
FADE: Secure Overlay Cloud Storage with File

Assured Deletion

Yang Tang†, Patrick P. C. Lee†, John C. S. Lui†, and Radia Perlman‡

†The Chinese University of Hong Kong ‡Intel Labs
{tangyang,pclee,cslui}@cse.cuhk.edu.hk,radiaperlman@gmail.com

Abstract. While we can now outsource data backup to third-party
cloud storage services so as to reduce data management costs, security
concerns arise in terms of ensuring the privacy and integrity of out-
sourced data. We design FADE, a practical, implementable, and readily
deployable cloud storage system that focuses on protecting deleted data
with policy-based file assured deletion. FADE is built upon standard
cryptographic techniques, such that it encrypts outsourced data files to
guarantee their privacy and integrity, and most importantly, assuredly
deletes files to make them unrecoverable to anyone (including those who
manage the cloud storage) upon revocations of file access policies. In par-
ticular, the design of FADE is geared toward the objective that it acts as
an overlay system that works seamlessly atop today’s cloud storage ser-
vices. To demonstrate this objective, we implement a working prototype
of FADE atop Amazon S3, one of today’s cloud storage services, and
empirically show that FADE provides policy-based file assured deletion
with a minimal trade-off of performance overhead. Our work provides
insights of how to incorporate value-added security features into current
data outsourcing applications.

Key words: Policy-based file assured deletion, cloud storage, prototype
implementation

1 Introduction

Cloud storage (e.g., Amazon S3 [2], MyAsiaCloud [11]) offers an abstraction of
infinite storage space for clients to host data, in a pay-as-you-go manner [3].
For example, SmugMug [19], a photo sharing website, chose to host terabytes
of photos on Amazon S3 in 2006 and saved about 500K US dollars on storage
devices [1]. Thus, instead of self-maintaining data centers, enterprises can now
outsource the storage of a bulk amount of digitized content to those third-party
cloud storage providers so as to save the financial overhead in data management.
Apart from enterprises, individuals can also benefit from cloud storage as a result
of the advent of mobile devices (e.g., smartphones, laptops). Given that mobile
devices have limited storage space in general, individuals can move audio/video
files to the cloud and make effective use of space in their mobile devices.

However, privacy and integrity concerns become relevant as we now count
on third parities to host possibly sensitive data. To protect outsourced data,



2 Tang et al.

a straightforward approach is to apply cryptographic encryption onto sensitive
data with a set of encryption keys, yet maintaining and protecting such en-
cryption keys will create another security issue. One specific issue is that upon
requests of deletion of files, cloud storage providers may not completely remove
all file copies (e.g., cloud storage providers may make multiple file backup copies
and distribute them over the cloud for reliability, and clients do not know the
number or even the existence of these backup copies), and eventually have the
data disclosed if the encryption keys are unexpectedly obtained, either by acci-
dents or by malicious attacks. Therefore, we seek to achieve a major security goal
called file assured deletion, meaning that files are reliably deleted and remain
permanently unrecoverable and inaccessible by any party.

The security concerns motivate us, as cloud clients, to develop a secure cloud
storage system that provides file assured deletion. However, a key challenge
of building such a system is that cloud storage infrastructures are externally
owned and managed by third-party cloud providers, and hence the system should
never assume any structural changes (in protocol or hardware levels) in cloud
infrastructures. Thus, it is important to design a secure overlay cloud storage
system that can work seamlessly atop existing cloud storage services.

In this paper, we present FADE, a secure overlay cloud storage system that
ensures file assured deletion and works seamlessly atop today’s cloud storage
services. FADE decouples the management of encrypted data and encryption
keys, such that encrypted data remains on third-party (untrusted) cloud storage
providers, while encryption keys are independently maintained by a key manager
service, whose trustworthiness can be enforced using a quorum scheme [18].
FADE generalizes time-based file assured deletion [5, 14] (i.e., files are assuredly
deleted upon time expiration) into a more fine-grained approach called policy-
based file assured deletion, in which files are associated with more flexible file
access policies (e.g., time expiration, read/write permissions of authorized users)
and are assuredly deleted when the associated file access policies are revoked and
become obsolete.

A motivating application of FADE is cloud-based backup systems (e.g., Jun-
gleDisk [7], Cumulus [21]), which use the cloud as the backup storage for files.
FADE can be viewed as a value-added security service that further enhances the
security properties of the existing cloud-based backup systems.

In summary, our paper makes the following contributions:

– We propose a new policy-based file assured deletion scheme that reliably deletes
files with regard to revoked file access policies. In this context, we design the
key management schemes for various file manipulation operations.

– We implement a working prototype of FADE atop Amazon S3 [2]. Our imple-
mentation aims to illustrate that various applications can benefit from FADE,
such as cloud-based backup systems. FADE consists of a set of API interfaces
that we can export, so that we can adapt FADE into different cloud storage
implementations.



FADE: Secure Overlay Cloud Storage with File Assured Deletion 3

– We empirically evaluate the performance overhead of FADE atop Amazon S3,
and using realistic experiments, we show the feasibility of FADE in improving
the security protection of data storage on the cloud.

