
An Experimental Study of Cascading Performance
Interference in a Virtualized Environment

Qun Huang and Patrick P. C. Lee
Department of Computer Science and Engineering, The Chinese University of Hong Kong

{qhuang,pclee}@cse.cuhk.edu.hk

ABSTRACT

In a consolidated virtualized environment, multiple virtual machines

(VMs) are hosted atop a shared physical substrate. They share

the underlying hardware resources as well as the software virtu-

alization components. Thus, one VM can generate performance

interference to another co-resident VM. This work explores the ad-

verse impact of performance interference from a security perspec-

tive. We present a new class of attacks, namely the cascade attacks,

in which an adversary seeks to generate performance interference

using a malicious VM. One distinct property of the cascade attacks

is that when the malicious VM exhausts one type of hardware re-

sources, it will bring “cascading” interference to another type of

hardware resources. We present four different implementations of

cascade attacks and evaluate their effectiveness atop the Xen virtu-

alization platform. We show that a victim VM can see significant

performance degradation (e.g., throughput drops in network and

disk I/Os) due to the cascade attacks.

1. INTRODUCTION
Cloud computing is a hot topic in recent years, and it brings

many attractive benefits to users. It allows users to purchase hard-

ware resources from a cloud service provider, which provides a

pool of almost infinite hardware resources. In addition, resource

provision is on demand and users can pay based on their actual

usage. This elasticity feature enables users to save investment on

building infrastructures and hence eliminate management and main-

tenance costs. Given these benefits, many users have moved their

applications (e.g., analytics, web services) to the cloud.

User applications are usually consolidated in physical machines

for high utilization of hardware resources, such as CPU, memory,

and I/O. Virtualization techniques are often used to multiplex hard-

ware resources for different user applications by hosting multiple

virtual machines (VMs) on a single shared physical machine. Each

VM is owned by a user, and provides an abstraction of dedicated

hardware resources for hosting user applications. A privileged soft-

ware layer called the hypervisor (also known as virtual machine

monitor) is inserted between the hosted VMs and underlying hard-

ware to control how VMs access hardware resources. VMs are in-

stantiated atop the hypervisor and host their operating systems and

user applications in non-privileged mode.

In a consolidated virtualized environment, an important require-

ment is to provide strong isolation against unexpected behaviors

among the hypervisor and VMs. There are two types of isola-

tion: fault isolation, in which faults and misbehaviors in one VM

Copyright is held by author/owner(s).

are not propagated to the hypervisor and other VMs, and perfor-

mance isolation, in which resource availability of one VM should

not be adversely affected by the execution of other VMs. Fault

isolation has been well addressed by existing virtualization tech-

niques, since VMs run in non-privileged mode and any privileged

operations concerning hardware resources must be handled by the

hypervisor. On the other hand, performance isolation can be diffi-

cult to achieve. Some hardware resources, such as CPU usage, can

be properly isolated based on CPU scheduling mechanisms (e.g.,

[10]), while others, such as cache and memory bandwidth, are dif-

ficult to isolate as they are controlled by hardware [8]. In addition,

the software virtualization components, such as the hypervisor and

hardware drivers, are shared and used by different VMs, and hence

the resources allocated for these components are difficult to isolate.

As a result, it is possible that one VM generates performance inter-

ference to other VMs and disrupt their applications. From a security

perspective, an adversary can host a VM and craft malicious pro-

grams that generate significant performance interference to other

VMs. This motivates us to explore a full spectrum of attacks that

are built on performance interference in a consolidated virtualiza-

tion platform, so as to better understand the limitations of existing

virtualization platforms and devise better defense strategies.

In this paper, we propose a new class of attacks in a virtualization

platform called the cascade attacks, in which an adversary seeks to

exhaust one type of hardware resources (e.g., CPU, memory, and

I/O) in order to degrade the performance of a different type of hard-

ware resources. Our observation is that different types of hardware

resources are tightly correlated in a virtualization platform, and the

performance of one resource type depends on that of another re-

source type. For example, some virtualization components are re-

sponsible for handling the I/O operations issued by VMs. Then by

running a CPU-intensive job on a CPU core that is shared by those

virtualization components, the I/O performance of co-resident VMs

will significantly degrade. In this case, by exhausting one resource

type, the cascade attack can bring “cascading” interference on a dif-

ferent resource type. Our work is to provide insights into how an

adversary can launch a cascade attack in a virtualization platform to

introduce performance interference across different resource types.

In summary, this paper makes the following contributions. First,

we present four new implementations of cascade attacks, each of

which seeks to introduce performance interference across different

resource types. We explain the rationale behind each of the cascade

attacks. Second, on top of a virtualization platform based on Xen

[4], we evaluate the adverse impact of each cascade attack on dif-

ferent performance metrics with respect to different configurations

of CPU core assignments of co-resident VMs. For example, a vic-

tim VM can see significant throughput drops in disk and network

I/Os due to some of the cascade attacks.

Hardware

Hypervisor

Domain0 (Driver Domain) Guest VM

Backend

Driver

Real

Driver

Event Channel

Multiplexer

Frontend

Driver

Memory

Management

CPU

Scheduler
Others

Figure 1: Xen architecture.

The remainder of this paper is structured as follows. Section 2 re-

views the design of Xen on which we demonstrate our attacks. Sec-

tion 3 defines the threat model and assumptions. Section 4 shows

different cascade attacks and discusses their design rationales, im-

plementations, and evaluations. Section 5 reviews related work.

Finally, Section 6 concludes the paper.

2. XEN VIRTUALIZATION
We provide an overview of a virtualization platform on which

attacks are launched. In this paper, we focus on Xen [4]. In Sec-

tion 4.5, we address the applicability of our analysis on other virtu-

alization platforms such as Microsoft Hyper-V [20], OpenVZ [24],

KVM [15], and VMWare ESX [35].

We consider a virtualization platform in which multiple virtual

machines (VMs) are consolidated to run on the same physical ma-

chine. Figure 1 shows a virtualization platform based on Xen,

which comprises three main components: the hypervisor, a priv-

ileged VM called Domain0, and one or multiple guest VMs. The

hypervisor is a software layer that resides atop physical hardware

and manages hardware resources such as CPU, memory, and inter-

rupts. Domain0 is a privileged VM that manages all guest VMs,

handles device I/Os, and provides interfaces for guest VMs to ac-

cess hardware resources. Each guest VM hosts its own operating

system and applications.

