processes (e.g., VM instances) during the version-978-1-4673-0269-2/12/$31.00 c© 2012 IEEE



ing process. In short, CloudVS exploits different performance

adaptation strategies to easily make performance trade-offs

between version control and normal VM operations.

We implement CloudVS and integrate it into Eucalyptus

[11] as an add-on system. The current open-source implemen-

tation of Eucalyptus (whose version is 2.0.3 at the time this

paper being written) does not provide version control for VMs,

so all changes made to a VM will be lost if the VM is shut

down. As a proof of concept, we show how CloudVS remedies

this limitation with minor modifications of the Eucalyptus

source code, such that the original semantics of Eucalyptus

are completely preserved.

We conduct extensive experiments for CloudVS on a

Eucalyptus-based cloud testbed. We evaluate CloudVS using

a 3-month span of snapshots of a regularly updated VM. We

show how CloudVS uses RE to reduce the storage cost and

VM operation times when compared to simply keeping VM

versions with full VM images. Also, we show that CloudVS

can be parameterized to address different performance trade-

offs and limit the interferences to co-resident processes.

The remainder of the paper proceeds as follows. In Sec-

tion II, we overview the cloud architecture considered in

this paper. In Section III, we explain the design of CloudVS

and propose several practical optimization techniques. In Sec-

tion IV, we experiment CloudVS in a cloud testbed built on

Eucalyptus. In Section V, we review related work, and finally,

Section VI concludes.

II. BACKGROUND

Figure 1 shows a simplified cloud architecture that we

consider in this paper. It consists of three types of nodes:

(i) the controller node, which processes VM-related requests

from users and manages the lifecycles of VM instances, (ii) the

compute node, which runs VM instances, and (iii) the storage

node, which provides an interface that accesses the VM images

in the persistent storage backend. Note that existing open-

source cloud platforms such as Eucalyptus [11] and OpenStack

[12] are designed based on the same layout as in Figure 1.

To aid our discussion, in this paper, we mainly focus on a

simplified cloud platform that has only one controller node,

one storage node, and multiple compute nodes.

To launch a VM instance, a user first issues a start re-

quest through the controller node, which selects an available

compute node on which the VM instance runs. The selected

compute node then retrieves the corresponding VM image

from the storage node. It also allocates local disk space for

running the VM instance. Note that the compute node can

cache the image in the local disk for subsequent use, and this

feature is supported in current open-source cloud platforms.

Similarly, the user can issue a stop request to the controller

node to stop the VM instance. The controller node then

instructs the compute node to destroy the VM instance and

recycle the resources.

We examine how the current implementations of Eucalyptus

(version 2.0.3) and OpenStack (version 2011.2) handle the

lifecycle of a VM instance. In Eucalyptus, when a VM instance
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Fig. 1. A simplified cloud architecture considered in this paper.

is stopped, all modifications made to the VM instance will be

permanently purged. OpenStack provides a snapshot feature

that supports regular backups of VM images [13]. However,

it only sends the full snapshot of the entire VM image to the

storage backend, and this introduces a large transmission over-

head. We believe that an efficient version control mechanism

will be a desirable add-on feature for existing open-source

cloud platforms.

III. CLOUDVS DESIGN

In this section, we present the design of CloudVS, a practical

system that enables version control for VMs in mainstream

open-source cloud platforms. We focus on the scenario where

the cloud platform is deployed atop low-cost commodity

hardware and operating systems that have limited available

resources. Thus, the design of CloudVS aims to mitigate the

overheads in storage, computation, and transmission.

A. Overview

The original cloud platform (e.g., Eucalyptus and Open-

Stack) only launches a VM instance from a VM image that

contains only basic configurations without user-specific states.

This VM image, which we call the base image, is accessible by

all users. With CloudVS, we keep different versions of a user-

modified VM for each user. Instead of storing the full image

of the user-modified VM, CloudVS incrementally builds each

VM version from the prior versions, such that the current VM

version only keeps the delta, defined as the new or changed

content of a VM image. For the unchanged content, the current

VM version keeps references that refer to the prior versions.