The remainder of the paper proceeds as follows. In Section 2, we present
the design of policy-base file assured deletion, a major building block of FADE.
In Section 3, we explain the implementation details of FADE. In Section 4, we
evaluate FADE atop Amazon S3. Section 5 discusses the limitations of FADE
and possible enhancements. In Section 6, we review related work on protecting
outsourced data storage. Finally, Section 7 concludes.

2 Policy-based File Assured Deletion

We present policy-based file assured deletion, the major design building block
of our FADE architecture. Our main focus is to deal with the cryptographic
key operations that enable file assured deletion. We first review time-based file
assured deletion. We then explain how it can be extended to policy-based file
assured deletion.

2.1 Background

Time-based file assured deletion, which is first introduced in [14], means that
files can be securely deleted and remain permanently inaccessible after a pre-
defined duration. The main idea is that a file is encrypted with a data key, and
this data key is further encrypted with a control key that is maintained by a
separate key manager service (known as Ephemerizer [14]). In [14], the control
key is time-based, meaning that it will be completely removed by the key manager
when an expiration time is reached, where the expiration time is specified when
the file is first declared. Without the control key, the data key and hence the
data file remain encrypted and are deemed to be inaccessible. Thus, the main
security property of file assured deletion is that even if a cloud provider does
not remove expired file copies from its storage, those files remain encrypted and
unrecoverable.

Time-based file assured deletion is later prototyped in Vanish [5]. Vanish
divides a data key into multiple key shares, which are then stored in different
nodes of a peer-to-peer network. Nodes remove the key shares that reside in their
caches for 8 hours. If a file needs to remain accessible after 8 hours, then the file
owner needs to update the key shares in node caches.

However, both [14] and [5] target only the assured deletion upon time expi-
ration, and do not consider a more fine-grained control of assured deletion with
respect to different file access policies. We elaborate this issue in Section 2.2.

2.2 Policy-based Deletion

We associate each file with a single atomic file access policy (or policy for short),
or more generally, a Boolean combination of atomic policies. Each (atomic) policy



4 Tang et al.

is associated with a control key, and all the control keys are maintained by the key
manager. Similar to time-based deletion, the file content is encrypted with a data
key, and the data key is further encrypted with the control keys corresponding
to the policy combination. When a policy is revoked, the corresponding control
key will be removed from the key manager. Thus, when the policy combination
associated with a file is revoked and no longer holds, the data key and hence the
encrypted content of the file cannot be recovered with the control keys of the
policies. In this case, we say the file is deleted. The main idea of policy-based
deletion is to delete files that are associated with revoked policies.

The definitions of policies vary depending on applications. Time-based dele-
tion is a special case under our framework, and policies with other access rights
can be defined. To motivate the use of policy-based deletion, let us consider a
scenario where a company outsources its data to the cloud. We consider four
practical cases where policy-based deletion will be useful:

– Storing files for tenured employees. For each employee (e.g., Alice), we
can define a user-based policy “P : Alice is an employee”, and associate this
policy with all files of Alice. If Alice quits her job, then the key manager will
expunge the control key of policy P . Thus, nobody including Alice can access
the files associated with P on the cloud, and those files are said to be deleted.

– Storing files for contract-based employees. An employee may be affili-
ated with the company for only a fixed length of time. Then we can form a
combination of the user-based and time-based policies for employees’ files. For
example, for a contract-based employee Bob whose contract expires on 2010-
01-01, we have two policies “P1: Bob is an employee” and “P2: valid before
2010-01-01”. Then all files of Bob are associated with the policy combination
P1 ∧ P2. If either P1 or P2 is revoked, then Bob’s files are deleted.

– Storing files for a team of employees. The company may have different
teams, each of which has more than one employee. As in above, we can assign
each employee i a policy combination Pi1 ∧Pi2, where Pi1 and Pi2 denote the
user-based and time-based policies, respectively. We then associate the team’s
files with the disjunctive combination (P11∧P12)∨(P21∧P22)∨⋅ ⋅ ⋅∨(PN1∧PN2)
for employees 1, 2, . . . , N . Thus, the team’s files can be accessed by any one
of the employees, and will be deleted when the policies of all employees of the
team are revoked.

– Switching a cloud provider. The company can define a customer-based
policy “P : a customer of cloud provider X”, and all files that are stored
on cloud X are tied with policy P . If the company switches to a new cloud
provider, then it can revoke policy P . Thus, all files on cloud X will be deleted.

Policy-based deletion follows the similar notion of attribute-based encryption
(ABE) [6, 16, 17], in which data can be accessed only if a subset of attributes
(policies) are satisfied. However, our work is different from ABE in two aspects.
First, we focus on how to delete data, while ABE focuses on how to access data
based on attributes. Second, because of the different design objectives, ABE gives
users the decryption keys of the associated attributes, so that they can access
files that satisfy the attributes. On the other hand, in policy-based deletion, we



FADE: Secure Overlay Cloud Storage with File Assured Deletion 5

do not share with users any decryption keys of policies, which instead are all
maintained in the key manager. Our focus is to appropriately remove keys in
the key manager so as to guarantee file assured deletion, which is an important
security property when we outsource data storage to the cloud. This guides us
into a different design space in contrast with existing ABE approaches.

2.3 Participants in the System

Our system is composed of three participants: the data owner, the key manager,
and the storage cloud. They are described as follows.