Guest VMs in Xen can run in either paravirtualization mode,

in which guest VMs access hardware through a software interface,

or hardware-assisted virtualization mode, in which guest VMs can

transparently execute atop hardware with the help of the latest hard-

ware support. Paravirtualization mode requires every guest VM to

run a modified operating system to adapt to the software interface,

but it can be deployed on general hardware without explicit hard-

ware support for virtualization. In the following discussion, we

focus on paravirtualization mode.

Modern hardware architectures provide different privilege lev-

els and require sensitive instructions be executed in specific priv-

ilege levels. In Xen, the hypervisor resides in the most privilege

level, while guest VMs run in less privileged levels. To perform

privileged operations, guest VMs (which are paravirtualized) issue

hypercalls, which are similar to system calls in traditional operat-

ing systems, to trap into the hypervisor. The operations are then

executed by the corresponding handler functions in the hypervisor.

Xen uses a split driver model to maintain device drivers. To have

a simplified design, the Xen hypervisor is a thin layer that does not

host any device driver. Instead, the real device drivers are installed

in VMs called driver domains. Each guest VM hosts a lightweight

frontend driver to access the backend driver in the corresponding

driver domain. For example, when a guest VM issues an I/O op-

eration, the corresponding driver domain performs the actual I/O

operation on behalf of the guest VM using its real driver. The hy-

pervisor interfaces the backend and frontend drivers via event chan-

nels, which are built on asynchronous ring buffers and inter-VM

mapped memory pages for data transfer. The split driver model

provides fault isolation guarantees among VMs and device drivers,

as well as reduces the complexity of maintaining a large number

of device drivers in the hypervisor. However, this model introduces

additional performance overhead to the virtualization platform, and

can be exploited by adversaries to launch attacks (see Section 4).

In our analysis, we use Domain0 as the driver domain, the default

setup in Xen.

3. THREAT MODEL AND ASSUMPTIONS
Our attack setting is a virtualization platform in which Domain0

and multiple guest VMs run on a physical host and share the under-

lying hardware resources. An adversary may own one of the guest

VMs (which we call the malicious VM). The goal of the adversary

is to exhaust the available hardware resources of other co-resident

guest VMs (which we call the victim VMs), so that the victim VMs

fail to run their applications subject to the quality-of-service re-

quirement.

In this work, we assume that the adversary can always obtain a

malicious VM that is co-resident with some victim VMs in both

untargeted and targeted attacks. For an untargeted attack, the ad-

versary can simply launch an arbitrary VM as the malicious VM

and attack any co-resident victim VMs. On the other hand, for a

targeted attack, the adversary must ensure that the malicious VM is

placed on the same physical host as the targeted victim VM. Nev-

ertheless, recent studies [27, 16] show that it is plausible to control

the placement of a VM on a commercial cloud as long as enough

VMs are launched. This capability of controlling the VM place-

ment comes from the fact that VMs are organized structurally for

convenient management, which is common in a real cloud. In the

following, we mainly focus on how the malicious VM degrades the

resource availability of the co-resident victim VMs.

We further assume that it is infeasible for the malicious VM to

disable the resources of VMs provided by the hypervisor as well as

propagate bugs and faults from one VM to another VM. Our justi-

fication is that current virtualization techniques put the hypervisor

and guest VMs in different privilege levels. The hypervisor is priv-

ileged and fully controls code executions. On the other hand, guest

VMs are typically unprivileged and can only issue a pre-defined

set of hypercalls to the hypervisor in order to perform privileged

operations.

Note that it is non-trivial for the hypervisor to provide guarantees

of performance isolation for the sharing of hardware resources and

virtualization components. For example, it is difficult to isolate the

usage of a shared cache among VMs as limited software control is

available [8]. Given the limited performance isolation guarantees,

a VM can introduce performance interference to other co-resident

VMs and degrade their performance. From a security perspective,

the adversary can exploit the adverse impact of performance inter-

ference to launch attacks.

In this paper, we study a class of cascade attacks, in which the

adversary instructs his malicious VM to introduce performance in-

terference and hence degrade the resource availability of co-resident

victim VMs. One distinct property of the cascade attacks is that

the malicious VM can specifically degrade one resource type, and

such degradation can be propagated to cause the degradation of an-

other resource type. In a virtualization platform, the performance

of an operation is determined by the interaction of various resource

types. An example is the network I/O throughput, which depends

not only on the capacities of the physical network interface and the

outgoing network links, but also on the computational resources

of the backend virtualization components that are responsible for

network I/Os. Thus, if the malicious VM dedicatedly exhausts the

CPU resource, then the network I/O throughput will also degrade.

This leads to a cascading impact of resource degradation, and this

explains why we call such an attack to be a cascade attack.

4. CASCADE ATTACKS
In this section, we demonstrate, via testbed experiments, four

different implementations of the cascade attacks in a virtualization

platform. In Sections 4.1 and 4.2, we focus on a single malicious

VM and a single victim VM. We further extend our analysis for

multiple victim VMs in Section 4.3. We summarize our findings

in Section 4.4. We discuss possible extensions of the cascade at-

tacks on other platforms in Section 4.5, and the possible defense

mechanisms in Section 4.6.

4.1 Evaluation Methodology
Testbed. We first describe our experimental testbed. Our hard-

ware platform is a DELL E5530 server with two Intel Xeon quad-

core 2.4GHz CPUs (a total of eight cores) and 8GB RAM. Each

CPU core has its own L1 and L2 caches, and the CPU cores on the

same CPU chip share a L3 cache. This type of cache configura-

tion is widely seen in today’s commodity multi-core architectures.

We use Xen 4.0.3 as the hypervisor, and each guest VM atop Xen

is assigned one virtual CPU core and 512MB RAM. All VMs are

paravirtualized on a patched Linux 2.6.32-48 kernel. We use the

default settings for Xen configurations. In particular, we use the

Credit Scheduler, Xen’s default CPU scheduler, with default credit

parameters.