The delta will be stored in the persistent storage managed

by the storage node (see Figure 1). Here, we consider two

types of a delta: (i) the incremental delta, which holds only

the new or modified content since the last version, and (ii) the

differential delta, which holds all the new and modified content

with respect to the base image. Keeping either incremental

or differential deltas for different VM versions minimizes

the redundant content being stored. We call this approach

redundancy elimination (RE). We elaborate how we construct

deltas for different VM versions in Section III-B.

We can easily see that the incremental delta stores the min-

imum redundant content, with the trade-off that a VM version

needs to be restored by accessing the content of multiple

prior versions. This introduces fragmentation, meaning that the

content of a VM is scattered in different VM versions instead

of being stored sequentially. It results in more disk seeks,

thereby increasing the restore time of a VM. Fragmentation

is known to be a fundamental problem in RE-based storage



systems [19]. On the other hand, the differential delta mitigates

the fragmentation problem since it can be directly merged with

the base image to have the VM image reconstructed. However,

this requires the storage of the redundant content that appears

in the prior VM versions. In CloudVS, we balance the trade-off

of storage and fragmentation via a single tunable parameter.

See Section III-C for details.

During versioning, CloudVS needs to scan the entire VM

image for hash computation. This involves substantial disk

processing and disrupts other co-resident processes in the same

compute node. To minimize the interference, we propose sev-

eral I/O optimization techniques, as detailed in Section III-D.

The CloudVS implementation is a fork of the original

execution flow of existing cloud platforms, so CloudVS can be

freely enabled or disabled without interfering in the original

execution logic. In Section III-E, we illustrate how CloudVS

can be integrated into Eucalyptus as a proof of concept.

B. Versioning with Redundancy Elimination

CloudVS creates the delta for a VM version based on

redundancy elimination (RE), which aims to minimize the

network transfer bandwidth and the storage overhead. Similar

RE-based versioning approaches have been proposed, such as

in cloud backup systems [22], [17], which target the storage

of general data types. On the other hand, since we only

apply RE for VM images, we can use a more lightweight RE

algorithm. Here, we show how RE is used as a building block

in CloudVS. In later subsections, we will further optimize our

RE approach.

For simplicity and efficiency, we choose fixed-size chunking

as our RE algorithm, whose main idea is to divide a VM image

into fixed-size chunks (e.g., of size 4KB) and only keep the

new and modified chunks in the current VM version. Note that

the RE approach used in CloudVS can also be implemented

with more robust RE algorithms (e.g., rsync [20] and Rabin

fingerprinting [16]), but fixed-size chunking has been shown

to be effective in RE for VM images [5].

We now elaborate how CloudVS uses RE to perform

versioning for VMs in detail. We apply cryptographic hashing

(e.g., SHA-1) to the content of each fixed-size chunk, such that

two chunks with the same hash are considered to have identical

content. It is shown that if cryptographic hashing is used,

then the probability of having hash collisions is negligible in

practice [15].

There are two scenarios where CloudVS can trigger the

versioning process: (i) shutdown-based, in which CloudVS

creates a new VM version when the VM is about to shut

down and release its resources, and (ii) time-based, in which

CloudVS performs periodic versioning on a running VM. In

both scenarios, we need to first identify the hashes of the

VM image of the last version so as to compute the delta. In

shutdown-based versioning, since the last version is created in

the last VM shutdown, CloudVS generates hashes for the last

version when the VM is launched again in a newly assigned

compute node. On the other hand, in time-based versioning,

CloudVS generates hashes each time when the VM version
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Fig. 2. Example of how CloudVS uses RE to correlate different VM versions.
The compute node will send the incremental delta for each version to the
storage node for persistent storage.

is created. In both cases, the hashes of the last version will

be cached in the compute node where the VM is currently

running, and later compared with the current VM version.