Data owner. The data owner is the entity that originates file data to be
stored on the cloud. It may be a file system of a PC, a user-level program, a
mobile device, or even in the form of a plug-in of a client application.

Key manager. The key manager maintains the policy-based control keys
that are used to encrypt data keys. It responds to the data owner’s requests by
performing encryption, decryption, renewal, and revocation to the control keys.

Storage cloud. The storage cloud is maintained by a third-party cloud
provider (e.g., Amazon S3) and keeps the data on behalf of the data owner.
We emphasize that we do not require any protocol and implementation changes
on the storage cloud to support our system. Even a naive storage service that
merely provides file upload/download operations will be suitable.

2.4 Threat Models and Assumptions

Our main design goal is to provide assured deletion of files produced by the data
owner. A file is deleted (or permanently inaccessible) if its policy is revoked and
becomes obsolete. Here, we assume that the control key associated with a revoked
policy is reliably removed by the key manager. Thus, by assured deletion of files,
we mean that any existing file copy that are associated with revoked policies will
remain permanently encrypted and unrecoverable.

The key manager can be deployed as a minimally trusted third-party service.
By minimally trusted, we mean that the key manager reliably removes the control
keys of revoked policies. However, it is possible that the key manager can be
compromised. In this case, an attacker can recover the files that are associated
with existing active policies. On the other hand, files that are associated with
revoked policies still remain inaccessible, as the control keys are removed. Hence,
file assured deletion is achieved.

It is still important to improve the robustness of the key manager service to
minimize its chance of being compromised. To achieve this, we can use a quorum
of key managers [18], in which we create n key shares for a key, such that any
k < n of the key shares can be used to recover the key. While the quorum scheme
increases the storage overhead of keys, this is justified as keys are of much smaller
size than data files.

Before accessing the active keys in the key manager, the data owner needs
to present authentication credentials (e.g., based on public key infrastructure



6 Tang et al.

certificates) to the key manager to show that it satisfies the proper policies
associated with the files. We assume that the data owner does not disclose any
successfully decrypted file to unauthorized parties.

2.5 The Basics - File Upload/Download

We now introduce the basics of uploading/downloading files to/from the cloud
storage. We first assume that each file is associated with a single policy, and
then explain how a file is associated with multiple policies in Section 2.7.

Our design is based on blinded RSA [14, 20], in which the data owner requests
the key manager to decrypt a blinded version of the encrypted data key. If the
associated policy is satisfied, then the key manager will decrypt and return the
blinded version of the original data key. The data owner can then recover the
data key. In this way, the actual content of the data key remains confidential
to the key manager as well as to any attacker that sniffs the communication
between the data owner and the key manager.

We first summarize the major notation used throughout the paper. For each
policy i, the key manager generates two secret large RSA prime numbers pi
and qi and computes the product ni = piqi

1. The key manager then randomly
chooses the RSA public-private control key pair (ei, di). The parameters (ni, ei)
will be publicized, while di is securely stored in the key manager. On the other
hand, when the data owner encrypts a file F , it randomly generates a data key
K, and a secret key Si that corresponds to policy Pi. We let {m}k denote a
message m encrypted with key k using symmetric-key encryption (e.g., AES).
We let R be the blinded component when we use blinded RSA for the exchanges
of cryptographic keys.

Suppose that F is associated with policy Pi. Our goal here is to ensure that
K, and hence F , are accessible only when policy Pi is satisfied. Note that we
only present the operations on cryptographic keys, while the implementation
subtleties, such as metadata, will be discussed in Section 3. Also, when we raise
some number to exponents ei or di, it must be done over modulo ni. For brevity,
we drop “mod ni” in our discussion.

File upload. Figure 1 shows the file upload operation. The data owner first
requests the public key (ni, ei) of policy Pi from the key manager, and caches
(ni, ei) for subsequent uses if the same policy Pi is associated with other files.
Then the data owner generates two random keys K and Si, and sends {K}Si

,
Sei
i , and {F}K to the cloud2. Then the data owner can discard K and Si.
File download. Figure 2 shows the file download operation. The data owner

fetches {K}Si
, Sei

i , and {F}K from the storage cloud. Then the data owner
generates a secret random number R, computes Rei , and sends Sei

i ⋅Rei = (SiR)ei

to the key manager to request for decryption. The key manager then computes

1 We require that each policy i uses a distinct ni to avoid the common modulus attack
on RSA [10].

2 We point out that the encrypted keys (i.e., {K}Si
, Sei

i
) can be stored in the cloud

without creating risks of leaking confidential information.



FADE: Secure Overlay Cloud Storage with File Assured Deletion 7

Pi

ei , ni

Pi , {K}Si
 , Si

ei, {F}K

Storage cloud Data owner Key manager

Pi , Si

ei

R
ei

SiR

Pi , {K}Si
 , Si

ei, {F}K

Storage cloud Data owner Key manager

Fig. 1: File upload. Fig. 2: File download.

and returns ((SiR)ei)di = SiR to the data owner. The data owner can now
remove R and obtain Si, and decrypt {K}Si

and hence {F}K .
Integrity. To protect the integrity of a file, the data owner needs to compute

an HMAC on every encrypted file and stores the HMAC, together with the
encrypted file, in the cloud storage. When a file is downloaded, the data owner
will check whether the HMAC is valid before decrypting the file. We assume that
the data owner has a long-term private secret for the HMAC computation.