Configurations. Evaluating all possible VM configurations is

infeasible due to the exponential number of combinations of con-

figuration parameters. In this work, we focus on three configuration

groups based on different core assignment relationships (CARs),

each of which defines how CPU cores are assigned to a pair of

VMs. The two VMs can refer to Domain0 and the malicious VM,

Domain0 and the victim VM, and the malicious and victim VMs.

The three CARs are:

1. No sharing: Two VMs reside on different CPU chips. They

have their own computation resources and cache.

2. Cache sharing: Two VMs reside on different CPU cores but

on the same CPU chip. Thus, they have independent compu-

tation resources, but share the same cache.

3. Core sharing: Two VMs reside on the same CPU core. Thus,

they compete for the CPU resource. Clearly, if two VMs have

core sharing, then they also have cache sharing.

For example, if the malicious VM and Domain0 have cache shar-

ing, then we mean that they reside on the different CPU cores of the

same chip. When we specify a CAR of two VMs, we make no as-

sumption on which CPU core is assigned to the other VMs (i.e.,

the victim VM in this example). In our experiments, if two VMs

have core sharing or cache sharing, then we put the other VMs on

a different CPU chip.

In a non-overcommitted virtualization platform, all VMs can run

on a dedicated physical CPU core, so the core sharing case is less

likely to happen. Also, we can reserve dedicated physical CPU

cores for Domain0, while guest VMs run on other CPU cores. Then

the CPU contention between the malicious VM and Domain0 is

mitigated. Nevertheless, we show that our cascade attacks work

even when there is no core sharing. We include the core sharing

case as a control setting.

Measurements. We focus on four resource types that the cas-

cade attacks target: CPU, memory, disk I/Os, and network I/Os.

We use different public benchmarking tools to measure the perfor-

mance of each resource type: Sysbench CPU and Sysbench Mem-

ory benchmarks [31] measure the CPU execution time by generat-

ing a sequence of prime numbers and the memory bandwidth for

a sequence of memory operations, respectively; IOzone [12] mea-

sures the disk I/O throughput values for different I/O operations;

Netperf [22] measures the achievable TCP throughput; Apache Bench-

mark [34] measures the average latency of serving an HTTP re-

quest.

Our measurements are conducted in two ways. For the CPU and

disk I/O benchmarks, we measure the performance of the victim

VM while an attack is being launched. For the memory and net-

work I/O benchmarks, we host Domain0, the malicious VM, and

the victim VM for 100 second. From time 30 to 70 seconds, the

malicious VM launches a cascade attack. Then we collect the mea-

surement results every second over the entire 100-second period.

In addition, we measure the baseline performance without any

attack. Finally, we evaluate the relative performance of the victim

VM during an attack by computing the ratio of the performance

results during the attack to the baseline results without any attack.

We obtain average results from our measurements over three runs.

4.2 Attack Cases
We now present four cascade attacks, assuming that there is a

single malicious VM and a single victim VM. For each attack, we

present its attack rationale, its attack approach, and finally the ex-

perimental results for the cascading effect.

4.2.1 Cachebased Attack

Attack rationale. The malicious VM and Domain0 can still

have cache sharing if they reside on the same CPU chip even though

they are on different CPU cores. We exploit this feature and pro-

pose a cascade attack called the cache-based attack, whose attack

goal is to eliminate the benefits brought by a cache. It is well known

that a cache is a data store that provides a faster data access than

main memory. If a data item to be accessed is in cache, then it will

be read from cache; otherwise if there is a cache miss, it will be

read from main memory. Also, any recently accessed data items

will be cached for subsequent use. Since the cache size is limited,

some cached data items (e.g., the least recently used ones) will be

expunged from cache when the cache is full. In a shared system

with multiple applications, the cached data items of an application

may be frequently replaced by the recently accessed data items of

other applications. The phenomena, known as cache interference

(see Chapter 4.3 in [11]), will aggravate cache misses and hence

memory accesses. It introduces a high performance overhead in a

consolidated virtualization platform due to the minimal collabora-

tion on data accesses among VMs [8]. It is possible for an adversary

to instruct the malicious VM to flush the cached items frequently to

trigger a large number of cache misses, thereby introducing cache

interference to other VMs that are on the same CPU and use the

shared cache.

In the cache-based attack, the malicious VM seeks to thrash the

cache shared with Domain0 so as to make Domain0 spend more

time on memory accesses during I/O operations, thereby degrading

the I/O performance of the victim VM. Its cascading effect is to

degrade the I/O performance of the victim VM through a memory-

intensive job that keeps accessing data items in memory. The ratio-

nale of the attack is that the split driver model in Domain0 involves

a large number of memory accesses. In Xen, the event channel con-

necting the frontend driver in the victim VM and the backend driver

in Domain0 consists of two components: one is a ring buffer for

the asynchronous notification of I/O requests between the drivers,

and the other is the shared memory pages for data transfer between

the victim VM and Domain0. The frequent memory accesses of

the split driver model make the I/O operations susceptible to the

cache-based attack.

Attack approach. We implement the cache-based attack as fol-

lows. The malicious VM runs a program that first allocates a con-

tinuous memory buffer that has sufficiently large size to fill the

whole cache. Since the cache size is typically small, such buffer

allocation is feasible. In our testbed, the shared cache size is 8MB,

so we choose a buffer of size 64MB. Then the malicious program

runs an infinite loop of reading the buffer repeatedly. Note that the

cache replacement design in commodity architectures operates on

the granularity of the fixed-size cache blocks called the cache lines

(64 bytes each in our testbed). When a data item is accessed, a

whole block containing the data item will be loaded into the cache

line. Thus, instead of reading all bytes in the buffer, the malicious

program divides the buffer into different blocks of size equal to the

cache line size, and loops to read one byte of each block. This en-

ables the malicious VM to cause more cache thrashes in the limited

running time slice allocated to it.

Results. Figure 2 shows the I/O performance of the victim VM

during the cache-based attack for different CARs of the malicious

VM and Domain0. When the malicious VM and Domain0 have

core sharing, we observe around 70% drop in TCP throughput.

However, when the malicious VM and Domain0 have only cache

sharing, the cache-based attack can still bring around 40% decrease

in TCP throughput, 60% increase in HTTP latency, and more than

50% decrease in throughput in most disk I/O benchmarks.