To create the current VM version, we compare by hashes

the different chunks of the VM images of the last and

current versions. The comparison is done in the compute node

that runs the VM. We generate the incremental delta, which

contains the new and modified chunks since the last version.

The incremental delta, together with the references that refer

to the already existing chunks in prior versions, will be sent to

the storage node and stored in the persistent storage backend.

Figure 2 illustrates how different VM versions are correlated

using RE. Each VM version has a metadata object that keeps

the references for all the chunks that appear in the current or

prior VM versions. To illustrate, suppose that the original base

image contains six chunks (see Figure 2). In Version 1, if the

3rd, 5th, and 6th chunks have been modified, then Version 1

will allocate space for holding such modified chunks, while

keeping references that point to the 1st, 2nd, and 4th chunks

in the base image. Now, in Version 2, if the 5th chunk is

modified again and the 7th chunk is created, then Version 2

will allocate space for holding the 5th and 7th chunks and have

the references to refer to other chunks appearing in the base

image or Version 1. In general, the metadata object and the

new/modified chunks of each VM version altogether have a

much smaller size than the full VM image, thereby minimizing

the overhead of maintaining various VM versions.

To restore a particular VM version, the storage node looks

up the metadata object and fetches the corresponding chunks.

Suppose that the base image is already cached in the compute

node (see Section II). Then the storage node will construct

the differential delta (i.e., the new and modified chunks with

respect to the base image) for the VM version and send

it to the compute node, which will then merge it with the

cached base image. This introduces less transmission overhead

than sending the full VM image. To illustrate, suppose that

Version 2 in Figure 2 is to be restored. Then the storage node

will transmit only the 3rd, 5th, 6th, and 7th chunks.

Typically, a VM image contains many system files of the

guest operating system that rarely change. Thus, we expect

that RE can effectively reduce the storage of such redundant

content. We validate this in Section IV.

C. Tunable Delta Storage

If the storage node directly stores the incremental delta (i.e.,

the new and modified chunks since the last version) for each



version, then the fragmentation overhead may exist during the

restore of a VM version. Referring to Figure 2 again, suppose

that Version 2 is to be restored. In this case, the storage node

needs to retrieve the 3rd, 5th, 6th, and 7th chunks. If these

chunks are returned in a sequential order, then the storage

node needs to access Version 1 and Version 2 alternately. Let

us define a non-sequential read if the next chunk to be read

appears in a different version from the current chunk being

read. Then in the above example, we have a total of three

non-sequential reads (i.e., for the 5th, 6th, and 7th chunks).

In another extreme, the storage node can simply store the

differential delta (i.e., all the new and modified chunks with

respect to the base image). For example, Version 2 may store

the 3rd, 5th, 6th, and 7th chunks. Then all reads become

sequential, but this introduces a high storage overhead.

We emphasize that the versioning process always transmits

incremental deltas from a compute node to the storage node,

so as to minimize the transmission overhead. However, we

must address how the storage node should store the deltas for

different versions that can balance the costs of storage and

fragmentation.

Here, we consider one heuristic design that uses a single

fragmentation parameter α to trade between the fragmentation

and storage overhead by exploring the intermediates between

the extremes of storing incremental and differential deltas. The

design is composed of four steps.

1) We divide all chunks in the differential delta into chunk

groups, each of which has the same number of chunks

(except the last chunk group).

2) For each chunk group, we count the number of non-

sequential reads as defined above.

3) We sort the chunk groups by the number of non-

sequential reads in descending order.

4) The top proportion α (0≤ α≤ 1) of the chunk groups

will store the differential deltas, while the remaining

chunk groups will store the incremental deltas.

The parameter α is tunable according to different application

needs. In the extremes, if α = 1, then each version stores

the differential delta; if α = 0, then each version stores

only the incremental delta. We observe that even with this

simple heuristic, we can effectively make the trade-off (see

Section IV).