2.6 Policy Revocation for File Assured Deletion

If a policy Pi is revoked, then the key manager completely removes the private
key di and the secret prime numbers pi and qi. Thus, we cannot recover Si from
Sei
i , and hence cannot recover K and the file F . We say that the file F , which is

tied to policy Pi, is assuredly deleted. Note that the policy revocation operations
do not involve interactions with the storage cloud.

2.7 Multiple Policies

In addition to one policy per file, FADE supports a Boolean combination of
multiple policies. We mainly focus on two kinds of logical connectives: (i) the
conjunction (AND), which means the data is accessible only when every policy
is satisfied; and (ii) the disjunction (OR), which means if any policy is satisfied,
then the data is accessible.

– Conjunctive Policies. Suppose that F is associated with conjunctive poli-
cies P1 ∧ P2 ∧ ⋅ ⋅ ⋅ ∧ Pm. To upload F to the storage cloud, the data owner
first randomly generates a data key K, and secret keys S1, S2, . . . , Sm. It
then sends the following to the storage cloud: {{K}S1

}S2
⋅ ⋅ ⋅Sm

, Se1
1
, Se2

2
, . . .,

Sem
m , and {F}K . On the other hand, to recover F , the data owner generates

a random number R and sends (S1R)e1 , (S2R)e2 , . . ., (SmR)em to the key
manager, which then returns S1R,S2R, . . . , SmR. The data owner can then
recover S1, S2, . . . , Sm, and hence K and F .

– Disjunctive Policies. Suppose that F is associated with disjunctive policies
Pi1 ∨ Pi2 ∨ ⋅ ⋅ ⋅ ∨ Pim . To upload F to the cloud, the data owner will send the



8 Tang et al.

following: {K}S1
, {K}S2

, . . ., {K}Sm
, Se1

1
, Se2

2
, . . ., Sem

m , and {F}K . Therefore,
the data owner needs to compute m different encrypted copies of K. On the
other hand, to recover F , we can use any one of the policies to decrypt the
file, as in the above operations.

To delete a file associated with conjunctive policies, we simply revoke any of
the policies (say, Pj). Thus, we cannot recover Sj and hence the data key K and
file F . On the other hand, to delete a file associated with disjunctive policies, we
need to revoke all policies, so that S

ej
j cannot be recovered for all j. Note that

for any Boolean combination of policies, we can express it in canonical form,
e.g., in the disjunction (OR) of conjunctive (AND) policies.

2.8 Policy Renewal

We conclude this section with the discussion of policy renewal. Policy renewal
means to associate a file with a new policy (or combination of policies). For
example, if a user wants to extend the expiration time of a file, then the user
can update the old policy that specifies an earlier expiration time to the new
policy that specifies a later expiration time. However, to guarantee file assured
deletion, policy renewal can be performed only when the following condition
holds: the old policy will always be revoked first before the new policy is revoked.
The reason is that after policy renewal, there will be two versions of a file: one
is protected with the old policy, and one is protected with the new policy. If
the new policy is revoked first, then the file version that is protected with the
old policy may still be accessible when the control keys of the old policy are
compromised, meaning that the file is not assuredly deleted.

It is important to note that it is a non-trivial task to enforce the condition
of policy renewal, as the old policy may be associated with other existing files.
In this paper, we do not consider this issue and we pose it as future work.

Suppose that we have enforced the condition of policy renewal. A straightfor-
ward approach of implementing policy renewal is to combine the file upload and
download operations, but without retrieving the encrypted file from the cloud.
The procedures can be summarized as follows: (i) download all encrypted keys
from the storage cloud, (ii) send them to the key manager for decryption, (iii)
recover the data key, (iv) re-encrypt the data key with the control keys of the
new policies, and finally (v) send the newly encrypted keys back to the cloud.

In some special cases, optimization can be made so as to save the operations
of decrypting and re-encrypting the data key. Suppose that the Boolean com-
bination structure of policies remain unchanged, but one of the atomic policies
Pi is changed Pi′ . For example, when we extend the contract date of Bob (see
Section 2.2), we may need to update the particular time-based policy of Bob
without changing other policies. In this case, the data owner simply sends the
blinded version Si

eiRei to the key manager, which then returns SiR. The data
owner then recovers Si. Now, the data owner re-encrypts Si into S

ei′
i (mod ni′),

where (ni′ , ei′) is the public key of policy Pi′ , and sends it to the cloud. Note



FADE: Secure Overlay Cloud Storage with File Assured Deletion 9

Pi , Si

ei

R
ei

SiR

Pi , Si

ei

Storage cloud Data owner Key manager

Pi’

ei’ , ni’

Pi’ , Si’

ei’

Fig. 3: Policy renewal.

that the encrypted data key K remains intact. Figure 3 illustrates this special
case of policy renewal.

3 The FADE Architecture

We implement a working prototype of FADE using C++ on Linux, and we use
the OpenSSL library [13] for the cryptographic operations. In addition, we use
Amazon S3 [2] as our storage cloud. This section is to address the implementation
issues of our FADE architecture, based on our experience in prototyping FADE.
Our goal is to show the practicality of FADE when it is deployed with today’s
cloud storage services.