4.2.2 I/Obased Attack

Attack rationale. The cache-based attack aims to degrade the

I/O performance of the victim VM via memory-intensive jobs. It

exploits the bottleneck in the I/O driver components in Domain0

and propagates performance degradation to the victim VM. Here,

we consider another form of attack called the I/O-based attack,

whose attack goal is to run an I/O-intensive job to degrade the per-

formance of the victim VM.

We consider two types of I/O-based attacks. The first type of the

I/O-based attack (we call it Type I) is to degrade the computation

and memory access performance of the victim VM through an I/O-

intensive job. It assumes that the victim VM and Domain0 have

cache sharing. Note that this assumption is slightly different from

that of the cache-based attack, in which we focus on the CARs of

the malicious VM and Domain0. If the assumption holds, then the

malicious VM (which may reside in a different CPU) can issue an

I/O-intensive job, which may trigger heavy disk I/O operations or

generate a large volume of network traffic. Both disk and network

I/O operations introduce high CPU utilization in Domain0 in pro-

cessing the I/O event notifications and data transfers between the

malicious VM and Domain0. In the case that the victim VM and

Domain0 have cache sharing, the memory access operations of Do-

main0 will cause frequent thrashes in the shared cache and hence

cause the victim VM to access data via main memory rather than

cache, thereby degrading the data access performance.

Another type of the I/O-based attack is to degrade the perfor-

mance of a different type of I/O resource (we call it Type II). For

example, the malicious VM can run intensive disk I/O operations

in order to degrade the network I/O performance of the victim VM.

The reason is that the split device drivers of different I/O resources

are all hosted in Domain0 and hence compete for the CPU resource

in processing I/O operations. Note that in this form of attack, we

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 T

C
P

 T
h
ro

u
g
h
p
u
t

time(second)

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing

Malicious and Dom-0: Core Sharing

(a) TCP Throughput

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 H

T
T

P
 L

a
te

n
c
y

time(second)

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing

Malicious and Dom-0: Core Sharing

(b) HTTP Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

write
rewrite

read
reread

random read

random write

backward read

record rewrite

stride read

fwrite
frewrite

fread
freread

R
e
la

ti
v
e
 D

is
k
 T

h
ro

u
g
h
p
u
t

I/O operations

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing
Malicious and Dom-0: Core Sharing

(c) Disk

Figure 2: Cache-based attack: performance of the victim VM

for different CARs of the malicious VM and Domain0.

make no assumptions on the CARs of VMs.

Attack approach. We implement two I/O-based attacks. The

first one is the disk I/O-based attack, in which the malicious VM

runs a program that repeatedly reads a large file of size several gi-

gabytes from disk and writes the file back to disk. This generates a

large number of disk I/O operations. The second one is called the

network I/O-based attack, in which the malicious VM hosts a web

server containing a simple web page. Then we have an external

machine that continuously generates HTTP requests to flood the

web server. We deploy the external machine in the same local area

network as our virtualization testbed. We expect that the same ob-

servations are made if the malicious VM generates network traffic

to the outside network.

Results. We first consider the Type-I I/O-based attack. Figure 3

first shows the CPU execution time and memory bandwidth of the

victim VM during the disk and network I/O-based attacks for dif-

ferent CARs of the victim VM and Domain0. Figure 3(a) shows

the increase in the CPU execution time of the victim VM due to the

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

20000 50000 100000

R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e

Number of Prime Numbers Generated

Victim and Dom-0: No Sharing
Victim and Dom-0: Cache Sharing
Victim and Dom-0: Core Sharing

 0

 5

 10

 15

 20

20000 50000 100000

R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e

Number of Prime Numbers Generated

Victim and Dom-0: No Sharing
Victim and Dom-0: Cache Sharing
Victim and Dom-0: Core Sharing

(a) CPU Execution, Disk I/O-based attack (b) CPU Execution, Network I/O-based attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 M

e
m

o
ry

 B
a
n
d
w

id
th

time(second)

Victim and Dom-0: No Sharing
Victim and Dom-0: Cache Sharing

Victim and Dom-0: Core Sharing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 M

e
m

o
ry

 B
a
n
d
w

id
th

time(second)

Victim and Dom-0: No Sharing
Victim and Dom-0: Cache Sharing

Victim and Dom-0: Core Sharing

(c) Memory Bandwidth, Disk I/O-based attack (d) Memory Bandwidth, Network I/O-based attack

Figure 3: Type-I I/O-based attack: computation and memory access performance of the victim VM for different CARs of the victim

VM and Domain0.

disk I/O-based attack. When the victim VM and Domain0 have

core sharing, the CPU execution time increases by around 60%

mainly due to the CPU contention of the victim VM and the I/O

drivers in Domain0. When the victim VM and Domain0 have cache

sharing, we still observe 30-50% increase in CPU execution time

because the I/O-based attack involves many memory accesses and

causes cache interference to the victim VM. Figure 3(b) shows the

increase in the CPU execution time of the victim due to the network

I/O-based attack. Interestingly, when the victim VM and Domain0

have core sharing, the CPU execution time increases by more than

10 times. We suspect that processing network I/Os requires more

CPU resource than processing disk I/Os. Figures 3(c) and 3(d)

show the memory bandwidth degradations of the victim VM due to

the disk and network I/O-based attacks, respectively. The disk I/O-

based attack decreases the memory bandwidth by 20-80%, while

the network I/O-based attack decreases the memory bandwidth by

almost 80% at all times.

We now consider the Type-II I/O-based attack. Figure 4 shows

how the disk and network I/O-based attacks degrade a different type

of I/O resource. Here, we consider the CARs of the malicious VM

and Domain0. Figures 4(a) and 4(b) show the impact of the disk

I/O-based attack on the TCP throughput and HTTP latency, while

Figure 4(c) shows the impact of the network I/O-based attack on

the disk I/O throughput. We can see that during the attacks, the I/O

performance drops in all three CARs.

4.2.3 Hypercallbased Attack

Attack rationale. We explore another cascade attack that can be

launched regardless of the CARs. Recall that hypercalls are used by

guest VMs to request the hypervisor to perform privileged opera-

tions, similar to system calls in conventional operating systems (see

Section 2). The hypercalls are then processed by the hypervisor

and Domain0. Our rationale is that if the hypervisor and Domain0

need to process many hypercalls, then they will require excessive

CPU resource. This will in turn limit the CPU resource for the I/O

drivers in Domain0 to process the I/O operations.