To illustrate, we consider again how to restore Version 2 in

Figure 2. Suppose that we set the chunk group size to be two

and α = 0.5. In Version 2, the differential delta consists of

the 3rd, 5th, 6th, and 7th chunks. Thus, there are two chunk

groups, i.e., the 3rd and 5th chunks, as well as the 6th and

7th chunks. Both chunk groups have one non-sequential read.

If α = 0.5, then we have the first chunk group store the

differential delta, while the second chunk group still stores

the incremental delta. Figure 3 shows the final result.

D. I/O Optimization

When creating a version for a VM, CloudVS needs to scan

the entire VM image for hash computation in the compute

node. The scanning process may degrade the performance of
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Fig. 3. Example of how CloudVS stores the incremental and differential
deltas in different chunk groups. Here, the 3rd and 5th chunks are stored in
Version 2 as the differential delta for the first chunk group (assuming α =
0.5).

normal operations of the scanned VM as well as other co-

resident processes in the same compute node. We propose

several I/O optimization techniques that minimize the perfor-

mance interferences due to versioning.

LVM Snapshot. CloudVS needs to avoid content changes

during versioning so that the hashes are correctly computed.

One simple approach is to apply an exclusive lock to the

entire VM image, but this also makes the VM unavailable (or

“frozen”) in that period. Here, we have CloudVS work on a

mirror snapshot by leveraging the file system snapshot feature

of the logical volume manager (LVM) [7]. Each compute

node hosts VM images with the LVM. To create a version

for a VM, we then apply the snapshot feature of LVM to

create a snapshot of the VM image volume. Once a snapshot

is created, the VM returns to its normal operations, while

in the background, CloudVS computes the hashes on the

created snapshot rather than on the VM. The snapshot will

be destroyed when the versioning process is finished. With

LVM snapshot, we now only lock the VM image during the

snapshot creation, instead of locking the VM image throughout

the versioning period.

Pre-declaring access patterns. When CloudVS scans the

entire VM image, the image data will be read from disk and

saved in the system cache, thereby flushing the existing cached

data. Since the image data is read once only, we should avoid

disrupting the accesses to existing cached data for other co-

resident processes. Here, we pre-declare the access patterns of

the VM image using the POSIX system call posix_fadvise.

After computing the hash of a specific data chunk, we invoke

posix_fadvise with the parameter POSIX_FADV_DONTNEED

to notify the kernel that the data chunk will no longer be

accessed in the near future. This keeps the kernel from caching

the entire VM image during versioning.

Rate limiting of disk reads. The scanning of a VM image can

invoke a large burst of disk reads that will disturb other co-

resident processes that share the same physical disk. CloudVS

implements a rate throttling mechanism that limits the rate of

disk read accesses. This mechanism is coupled with the LVM

snapshot function (see above), i.e., after a snapshot is created,

we monitor the read throughput of scanning the snapshot. If

the read throughput is higher than the specified rate, we invoke

the POSIX call nanosleep to put the read operation on hold.

The throttling rate can be parameterized in advance. Although

this increases the versioning time, since the versioning process

is done on the mirror snapshot in the background, the extended



versioning time has minimal impact.

E. Implementation Details

We implement a prototype of CloudVS in C. We integrate

it into a cloud platform based on the Eucalyptus open-source

edition 2.0. As shown below, the integration only involves

slight modifications in the source code.

Deployment in the controller node. A user can specify a

specific VM version by providing versionID as an input,

where versionID is a global identifier that uniquely identifies

different VM versions. To launch a VM, the user needs to

first prepare his legitimate access key and secret key, both of

which are required by the original Eucalyptus implementa-

tion. The user may store the keys as environment variables.

Then the user can issue the command euca-run-instance

--user-data versionID to start the specific VM version,

where the command euca-run-instances comes with the

command-line management tool euca2tools of Eucalyptus.