Figure 4 shows the FADE architecture. In the following, we define the meta-
data of FADE attached to individual files. We then describe how we implement
the data owner and the key manager, and how the data owner interacts with the
storage cloud.

3.1 Representation of Metadata

For each file protected by FADE, we include the metadata that describes the
policies associated with the file as well as a set of encrypted keys. In FADE,
there are two types of metadata: file metadata and policy metadata.

File metadata. The file metadata mainly contains two pieces of information:
file size and HMAC. We hash the encrypted file with HMAC-SHA1 for integrity
checking. The file metadata is of fixed size (with 8 bytes of file size and 20 bytes
of HMAC) and attached at the beginning of the encrypted file. Both the file



10 Tang et al.

Data owner

Key manager

...

Cloud

File
(encrypted)

Metadata

Fig. 4: The FADE architecture.

metadata and the encrypted data file will then be treated as a single file to be
uploaded to the storage cloud.

Policy metadata. The policy metadata includes the specification of the
Boolean combination of policies and the corresponding encrypted cryptographic
keys. Here, we assume that each single policy is specified by a unique 4-byte
integer identifier. To represent a Boolean combination of policies, we express it
in disjunctive canonical form, i.e., the disjunction (OR) of conjunctive policies,
and use the characters ‘*’ and ‘+’ to denote the AND and OR operators. Then we
upload the policy metadata as a separate file to the storage cloud. This enables
us to renew policies directly on the policy metadata without retrieving the entire
file from the storage cloud.

In our implementation, individual files have their own policy metadata, al-
though we allow multiple files to be associated with the same policy (which is the
expected behavior of FADE). In other words, for two data files that are under
the same policy, they will have different policy metadata files that specify dif-
ferent data keys, and the data keys are protected by the control key of the same
policy. In Section 5, we discuss how we may associate the same policy metadata
file with multiple data files so as to reduce the metadata overhead.

3.2 Data Owner and Storage Cloud

Our implementation of the data owner uses the following four function calls to
enable end users to interact with the storage cloud:

– Upload(file, policy). The data owner encrypts the input file using the
specified policy (or a Boolean combination of policies). It then sends the en-
crypted file and the metadata onto the cloud. In our implementation, the file
is encrypted using the 128-bit AES algorithm with the cipher block chaining
(CBC) mode, yet we can adopt a different symmetric-key encryption algorithm
depending on applications.

– Download(file). The data owner retrieves the file and the policy metadata
from the cloud, checks the integrity of the file, and decrypts the file.

– Delete(policy). The data owner tells the key manager to permanently re-
voke the specified policy. All files associated with the policy will be assuredly
deleted.



FADE: Secure Overlay Cloud Storage with File Assured Deletion 11

– Renew(file, new_policy). The data owner first fetches the policy metadata
for the given file from the cloud. It then updates the policy metadata with the
new policy. Finally, it sends the policy metadata back to the cloud.

The above function calls can be exported as library APIs that can be embed-
ded into different implementations of the data owner. In our current prototype,
we implement the data owner as a user-level program that can access files under
a working directory of a desktop PC.

The above exported interfaces wrap the third-party APIs for interacting with
the storage cloud. As an example, we use LibAWS++ [9], a C++ library for
interfacing with Amazon S3. We note that the LibAWS++ library uses HTTP
to communicate with the cloud, and it does not provide any security protection
on the data being transferred. To interact with different cloud storage services,
we can use different third-party APIs, provided that the APIs support the basic
file upload/download operations.

3.3 Key Manager

We implement the key manager that supports the following four basic functions.

– Creating a policy. The key manager creates a new policy and returns the
corresponding public control key.

– Retrieving the public control key of a policy. If the policy is accessible, then
the key manager returns the public control key. Otherwise, it returns an error.

– Decrypting a key with respect to a policy. If the policy is accessible, then the
key manager decrypts the (blinded) key. Otherwise, it returns an error.

– Revoking a policy. The key manager revokes the policy and removes the cor-
responding keys.

We implement the basic functionalities of the key manager so that it can
perform the required operations on the cryptographic keys. In particular, all the
policy control keys are built upon 1024-bit blinded RSA (see Section 2.5). To
make the key manager more robust, we can extend the key manager to a quo-
rum of key managers as stated in [18], and implement a PKI-based certification
system for policy checking (see Section 2.4).

4 Evaluation

We implement a prototype of FADE atop Amazon S3 [2], and we now evaluate
the empirical performance of FADE. It is crucial that FADE does not introduce
substantial performance overhead that will lead to a big increase in data man-
agement costs. In addition, the cryptographic operations of FADE should only
bring insignificant computational overhead. Therefore, our experiments aim to
answer the following issue: What is the performance overhead of FADE, and is
it feasible to use FADE to provide file assured deletion for cloud storage?



12 Tang et al.

Our experiments use Amazon S3, residing in the United States, as the stor-
age cloud. Also, we deploy the data owner and the key manager within an or-
ganization’s network that resides in an Asian country. In the experiments, we
evaluate FADE when it operates on an individual file of different sizes: 1KB,
10KB, 100KB, 1MB, and 10MB.