Here, we present the hypercall-based attack, in which the ma-

licious VM runs a CPU-intensive job that issues a high number

of hypercalls, so as to degrade the I/O performance of the victim

VM. The cascading effect is that by exhausting the CPU resource

via many hypercalls, the I/O performance of the victim VM will

degrade.

Attack approach. In the malicious VM, we implement a sim-

ple program that keeps creating and killing processes. The pro-

gram calls a library function fork() to create a process. The

function fork() will invoke a number of hypercalls to allocate

resources for the new process. In our implementation, we have the

program create three processes at a time. The processes are then

killed 0.2 seconds after the creation. This avoids creating too many

processes that eventually consume all memory space.

Results. Figure 5 shows the I/O performance of the victim VM

for different CARs of the malicious VM and Domain0. We observe

that the hypercall-based attack causes performance degradation in

disk and network I/Os in all three CPU core assignments. For ex-

ample, we see at least 40% throughput degradation in almost all

disk operations.

4.2.4 Page Swapping Attack

Attack rationale. The final cascade attack we introduce is the

page swapping attack, which exploits the feature of modern vir-

tual memory design to degrade the I/O performance of the victim

VM. Virtual memory is a major building block in modern opera-

tion systems, and provides a view of large usable memory space

far more than the actual physical memory space. Virtual memory

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 T

C
P

 T
h
ro

u
g
h
p
u
t

time(second)

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing

Malicious and Dom-0: Core Sharing

(a) TCP Throughput

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 H

T
T

P
 L

a
te

n
c
y

time(second)

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing

Malicious and Dom-0: Core Sharing

(b) HTTP Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

write
rewrite

read
reread

random read

random write

backward read

record rewrite

stride read

fwrite
frewrite

fread
freread

R
e
la

ti
v
e
 D

is
k
 T

h
ro

u
g
h
p
u
t

I/O operations

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing
Malicious and Dom-0: Core Sharing

(c) Disk

Figure 4: Type-II I/O-based attack: performance of the victim

VM for different CARs of the malicious VM and Domain0.

operates on the granularity of pages (typically 4KB each). When

large memory space is needed, the operating system puts unused

pages on disk. When an on-disk page is accessed, it will be loaded

into main memory, and one of the pages in main memory will be

swapped out to disk. In traditional non-virtualized systems, a page

fault interrupt is raised and the kernel then handles the page swap-

ping operations. However, in a virtualization platform, all inter-

rupts including page faults are handled by the hypervisor instead.

A large number of page faults can introduce high CPU consumption

on the hypervisor. In addition, page swapping operations introduce

disk I/Os. Thus, the cost for a page fault can be expensive in a vir-

tualization platform, and the adversary can exploit this feature to

launch an attack.

The page swapping attack uses a memory-intensive job to de-

grade the I/O performance of the victim VM. Similar to the hypercall-

based attack, the page swapping attack requires no assumptions on

the CARs of the VMs.

Attack approach. In the malicious VM, we implement a pro-

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 T

C
P

 T
h
ro

u
g
h
p
u
t

time(second)

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing

Malicious and Dom-0: Core Sharing

(a) TCP Throughput

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 H

T
T

P
 L

a
te

n
c
y

time(second)

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing

Malicious and Dom-0: Core Sharing

(b) HTTP Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

write
rewrite

read
reread

random read

random write

backward read

record rewrite

stride read

fwrite
frewrite

fread
freread

R
e
la

ti
v
e
 D

is
k
 T

h
ro

u
g
h
p
u
t

I/O operations

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing
Malicious and Dom-0: Core Sharing

(c) Disk

Figure 5: Hypercall-based attack: performance of the victim

VM for different CARs of the malicious VM and Domain0.

gram that allocates a memory buffer of size 768MB, which is larger

than 512MB being configured for the physical memory of each VM

in our testbed. Thus, our memory buffer will have pages stored on

disk. Then the program repeatedly accesses the buffer from the

beginning to end in order to raise a large number of page fault in-

terrupts. This keeps the hypervisor and Domain0 busy to handle

the interrupts. Also, instead of accessing all bytes in the memory

buffer, we only access one byte per 4KB block (as in the cache-

based attack), which is the page size. This enables us to raise as

many page fault interrupts as possible.

Results. Figure 6 shows the performance of the victim VM for

different CARs of the malicious VM and Domain0. We observe the

performance degradations in disk and network I/Os in all CPU core

assignments. For example, the TCP throughput drops by around

40% during the attack.

4.3 Attacks on Multiple Victim VMs
We thus far assume that there is only a single victim VM within

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 T

C
P

 T
h
ro

u
g
h
p
u
t

time(second)

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing

Malicious and Dom-0: Core Sharing

(a) TCP Throughput

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 H

T
T

P
 L

a
te

n
c
y

time(second)

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing

Malicious and Dom-0: Core Sharing

(b) HTTP Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

write
rewrite

read
reread

random read

random write

backward read

record rewrite

stride read

fwrite
frewrite

fread
freread

R
e
la

ti
v
e
 D

is
k
 T

h
ro

u
g
h
p
u
t

I/O operations

Malicious and Dom-0: No Sharing
Malicious and Dom-0: Cache Sharing
Malicious and Dom-0: Core Sharing

(c) Disk

Figure 6: Page swapping attack: performance of the victim VM

for different CARs of the malicious VM and Domain0.

a virtualization platform. We now evaluate via testbed experiments

the effectiveness of the cascade attacks in a more complex scenario

where there are multiple victim VMs. We demonstrate that the

cascade attacks remain effective. We also compare the performance

interference in normal scenarios and the cascade attack scenarios.

Setup. We deploy four guest VMs, three of which are the victim

VMs (denoted by Victim1, Victim2, and Victim3) and the remain-

ing one is the malicious VM. We use the same testbed as in Sec-

tion 4.2. In our testbed, which has two quad-core CPU chips, we

bind Domain0 to one CPU chip, and the three victim VMs and the

malicious VM to another CPU chip. Each of the four guest VMs is

assigned a dedicated CPU core.