Deployment in each compute node. CloudVS is composed

of two modules: the Snapshot and Restore modules, which

are responsible for generating deltas for different VM ver-

sions and restoring a VM version, respectively. We integrate

both modules into the operations of each compute node. In

our current prototype, we mainly consider shutdown-based

versioning (see Section III-B). We insert the Snapshot and

Restore modules right before the VM is started and after

the VM is shut down, respectively. We add both modules

in ∼eucalyptus/storage/storage.c. The integration in-

volves no more than 20 lines of code changes.

Deployment in the storage node. We add a new daemon

in the storage backend that listens to the requests from the

Snapshot and Restore modules in the compute nodes, and

retrieves and saves the specified version, respectively.

IV. EXPERIMENTS

We conduct testbed experiments on our CloudVS prototype

on a Eucalyptus-based cloud platform that is running atop

commodity hardware and operating systems.

A. Dataset

We drive our experiments using a 3-month span of VM

snapshots that are generated as follow. We prepare a VM that

is installed with Fedora 14 and configured with 5GB harddisk

space. We deploy the VM with the Internet connectivity, and

leave it in the “always-on” state for a 90-day period from

February 23, 2011 to May 24, 2011. We schedule a daily

cron job yum -y update to make the VM regularly download

and install any latest updates from the Internet. The installed

updates will modify various system files, causing changes to

the disk content of the VM. Note that the VM also runs various

background jobs that constantly change its disk content. We

then take a full snapshot for the VM image daily.

To understand how different VM snapshots evolve, we

compute the sizes of incremental and differential deltas using

fixed-size chunking with chunk size 4KB. Figure 4 shows the

changes of the VM image on individual days, including the

sizes of the differential deltas with respect to the base image

on the first day (i.e., February 23, 2011), the sizes of the

incremental deltas with respect to the image of the previous

day, as well as the numbers of updates downloaded. In general,

the sizes of the differential deltas have an increasing trend,

except that we see two “dips” on March 15-17 and April 4-5.

We do not know the real reason, but we conjecture that the

dips are related to how the VM kernel reclaims unused blocks

that are associated with deleted files. Nevertheless, we verify

that each differential delta can be used to correctly recover the

VM image for the particular day.
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Fig. 4. The evolution of our dataset. The top graph shows the differential
and incremental delta sizes of our Fedora VM, while the bottom graph shows
the number of downloaded updates on individual days.

Overall, we observe that the differential delta size is at

most 1GB, and the incremental delta size is within 100MB

throughout the 3-month span. Note that the size of a delta

(regardless of incremental or differential) remains to be much

smaller than that of the entire VM image, which we configure

to be 5GB. Thus, by using RE to store incremental/differential

deltas, we can significantly save the storage cost of keeping

the full VM images for different versions.

Our dataset is used to address the case where a VM image

is being modified over time. By no means do we claim this

dataset is representative in real usage. The goal of our evalua-

tion is to demonstrate the feasibility of deploying CloudVS in

an open-source cloud environment. Actually, CloudVS works

for a general set of VM images that have changes in content.

B. Setup

We set up a Eucalyptus-based cloud testbed with the fol-

lowing servers: (i) one controller node, which is equipped with

a 2.8GHz Intel Core 2 Duo E7400 CPU, 4GB of RAM, and

250GB of harddisk, (ii) one storage node, which is equipped

with a 2.66HGz Intel Xeon W3520 quad-core CPU, 16GB of

RAM, and 1TB of harddisk, and (iii) four compute nodes, each

of which is equipped with a 2.66GHz Intel Core i5 760 CPU,

8GB of RAM, and 1TB of harddisk. All six nodes are installed

with CentOS 5 and Eucalyptus 2.0.2, and are connected via a

Gigabit Ethernet switch.