4.1 Experimental Results on Time Performance of FADE

We now measure the time performance of FADE using our prototype. In order
to identify the time overhead of FADE, we divide the running time of each
measurement into three components:

– data transmission time, the data uploading/downloading time between the
data owner and the storage cloud. We further divide it into two components:
the file component, which measures the transmission time for the file body and
the file metadata, and the policy component, which measures the transmission
time for the policy metadata (see Section 3.1). We upload/download these two
components as two separate copies to/from the storage cloud.

– AES and HMAC time, the total computational time used for performing AES
and HMAC on the file.

– key management time, the time for the data owner to coordinate with the key
manager on operating the cryptographic keys. For the file upload operation
(see Figure 1 in Section 2.5), we require the data owner to obtain the public
control key for the corresponding policy; for the download operation (see Fig-
ure 2 in Section 2.5), the data owner works with the key manager to obtain
the data key.

We average each of our measurement results over 10 different trials.
Experiment 1 (Performance of file upload/download operations).

First, we measure the running time of the file upload and download operations
for different file sizes. Table 1 shows the results. We find that the transmission
time is the dominant factor (over 99%). The AES and HMAC time increases
linearly with the file size. However, the key management time stays constant on
the order of milliseconds, regardless of the file size. In other words, compared
with the basic encryption and integrity check provided by AES and HMAC,
FADE only involves a small time overhead in key management.

We note that when the file size is small, the transmission time for the policy
metadata is comparable with the transmission time for the file. To understand
this, we capture and analyze the data traffic, and find that the round-trip time
between our network (in Asia) and Amazon S3 (in the United States) is 200-
300 milliseconds. Because the file and the policy metadata are stored on the
cloud as two separate copies, they are transferred through two different TCP
connections, and a significant portion of data transmission time is actually due
to the TCP connection setup. In Section 4.2, we will show that the actual number
of bytes stored for the policy metadata is in fact much less than that for the file.

Experiment 2 (Performance of policy updates). Table 2 shows the
time used for renewing a single policy of a file (see Figure 3 in Section 2.8), in



FADE: Secure Overlay Cloud Storage with File Assured Deletion 13

File size Total time
Data transmission AES+HMAC Key management

File (%) Policy (%) Time (%) Time (%)

1KB 1.260s 0.724s 57.4% 0.537s 42.6% 0.000s 0.0% 0.000s 0.0%
10KB 1.552s 1.020s 65.7% 0.532s 34.3% 0.001s 0.0% 0.000s 0.0%
100KB 2.452s 1.903s 77.6% 0.546s 22.3% 0.002s 0.1% 0.001s 0.0%
1MB 4.194s 3.646s 86.9% 0.527s 12.6% 0.022s 0.5% 0.000s 0.0%
10MB 16.275s 15.463s 95.0% 0.595s 3.7% 0.218s 1.3% 0.000s 0.0%

(a) Upload

File size Total time
Data transmission AES+HMAC Key management

File (%) Policy (%) Time (%) Time (%)

1KB 0.843s 0.485s 57.5% 0.355s 42.1% 0.000s 0.0% 0.003s 0.4%
10KB 0.912s 0.615s 67.4% 0.294s 32.2% 0.000s 0.0% 0.003s 0.3%
100KB 1.968s 1.682s 85.5% 0.282s 14.3% 0.002s 0.1% 0.002s 0.1%
1MB 4.696s 4.360s 92.8% 0.317s 6.7% 0.017s 0.4% 0.002s 0.1%
10MB 33.746s 33.182s 98.3% 0.395s 1.2% 0.166s 0.5% 0.002s 0.0%

(b) Download

Table 1: Experiment 1 (Performance of upload/download operations).

File size Total time
Data transmission Key management

Download (%) Upload (%) Time (%)

1KB 0.923s 0.315s 34.1% 0.605s 65.5% 0.004s 0.4%
10KB 0.805s 0.266s 33.0% 0.536s 66.6% 0.004s 0.4%
100KB 0.821s 0.271s 33.0% 0.546s 66.5% 0.004s 0.5%
1MB 0.813s 0.273s 33.5% 0.537s 66.0% 0.003s 0.4%
10MB 0.832s 0.266s 32.0% 0.562s 67.6% 0.004s 0.5%

Table 2: Experiment 2 (Performance of policy updates). We do not show the
AES+HMAC time as it is not involved in policy renewal.

which we update the policy metadata on the storage cloud with the new set of
cryptographic keys. Our experiments show that the total time is generally small
(less than a second) regardless of the file size, as we operate on the policy meta-
data only. Also, the key management time only takes about 0.004s in renewing
a policy, and this value is again independent of the file size.

Experiment 3 (Performance of multiple policies). We now evaluate
the performance of FADE when multiple policies are associated with a file (see
Section 2.7). Here, we focus on the file upload operation, and fix the file size at
1MB. We look at two specific combinations of policies, one on the conjunctive
case and one on the disjunctive case.

Table 3a shows different components of time for different numbers of con-
junctive policies, and Table 3b shows the case for disjunctive policies. A key
observation is that the AES and HMAC and the key management time remain
very low (on the order of milliseconds) when the number of policies increases.