In addition, we have the three victim VMs run different bench-

marking tools. Specifically, Victim1 runs Sysbench CPU, Victim2

runs IOzone, and Victim3 runs Netperf and Apache Benchmarks,

and hence they simulate the executions of CPU-intensive, disk I/O-

intensive, and network I/O-intensive applications, respectively.

We consider four scenarios. We first consider two attack sce-

narios: the hypercall-based attack and the page swapping attack,

both of which seek to degrade the I/O performance of a victim VM

and do not require specific assumptions on the CARs of VMs. We

assume that the victim VMs are running their respective bench-

marking tools while the malicious VM is launching an attack. In

addition, we consider two more baseline scenarios where there is

no attack (i.e., the malicious VM remains idle). The first one is the

interference scenario, in which all victim VMs are running their

benchmarking tools throughout our evaluation. The second one is

the dedicated scenario, in which only the victim VM which mea-

sures our concerned performance metric is running its benchmark-

ing tool, while the other victim VMs remain idle. For example,

when we measure the disk I/O throughput, only Victim2 is active,

while Victim1 and Victim3 are idle.

Our evaluations focus on the disk I/O performance and network

I/O performance, which we measure on Victim2 and Victim3, re-

spectively. Our measurements on Victim2 and Victim3 are con-

ducted simultaneously, so that we evaluate the impact of an attack

on more than one victim VM. Our measurements are conducted

similar to Section 4.2. That is, we obtain our disk I/O measure-

ments while an attack is launched and conduct our network I/O

measurements over a 100-second period. We then plot the ratio of

each sampled result to the average value obtained from the dedi-

cated scenario.

Results. We now examine the I/O performance in the attack and

baseline scenarios when there are multiple victim VMs, as shown

in Figure 7. Figure 7(a) shows the TCP throughput results. The

throughput in the interference scenario drops when compared to

that in the dedicated scenario because of the performance interfer-

ence among the victim VMs, but the drop is less than 10%. On

the other hand, when the malicious VM launches an attack, the

drop is amplified to 40-60%. Figure 7(b) shows the HTTP latency

results, and we make similar observations. The latency in the inter-

ference scenario increases by only 2%, but those of the hypercall-

based attack and the page swapping attack increase by an average

of 257% and 203%, respectively. Figure 7(c) shows that the disk

I/O throughput drops in some of the operations such as random read

and random write.

Our results show that the cascade attacks remain effective in the

presence of multiple VMs. Also, compared to the interference sce-

nario, which is common in a consolidated virtualization platform

with multiple VMs, the cascade attacks introduce more severe I/O

performance degradation on the victim VMs.

4.4 Lessons Learned
Table 1 summarizes the cascade attacks we propose in this paper.

The cascade attacks exploit the sharing of resources in a virtualiza-

tion platform, so as to generate performance interference on victim

VMs. There are two types of sharing that the cascade attacks ex-

ploit. The first type is the sharing of hardware resources, such as

CPU core sharing or cache sharing, between the I/O driver domain

and guest VMs. Due to the contention of hardware resources, the

I/O driver domain has limited available resources to process the I/O

operations for guest VMs, so we see degraded I/O performance of

victim VMs. The cache-based attack and the Type-I I/O-based at-

tack exploit the sharing of hardware resources. The second type is

the sharing of software virtualization components, such as the hy-

pervisor and I/O drivers, for processing privileged operations for

guest VMs. Such virtualization components can be overloaded by

the requests issued from the guest VMs. The Type-II I/O-based at-

tack, the hypercall-based attack, and the page swapping attack all

exploit this sharing to degrade the performance of victim VMs.

Attack Cascading Effect Required CAR

Cache-based attack Memory-intensive job =⇒ I/O performance degrades Malicious VM and Domain0:

Cache Sharing

Type-I I/O-based attack I/O-intensive job =⇒ computation and memory access

performance degrades

Victim VM and Domain0: Core

sharing and cache sharing

Type-II I/O-based attack Disk (network) I/O-intensive job =⇒ network (disk) I/O

performance degrades

None

Hypercall-based attack CPU-intensive job =⇒ I/O performance degrades None

Page swapping attack Memory-intensive job =⇒ I/O performance degrades None

Table 1: Summary of cascade attacks.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 T

C
P

 T
h
ro

u
g
h
p
u
t

time(second)

Dedicated
Interference

Hypercall based Attack
Page Swapping Attack

(a) TCP Throughput

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 H

T
T

P
 L

a
te

n
c
y

time(second)

Dedicated
Interference

Hypercall based Attack
Page Swapping Attack

(b) HTTP Latency

 0

 0.5

 1

 1.5

 2

write
rewrite

read
reread

random read

random write

backward read

record rewrite

stride read

fwrite
frewrite

fread
freread

R
e
la

ti
v
e
 D

is
k
 T

h
ro

u
g
h
p
u
t

I/O operations

Dedicated
Interference
Hypercall based Attack
Page Swapping based Attack

(c) Disk

Figure 7: Cascade attacks on multiple victim VMs.

4.5 Attacks on Other Hypervisors
Our work focuses on the Xen hypervisor. We now discuss the

possibility of applying the cascade attacks to other hypervisors.

Microsoft Hyper-V [20] is almost identical to Xen in its design.

It also has the similar components as in Xen, such as the hypervisor,

Domain0, the split driver model, and the hypercall interfaces. Thus,

we expect that the cascade attacks that we present in this work can

still be applied in Microsoft Hyper-V.

However, for OpenVZ [24], KVM [15], and VMWare ESX [35],

their virtualization designs are different from Xen. It remains an

open issue if our cascade attacks are applicable in such platforms.

Nevertheless, we point out possible performance bottlenecks in such

platforms that can be exploited by the adversaries to launch attacks

that degrade the performance of co-resident VMs. OpenVZ con-

tains a single kernel shared by all the VMs. Instead of using a split

driver model as in Xen, OpenVZ maintains drivers in the shared

kernel, which could be a potential attack point. KVM uses a hy-

pervisor module that resides in the host Linux kernel, on which

multiple VMs are hosted. The host kernel handles all hardware op-

erations, and can be regarded as the combination of the hypervisor

and Domain0 in Xen. Thus the host kernel can be an attack point.