We deploy CloudVS with the following default configura-

tions. The base image (configured with size 5GB) is cached
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locally in each compute node. For redundancy elimination, we

use fixed-size chunking with chunk size 4KB. To minimize the

impact of fragmentation, we set the fragmentation parameter

α to 1, meaning that the differential deltas are stored in the

storage node (see Section III-C). We enable the LVM snapshot

feature and use posix_fadvice to pre-declare the access

patterns (see Section III-D), but disable read limiting so as

to obtain the best possible versioning performance.

C. Performance of VM Operations

We first analyze the performance of basic VM operations

when CloudVS is used.

Experiment 1 (VM startup time). We first consider the

startup time required for CloudVS to start a VM version on a

single compute node. The startup time is measured from the

time when the controller node issues the VM startup request

with the command euca-run-instances (see Section III-E),

until the time when the compute node turns the resulting VM

instance into the power-on state (i.e., right before the guest

VM is booted). Here, we only focus on the VM versions that

are created on Sundays. We also measure the time for starting

the times for starting the base image (of size 5GB) that is

retrieved from the cache and from the storage node.

Figure 5 shows the results. It provides a performance break-

down when CloudVS is used to start a VM version, including

(i) downloading the delta, (ii) merging the delta with the

cached base image, and (iii) launching the VM instance from

the merged image. We observe that the startup time ranges

from 79s to 122s, and is mainly attributed to downloading

and merging the delta. Note that during the process of merging

the delta, CloudVS also loads the cached base image, which

is the necessary step even without CloudVS. If we examine

the time of starting the cached base image, then we observe

that it takes about 77s. That is, the additional startup time

introduced by CloudVS ranges from 2s to 45s. On the other

hand, if we simply download a full VM image without RE,

then the total startup time is about 162s. Thus, the VM startup

time still benefits from RE by retrieving less data than the full

VM image.

Experiment 2 (VM versioning time). We now evaluate the

versioning time of CloudVS, which we define as the time

required to create a VM version. This includes the time for

creating an LVM snapshot, computing hashes, generating the

incremental delta, and uploading the incremental delta to the

storage node. Here, we focus on the creation of the Sunday

versions as in Experiment 1.

Figure 6 shows the results. We observe that the versioning

time ranges from 80s to 100s. In addition, we note that

the LVM snapshot time (i.e., the time when the VM is

locked or “frozen”) can be done within 5s. After creating an

LVM snapshot, the versioning process will be done in the

background. Thus, the versioning process has limited negative

impact from the user perspective.

Experiment 3 (Starting multiple VM instances). We further

evaluate CloudVS when we start multiple VMs simultane-

ously, using all four compute nodes in our testbed. In the con-

troller node, we issue the command euca-run-instances

-n N, where N = 1, 2, 4, 8, 16, and 32, so that Eucalyptus

starts a total of N VM instances and allocates them among

the four nodes in our testbed. Based on our study, Eucalyptus

picks nodes to start VM instances in a round-robin manner,

so that the compute nodes receive about the same number of

VM instances. For instance, if N = 32, then each of our four

compute nodes will be allocated 8 VM instances. Here, we

choose to start N instances of the VM version on May 24,

which has the largest differential delta size among all versions

in the dataset. We then measure the total startup time (as

defined in Experiment 1) to start all VM instances. We also

show the baseline case to start multiple VM instances with

the 5GB base image retrieved from the storage node, as in

Experiment 1.

Figure 7 shows the results of the total startup time for start-

ing N VM instances. We observe that CloudVS reduces the

startup time when compared to downloading the same number

of full base images, for example, by 50% when N = 32. The

observations are consistent with those in Experiment 1.

D. Trade-Off Study

We now analyze how CloudVS addresses the performance

trade-offs via different parameter settings. In the following

experiments, we focus on the performance of VM versioning

with only a single compute node.

Experiment 4 (Performance of RE). Recall that CloudVS

uses fixed-size chunking as its RE approach. We now evaluate

how the chunk size affects the storage and time performance.