14 Tang et al.

Number of
Total time

Data transmission AES+HMAC Key management
policies File (%) Policy (%) Time (%) Time (%)

1 5.141s 4.562s 88.7% 0.557s 10.8% 0.022s 0.4% 0.000s 0.0%
2 4.970s 4.352s 87.6% 0.595s 12.0% 0.022s 0.4% 0.000s 0.0%
3 4.667s 3.983s 85.3% 0.662s 14.2% 0.022s 0.5% 0.001s 0.0%
4 4.976s 4.397s 88.4% 0.557s 11.2% 0.022s 0.4% 0.001s 0.0%
5 4.962s 4.406s 88.8% 0.533s 10.7% 0.021s 0.4% 0.001s 0.0%

(a) Conjunctive policies

Number of
Total time

Data transmission AES+HMAC Key management
policies File (%) Policy (%) Time (%) Time (%)

1 3.927s 3.364s 85.7% 0.541s 13.8% 0.022s 0.6% 0.000s 0.0%
2 4.015s 3.460s 86.2% 0.534s 13.3% 0.021s 0.5% 0.000s 0.0%
3 3.923s 3.390s 86.4% 0.511s 13.0% 0.022s 0.6% 0.001s 0.0%
4 3.859s 3.322s 86.1% 0.515s 13.3% 0.022s 0.6% 0.000s 0.0%
5 4.118s 3.559s 86.4% 0.536s 13.0% 0.022s 0.5% 0.001s 0.0%

(b) Disjunctive policies

Table 3: Experiment 3 (Performance of multiple policies).

Number of Policy metadata
policies size (bytes)

1 149
2 282
3 415
4 548
5 681

(a) Conjunctive policies

Number of Policy metadata
policies size (bytes)

1 149
2 298
3 447
4 596
5 745

(b) Disjunctive policies

Table 4: Size of the policy metadata.

4.2 Space Utilization of FADE

We now assess the space utilization. As stated in Section 3.1, there are file
metadata and policy metadata for each file, and this metadata information is
the space overhead introduced by FADE. For the file metadata, it is always fixed
at 28 bytes. On the other hand, for the policy metadata, its size differs with the
number of policies. For instance, we need 128 bytes for the policy-based secret
key Sei

i for some policy i. The size of an encrypted copy of K is 16 bytes,
and this size increases with the number of terms in the case of disjunctive (OR)
policies (see Section 2.7). Table 4 shows the different sizes of the policy metadata
based on our implementation prototype for a variable number of (a) conjunctive
policies (P1 ∧ P2 ∧ ⋅ ⋅ ⋅ ∧ Pm), and (b) disjunctive policies (P1 ∨ P2 ∨ ⋅ ⋅ ⋅ ∨ Pm).
For instance, if the file size is 1MB and there is only one policy, then the size of
the file metadata is 28 bytes and the policy metadata is 149 bytes, and hence
the space overhead is 0.017%.



FADE: Secure Overlay Cloud Storage with File Assured Deletion 15

4.3 Lessons Learned

In this section, we evaluate the performance of FADE in terms of the overheads
of time, space utilization, and data transfer. It is important to note that the
performance results depend on the deployment environment. For instance, if the
data owner and the key manager all reside in the United States as Amazon
S3, then the transmission times for files and metadata will significantly reduce;
or if the policy metadata contains more descriptive information, the overhead
will increase. Nevertheless, we emphasize that our experiments can show the
feasibility of FADE in providing an additional level of security protection for
today’s cloud storage.

We note that the performance overhead of FADE becomes less significant
when the size of the actual file content increases (e.g. on the order of megabytes
or even bigger). Thus, FADE is more suitable for enterprises that need to archive
large files with a substantial amount of data. On the other hand, individuals may
generally manipulate small files on the order of kilobytes. In this case, we may
consider the techniques of associate the same policy metadata with multiple files
(see Section 5) to reduce the overhead of FADE.

5 Discussion

In this section, we discuss several design limitations that we do not address in
this paper. We suggest possible enhancements that we can make to FADE.

Adding an Additional Layer of Encryption. In our current design of
FADE, if the key manager colludes with the storage cloud, then the storage cloud
can decrypt the files of data owner. To prevent this from happening, one solution
is to add an additional layer of encryption in the data owner. The idea is that the
data owner first encrypts a file with a long-term secret key, and then encrypts
the encrypted file with the data key. In this way, even if the key manager colludes
with the storage cloud, the files of the data owner remain encrypted.

Multiple Files with the Same Policy Metadata. In our current im-
plementation, the operations of FADE are on a per-file basis, such that each
data file has one corresponding policy metadata file (see Section 3). To reduce
the metadata overhead of FADE, we can associate a batch of multiple data files
(e.g., files under the same directory) with the same policy metadata and the
same set of cryptographic keys (including the data key and the control keys of
policies). The advantage of the batch-based approach is that we can use one
single policy metadata for multiple data files. Thus, if the data files are of small
size, then the batch-based approach can reduce the storage overhead due to the
policy metadata.

It is possible to add a new data file into the batch of files that are currently
associated with the same policy metadata. To achieve this, the data owner first
downloads the policy metadata from the storage cloud and recovers the data key.
Then it uses the same data key to encrypt the new file. Note that the content



16 Tang et al.

of the policy metadata remains unchanged. Also, the data key can be cached in
the data owner’s volatile storage so as to include new files into the batch later.

Reliability of the key manager. This work assumes several reliability
features of the key manager (see Section 2.4), including: (i) implementation
of the quorum scheme that improves the robustness of key management, (ii)
removal of keys of revoked policies, and (iii) secure and reliable storage of keys
of active policies that are not yet revoked. We plan to address these issues in
future work.