VMware ESX puts the device drivers directly inside the hypervisor.

Older versions of VMware ESX (before v4.0) transfer data between

the device drivers in the hypervisor and the corresponding mem-

ory buffers in the guest VMs in performing I/O operations. Such

frequent data transfers can introduce high CPU utilization. Cur-

rent versions utilize features in the latest generations of hardware

devices to enable direct hardware access and hence eliminate the

overhead for data transfers. They do not use the split driver model

as in Xen, so they may not properly isolate the faults in device

drivers. This introduces potential attack points. Also, they require

protection mechanisms to avoid misuse of the device drivers, and

the protection mechanisms can be the attack points.

4.6 Defense Approaches
In this subsection, we discuss how the cascade attacks can be

possibly defended.

Currently, we use Domain0 as the driver domain for I/Os. The

coupling of I/Os, hypercalls, and interrupts leads to contention of

CPU resources, as exploited by the cascade attacks. One defense

approach is to fully implement the isolated driver domain (IDD)

model [6] by delegating separate VMs other than Domain0 as the

I/O driver domains. This decouples resources for I/O device drivers

and those for software virtualization components such as hyper-

calls and interrupts. In this case, it is possible to defend against the

Type-II I/O-based attack, the hypercall-based attack, and the page

swapping attack. On the other hand, fully implementing the IDD

model is difficult in practice. For example, it is difficult to config-

ure the resource allocation for different IDDs to balance between

performance isolation and high performance. Therefore, the default

setup for Xen uses Domain0 as the driver domain, and many exist-

ing studies including [10, 38, 7] use Domain0 as the driver domain

in their analysis.

One defense approach is based on resource reservation. For ex-

ample, we can reserve CPU resources for Domain0 and guest VMs

(e.g., such as in Q-clouds [21]). This method can mitigate the CPU

core contention among VMs. Also, the SEDF-DC scheduler and

the ShareGuard mechanism [10] control the total CPU utilization in

each guest VM and its corresponding backend I/O device drivers,

so as to limit the CPU utilization of I/O operations issued by the

guest VMs in Domain0. This method can defend against the I/O-

based attack. A recent work CloudScale [29] predicts resource uti-

lization of VMs, and automatically mitigates contention by either

rejecting resource requests or migrating applications. In Section 5,

we look into more existing approaches on mitigating performance

interference in a virtualized environment. On the other hand, one

open issue is that no approaches address the interference within

the software virtualization components such as the hypervisor, and

this interference is exploited by the Type-II I/O-based attack, the

hypercall-based attack, and the page swapping attack.

5. RELATED WORK
The cascade attacks are based on performance interference in a

virtualized environment. In this section, we review studies related

to the performance interference issue.

Performance overhead in virtualization. One cause of per-

formance interference among VMs comes from the virtualization

overhead, which has been addressed in previous studies. Menon

et al. [19] propose Xenoprof to profile VM activities. They ob-

serve obvious performance degradation of network I/O virtualiza-

tion compared to non-virtualized systems, and point out that such

degradation is mainly due to high cache misses and extra compu-

tational overhead in the Xen hypervisor. Apparao et al. [2] obtain

similar conclusions based on Xenoprof, except that their profiling

also addresses function granularity. Gupta et al. [10] propose Xen-

Mon to measure the CPU utilization in VMs and driver domains.

They argue that the extra non-trivial CPU overhead in driver do-

mains will damage the network I/O performance of VMs. Santos

et al. [28] profile the CPU overhead on the receive path in Xen

network I/O virtualization and propose mechanisms to reduce the

CPU overhead. Wood et al. [38] use the sysstat monitoring pack-

age [32] to profile the CPU, disk, and network utilizations, and

propose a model to correlate the extra CPU overhead with VM op-

erations. Note that the above studies mainly address the overhead

introduced by virtualization and discuss the potential interference

problem. However, they only focus on the single VM scenario, and

do not explicitly show the interference among multiple VMs in a

virtualized environment.

Contention of hardware resources. One cause of performance

interference among VMs is the contention of shared hardware re-

sources. Liu [16] proposes a new denial-of-service attack in which

a malicious VM congests common network links shared by other

VMs. Gamage et al. [7] show that CPU sharing among the driver

domains and VMs can affect the TCP congestion control mecha-

nism and degrade TCP performance. Jeyakumar et al. [13] show

that bursty UDP flows can degrade the overall throughput of TCP

flows that share common links in a virtualized environment. Unlike

competing for the same resources directly, our work shows that the

contention of one type of resource can limit the availability of an-

other type of resource.

Cache sharing. Since VMs on the same physical host share

the same cache, the high cache miss rate of one VM can degrade

the performance of other VMs [8]. From a security’s perspective,

malicious VMs can exploit the shared cache to launch side-channel

or covert-channel attacks to steal sensitive information [27]. Note

that cache sharing can be used for security defense. For example,

HomeAlone [39] allows a VM to profile the shared cache to verify

if any unauthorized VM is running on the same physical host.

Evaluation of performance interference. Extensive studies

(e.g., [1, 5, 14, 17, 25, 30]) have evaluated performance interfer-

ence in a virtualized environment under different resource configu-

rations. These studies aim to propose different types of benchmarks

and evaluate the performance degradation of VMs due to interfer-

ence. On the other hand, our work is motivated from a security per-

spective and explores how a malicious VM exploits performance

interference to launch attacks.

Mitigating performance interference. Different methods have

been proposed to reduce the virtualization overhead and mitigate

performance interference. In terms of CPU utilization, Gupta et al.

[10] propose feedback-based CPU scheduling and limiting mecha-

nisms to enhance CPU isolation from network operations. Ongaro

et al. [23] extend the Xen architecture to enhance scheduling fair-

ness of I/O intensive VMs. In terms of I/O performance, Menon et

al. [18] present optimizations on different components of the Xen

architecture to improve the performance of network I/O virtualiza-

tion. In practice, multiple-queue NIC and grant-reuse techniques

have been used to develop systems with high network I/O through-

put [26, 28]. mClock [9] is a system that schedules I/O requests

from VMs based on various resource control requirements. vFlood

[7] moves the TCP congestion control module to the driver domain

and allows VMs to opportunistically flood the driver domain for

higher TCP throughput. Besides the driver domain model, the di-

rect I/O model has been used to allow VMs to access hardware

devices directly [36, 37]. Some studies propose to design new vir-

tualization architectures. For example, NoHype [33] eliminates the

additional layer of the hypervisor and hosts VMs atop hardware di-

rectly. SICE [3] removes all software components in the virtualized

environment and provides hardware-based isolation. Extending the

above solutions to protect against the cascade attacks is our future

work.