For the storage performance, we consider the size of the
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Fig. 8. Experiment 4: Performance of RE.

resulting differential delta; for the time performance, we

measure the CPU time needed to create the differential delta

in the compute node (without sending the delta to the storage

node). As in Experiment 3, we focus on the VM version on

May 24.

Figure 8(a) plots the trade-off curve between the storage

cost and the versioning time. We observe that with a larger

chunk size, the size of the differential delta will be larger

since it is less likely to have identical chunks, but less time is

spent on delta creation due to fewer hash computations. We

observe that our default chunk size 4KB strikes a good balance

between the storage and time performance in general.

Note that CloudVS can also apply other RE techniques.

To illustrate, we use the utility rdiff, which implements the

rsync algorithm [20] to generate delta files. Figure 8(b) plots

the trade-off curve. Note that it generates a smaller delta size

than fixed-size chunking with the same chunk size (e.g., 10%

less for chunk size 4KB), but it needs significantly more CPU

time for delta creation (e.g., 4× more for chunk size 4KB). We

do not dig into the detailed analysis of different RE techniques,

as it is beyond the scope of this paper. Our goal is merely to

show that CloudVS can apply different RE techniques to trade

between the storage and time performance.

Experiment 5 (Impact of α on storage and fragmentation).

We evaluate how different values of the fragmentation param-

eter α trade between the storage and fragmentation overheads.

Here, we set the chunk group size to be 500 chunks of size

4KB each. For a given α, we measure the cumulative storage

of the deltas across all VM versions. Also, we restore each VM

version locally within the storage node, which involves the

disk seeks of reading the delta associated with each version.

We measure the CPU time for each restore process.

Figures 9(a) and 9(b) plot the restore times for the Sunday

versions and cumulative storage consumption for all 90 days

of versions, respectively. Note that the two extreme points α =

0 and α = 1 correspond to storing incremental and differential

deltas, respectively. As expected, we observe that the larger

α leads to less restore time but more storage space, and vice

versa. Nevertheless, storing differential deltas still significantly

saves the storage space compared to simply keeping full

images without using RE, as the latter approach consumes

a total of 450GB of space (recall that each VM is configured

with 5GB of space). We also choose two intermediate values

α = 0.1 and α = 0.5. For example, with α = 0.5, the restore

 0

 5

 10

 15

 20

 25

 30

 35

27/02 13/03 27/03 10/04 24/04 08/05 22/05

R
e
s
to

re
 t
im

e
 i
n
 s

to
ra

g
e
 n

o
d
e
 (

s
e
c
)

n-th Sunday version of Fedora 14 image

α=1
α=0.5
α=0.1

α=0

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70  80  90

C
u
m

u
la

ti
v
e
 s

to
ra

g
e
 (

G
B

y
te

s
)

Additional n-th VM version created

α=1
α=0.5
α=0.1

α=0

(a) Restore time in storage node (b) Cumulative storage

Fig. 9. Experiment 5: Impact of α on storage and fragmentation.
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Fig. 10. Experiment 6: Impact of read limiting.

time is 3 seconds more than the extreme point α = 1 (with

purely differential deltas), while consuming 35% less storage.

Experiment 6 (Impact of read limiting). Finally, we evaluate

how the read limiting feature (see Section III-D) minimizes

the interferences to other processes or VM instances in the

same compute node during versioning. We start four VM

instances on a single compute node, and then terminate N

of the instances, where N = 1, 2, and 3. Once we start

terminating the VM instances, we start compiling the source

code of Apache HTTP Server 2.2.19 on one of the remaining

active VM instances. The compile process includes both CPU

and I/O intensive jobs, so we expect that the compile time is

affected by the versioning process.