6 Related Work

In Section 2.1, we discuss time-based deletion in [5, 14], which we generalize into
policy-based deletion. In this section, we review other related work on protecting
outsourced data storage.

Cryptographic protection on outsourced data storage has been considered
(see survey in [8]). For example, Wang et al. [23] propose secure outsourced data
access mechanisms that support changes in user access rights and outsourced
data. Ateniese et al. [4] and Wang et al. [22] propose an auditing system that
verifies the integrity of outsourced data. However, all the above systems require
new protocol support on the cloud infrastructure, and such additional function-
alities may make deployment more challenging.

Security solutions that are compatible with existing public cloud storage ser-
vices have been proposed. Yun et al. [24] propose a cryptographic file system that
provides privacy and integrity guarantees for outsourced data using a universal-
hash based MAC tree. They prototype a system that can interact with an un-
trusted storage server via a modified file system. JungleDisk [7] and Cumulus
[21] are proposed to protect the privacy of outsourced data, and their implemen-
tation use Amazon S3 [2] as the storage backend. Specifically, Cumulus focuses
on making effective use of storage space while providing essential encryption on
outsourced data. The above systems mainly put the protocol functionalities on
the client side, and the cloud storage providers merely provide the storage space.

The concept of attributed-based encryption (ABE) is first introduced in [17],
in which attributes are associated with encrypted data. Goyal et al. [6] extend
the idea to key-policy ABE, in which attributes are associated with private
keys, and encrypted data can be decrypted only when a threshold of attributes
are satisfied. Pirretti et al. [16] implement ABE and conduct empirical studies.
Nair et al. [12] consider a similar idea of ABE, and they seek to enforce a fine-
grained access control of files based on identity-based public key cryptography.
Perlman et al. [15] also address the Boolean combinations of policies, but they
focus on digital rights management rather than file assured deletion and their
operations of cryptographic keys are different from our work because of the
different frameworks. As argued in Section 2.2, ABE and our work have different
design objectives and hence different key management mechanisms.



FADE: Secure Overlay Cloud Storage with File Assured Deletion 17

7 Conclusions

We propose a cloud storage system called FADE, which aims to provide assured
deletion for files that are hosted by today’s cloud storage services. We present the
design of policy-based file assured deletion, in which files are assuredly deleted
and made unrecoverable by anyone when their associated file access policies
are revoked. We present the essential operations on cryptographic keys so as to
achieve policy-based file assured deletion. We implement a prototype of FADE
to demonstrate its practicality, and empirically study its performance overhead
when it works with Amazon S3. Our experimental results provide insights into
the performance-security trade-off when FADE is deployed in practice.

Acknowledgment

The work of Patrick P. C. Lee was supported by project #MMT-p1-10 of the
Shun Hing Institute of Advanced Engineering, The Chinese University of Hong
Kong.

References

1. Amazon. SmugMug Case Study: Amazon Web Services. http://aws.amazon.com/
solutions/case-studies/smugmug/, 2006.

2. Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/s3/.
3. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,

D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A
Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

4. G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and Efficient
Provable Data Possession. In Proc. of SecureComm, 2008.

5. R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish: Increasing Data Privacy
with Self-Destructing Data. In Proc. of USENIX Security Symposium, Aug 2009.

6. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption for
Fine-Grained Access Control of Encrypted Data. In Proc. of ACM CCS, 2006.

7. JungleDisk. http://www.jungledisk.com/.
8. S. Kamara and K. Lauter. Cryptographic Cloud Storage. In Proc. of Financial

Cryptography: Workshop on Real-Life Cryptographic Protocols and Standardiza-
tion, 2010.

9. LibAWS++. http://aws.28msec.com/.
10. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, Oct 1996.
11. MyAsiaCloud. http://www.myasiacloud.com/.
12. S. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A Hybrid PKI-IBC Based

Ephemerizer System. IFIP International Federation for Information Processing,
232:241–252, 2007.

13. OpenSSL. http://www.openssl.org/.
14. R. Perlman. File System Design with Assured Delete. In ISOC NDSS, 2007.



18 Tang et al.

15. R. Perlman, C. Kaufman, and R. Perlner. Privacy-Preserving DRM. In IDtrust,
2010.

16. M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure Attribute-Based
Systems. In ACM CCS, 2006.

17. A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. In EUROCRYPT,
2005.

18. A. Shamir. How to Share a Secret. CACM, 22(11):612–613, Nov 1979.
19. SmugMug. http://www.smugmug.com/.
20. W. Stallings. Cryptography and Network Security. Prentice Hall, 2006.
21. M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem backup to the

cloud. ACM Trans. on Storage (ToS), 5(4), Dec 2009.
22. C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for

storage security in cloud computing. In Proc. of IEEE INFOCOM, Mar 2010.
23. W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure and Efficient Access to

Outsourced Data. In ACM Cloud Computing Security Workshop (CCSW), Nov
2009.

24. A. Yun, C. Shi, and Y. Kim. On Protecting Integrity and Confidentiality of Cryp-
tographic File System for Outsourced Storage. In ACM Cloud Computing Security
Workshop (CCSW), Nov 2009.