6. CONCLUSIONS
We present a new class of cascade attacks in a consolidated vir-

tualized environment. The cascade attacks exploit the sharing of

hardware resources and software virtualization components to gen-

erate performance interference. In a cascade attack, a malicious

VM exhausts one resource type so as to degrade the performance of

another resource type used by other victim VMs. We show various

implementations of the cascade attacks and evaluate their adverse

impact atop a Xen virtualization platform. We also list possible

strategies to defend against the cascade attacks.

7. REFERENCES
[1] P. Apparao, R. Iyer, X. Zhang, D. Newell, and T. Adelmeyer.

Characterization and Analysis of a Server Consolidation

Benchmark. In Proc. of VEE, 2008.

[2] P. Apparao, S. Makineni, and D. Newell. Characterization of

Network Processing Overheads in Xen. In Proc. of VTDC,

2006.

[3] A. M. Azab, P. Ning, and X. Zhang. Sice: a hardware-level

strongly isolated computing environment for x86 multi-core

platforms. In Proc. of CCS, 2011.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the

Art of Virtualization. In Proc. of SOSP, 2003.

[5] T. Deshane, Z. Shepherd, J. N. Matthews, M. Ben-Yehuda,

A. Shah, and B. Rao. Quantitative Comparison of Xen and

KVM. In XenSubmit, 2008.

[6] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and

M. Williamson. Safe Hardware Access with the Xen Virtual

Machine Monitor. In Proc. of OASIS, 2004.

[7] S. Gamage, A. Kangarlou, R. Kompella, and D. Xu.

Opportunistic Flooding to Improve TCP Transmit

Performance in Virtualized Clouds. In Proc. of SOCC, 2011.

[8] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam.

Cuanta: Quantifying Effects of Shared On-chip Resource

Interference for Consolidated Virtual Machines. In Proc. of

SOCC, 2011.

[9] A. Gulati, A. Merchant, and P. J. Varman. mClock: Handling

Throughput Variability for Hypervisor IO Scheduling. In

Proc. of OSDI, 2010.

[10] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.

Enforcing Performance Isolation Across Virtual Machines in

Xen. In Proc. of Middleware, 2006.

[11] J. L. Hennessy and D. A. Patterson. Computer Architecture:

A Quantitative Approach, Fourth Edition. Morgan Kaufmann

Publishers Inc., 2006.

[12] IOzone Filesystem Benchmark. http://www.iozone.org.

[13] V. Jeyakumar, D. Mazi, and C. Kim. EyeQ : Practical

Network Performance Isolation for the Multi-tenant Cloud.

In HotCloud, 2012.

[14] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and

C. Pu. An Analysis of Performance Interference Effects in

Virtual Environments. In ISPASS, 2007.

[15] KVM. http://www.linux-kvm.org.

[16] H. Liu. A New Form of DOS Attack in a Cloud and Its

Avoidance Mechanism. In Proc. of CCSW, 2010.

[17] Y. Mei, L. Liu, X. Pu, and S. Sivathanu. Performance

Measurements and Analysis of Network I/O Applications in

Virtualized Cloud. In Proc. of IEEE CLOUD, 2010.

[18] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing

Network Virtualization in Xen. In Proc. of USENIX ATC,

2006.

[19] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and

W. Zwaenepoel. Diagnosing Performance Overheads in the

Xen Virtual Machine Environment. In Proc. of VEE, 2005.

[20] Microsoft Hyper-V Architecture.

http://msdn.microsoft.com/en-us/library/cc768520.aspx.

[21] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-Clouds :

Managing Performance Interference Effects for QoS-Aware

Clouds. In Proc. of EuroSys, 2010.

[22] Netperf. http://www.netperf.org.

[23] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O in

Virtual Machine Monitors. In Proc. of VEE, 2008.

[24] OpenVZ. http://sysbench.sourceforge.net.

[25] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin.

Performance Evaluation of Virtualization Technologies for

Server Consolidation. Technical report, HP Labs Tech.

Report, HPL-2007-59, 2007.

[26] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner.

Achieving 10 Gb/s Using Safe and Transparent Network

Interface Virtualization. In Proc. of VEE, 2009.

[27] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,

You, Get Off of My Cloud: Exploring Information Leakage

in Third-Party Compute Clouds. In Proc. of CCS, 2009.

[28] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt. Bridging

the Gap between Software and Hardware Techniques for I/O

Virtualization. In Proc. of USENIX ATC, 2008.

[29] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale:

elastic resource scaling for multi-tenant cloud systems. In

Proc. of SOCC, 2011.

[30] G. Somani and S. Chaudhary. Application Performance

Isolation in Virtualization. In Proc. of IEEE CLOUD, 2009.

[31] Sysbench. http://sysbench.sourceforge.net.

[32] Sysstat. http://sebastien.godard.pagesperso-orange.fr.

[33] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating

the Hypervisor Attack Surface for a More Secure Cloud. In

Proc. of CCS, 2011.

[34] The Apache Software Foundation. http://www.apache.org/.

[35] VMware ESC.

http://http://www.vmware.com/products/vsphere/esxi-and-

esx/index.html.

[36] P. Willmann, S. Rixner, and A. L. Cox. Protection Strategies

for Direct Access to Virtualized I/O Devices. In Proc. of

USENIX ATC, 2008.

[37] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L.

Cox, and W. Zwaenepoel. Concurrent Direct Network

Access for Virtual Machine Monitors. In Proc. of HPCA,

2007.

[38] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Profiling

and Modeling Resource Usage of Virtualized Applications.

In Proc. of Middleware, 2008.

[39] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone:

Co-residency Detection in the Cloud via Side-Channel

Analysis. In Proc. of IEEE Symposium on Security and

Privacy, 2011.