Figure 10(a) shows the time required to compile Apache

with different read limiting rates. We also plot the baseline

compile time when no versioning is performed. Without read

limiting, the compile time takes up to 2× more than the

baseline case during versioning. Read limiting mitigates the

interference. For example, when the read limiting rate is set

to 20MB/s and only one VM is shut down, the compile time

is reduced to almost the same as in the baseline case.

The trade-off of read limiting is the increase in the ver-

sioning time. Figure 10(b) shows the total time of creating all

versions for the shutdown VMs when read limiting is used.

For example, when the read limiting rate is 20MB/s, the total

versioning time is about 520s. Note that the versioning process

is done in the background, so the longer versioning time has

minimal impact. In addition, read limiting smoothes the burst

of creating multiple VM versions simultaneously. Even with

more VM instances being shut down at the same time, there is

still enough processing power to handle multiple simultaneous

versioning processes. As a result, the total versioning time

remains constant.



V. RELATED WORK

VM checkpointing. Several studies focus on creating memory

or disk snapshots (or checkpoints) for VMs. Park et al. [14]

propose to avoid storing redundant memory pages of a VM to

reduce the time and space of saving the VM memory states.

Zhang et al. [24] propose to estimate the working set of VM

memory so that VM snapshots can be efficiently restored.

While [14], [24] focus on saving memory states, some studies

[21], [3] also consider saving the VM disk states. Goiri et al.

[3] differentiate the read-only and read-write parts of a VM

disk, and each checkpoint only stores the modifications of the

read-write points. CloudVS does not make such differentiation,

but instead it directly identifies content-based similarities by

scanning the whole VM disk image. Nicolae et al. [10] propose

a distributed versioning storage service to store VM snapshots.

On the other hand, CloudVS focuses on the performance issues

when redundancy elimination (RE) is applied in versioning

under commodity settings.
VM migration. VM migration [2], [8] is to move a running

VM across different physical hosts over the network. Both

studies [2], [8] focus on migration of memory snapshots. To

minimize the bandwidth of migration, they use the pre-copy

approach, in which the first step copies the entire memory

snapshot, and the subsequent steps only copy the modified

memory pages. Hines et al. [4] use a post-copy approach

to speed up the migration. CloudNet [23] can migrate both

memory and disk states over the Internet, using content-based

RE to minimize the migration bandwidth.

VM image storage. Some studies address the management of

VM image storage. Foundation [19] is an archiving system for

VM disk snapshots. To save storage space, it leverages dedu-

plication to eliminate the storage of redundant data blocks.

Mirage [18] proposes a new VM image format that includes

semantic information, and addresses version control of VM

images as in our work. In contrast to Mirage, our work focuses

on the deployment of VM version control in existing open-

source cloud platforms. Lithium [4] is a storage layer that

provides fault tolerance for VM storage in a cloud. LiveDFS

[9] applies deduplication for storing different versions of base

VM images of different Linux distributions. It is interesting

to further study how to seamlessly integrate deduplication and

fault tolerance into CloudVS in future work.

RE techniques. RE is used in many applications in mini-

mizing redundant data, such as data forwarding (e.g., [23])

and data storage (e.g., [6], [22], [17]). In this work, we focus

on managing VM images using RE, and specifically consider

different tunable mechanisms based on our RE approach to

make CloudVS amenable to different commodity platforms.

VI. CONCLUSIONS

We propose CloudVS, an add-on system that provides

version control for VMs in an open-source cloud that is

deployed with commodity hardware and operating systems.

CloudVS is built on redundancy elimination to build different

VM versions, such that each VM version only keeps the new

and modified data chunks since the prior versions. We also

propose a simple tunable heuristic and several optimization

techniques to allow CloudVS to address different performance

trade-offs for different deployment scenarios. We evaluate the

performance of CloudVS via a 3-month span of VM snapshot

traces. Our work proposes a practical system that facilitates

the operational management of an open-source private cloud.

The source code of CloudVS is published for academic use at

http://ansrlab.cse.cuhk.edu.hk/software/cloudvs.
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