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ABSTRACT
Modern decentralized key-value stores often replicate and distribute
data via consistent hashing for availability and scalability. Com-
pared to replication, erasure coding is a promising redundancy
approach that provides availability guarantees at much lower cost.
However, when combined with consistent hashing, erasure coding
incurs a lot of parity updates during scaling (i.e., adding or remov-
ing nodes) and cannot efficiently handle degraded reads caused by
scaling. In this paper, we propose a novel erasure coding model
called FragEC, which incurs no parity updates during scaling. We
further extend consistent hashing with multiple hash rings to en-
able erasure coding to seamlessly address degraded reads during
scaling. We realize our design as an in-memory key-value store
called ECHash, and conduct testbed experiments on different scal-
ing workloads in both local and cloud environments. We show that
ECHash achieves better scaling performance (in terms of scaling
throughput and degraded read latency during scaling) over the
baseline erasure coding implementation, while maintaining high
basic I/O and node repair performance.

CCS CONCEPTS
• Computer systems organization → Redundancy; • Infor-
mation systems→ Key-value stores; Distributed storage.
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1 INTRODUCTION
Decentralized key-value (KV) stores (e.g., Swift [10], Dynamo [19],
BigTable [14], Cassandra [31], and Memcached [8]) provide scala-
bility and availability guarantees that cannot be readily achieved by
traditional relational databases. To eliminate the need of centralized
administration, most of the decentralized KV stores (including Swift
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Figure 1: Scaling (adding a new node D) for objects a,b, c,d
over nodes N1,N2,N3,N4 in consistent hashing.

[10], Dynamo [19], Cassandra [31], and Memcached [8]) distribute
data across nodes (or servers1) using consistent hashing [29], which
maps KV items (called objects) to nodes in a decentralized manner
and allows efficient object-to-node remappings when nodes are
added to or removed from KV storage.

Tomaintain data availability, consistent-hashing-based KV stores
(e.g., Dynamo [19] and Cassandra [31]) replicate data into multiple
copies that are distributed across nodes, yet replication incurs high
redundancy. Recent studies [10, 15, 30, 33, 40, 49] adopt erasure cod-
ing as a low-cost redundancy mechanism while maintaining high
availability in KV stores. There are two erasure coding approaches.
One approach is self-coding [30, 40], which operates on a per-object
basis by dividing an object into splits that are erasure-coded. An-
other approach is cross-coding [10, 15, 33, 49], in which objects are
stored across nodes and each node combines its stored objects into
data chunks. The data chunks in different nodes are then encoded
into parity chunks. The data and parity chunks (which collectively
form a stripe) are distributed across different nodes, such that all
original data chunks can be reconstructed from a subset of a stripe.
Compared to self-coding, cross-coding provides two benefits for
decentralized KV stores. First, large-scale KV store workloads are
often dominated by small objects [12, 38], and cross-coding can
combine small objects into chunks of fixed size to make erasure cod-
ing viable. Second, cross-coding can easily access an object without
centralized metadata lookups (§2).

However, to deploy cross-coding under consistent hashing, it
is challenging to handle the elasticity or resizing of the system
scale, which we refer to as scaling in this paper. Scaling, which we
define as either adding nodes (i.e., scale-out) or removing nodes (i.e.,
scale-in), is common and critical for real-life large-scale KV stores
[3, 38] to cope with dynamic user demands (see §2.3 for details).
During scaling, objects are remapped across different nodes based
on consistent hashing. To show the challenges of deploying cross-
coding, Figure 1 depicts the scaling process with 2-way replication
1The terms “nodes” and “servers” are used interchangeably in the paper.
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(i.e., each object has two replicas) and (3, 2) cross-coding (see §2.2
for details), where the objects a and c are migrated to the new node
N4 based on consistent hashing. For replication (Figure 1(a)), the
scaling process can simply migrate a and c (or their replicas) to
N4. On the other hand, for cross-coding (Figure 1(b)), the scaling
process not only migrates a and c to N4, but also changes the data
chunks which contain a and c . This also causes the corresponding
parity chunk to be updated. In the case of frequent scaling, the
parity update cost will be significant (Challenge 1). Also, Figure 1(b)
shows that the scaling process changes two data chunks of the
stripe, and the stripe may fail to decode a and c during scaling. This
impairs the performance of degraded reads (i.e., the reconstruction
of an unavailable object being read from the available chunks of
the same stripe). This is unfavorable for KV stores that aim for high
availability while supporting frequent scaling (Challenge 2).

We address the above challenges of deploying cross-coding un-
der consistent hashing based on the following intuitions. For Chal-
lenge 1, we find that consistent hashing and cross-coding are de-
signed based on two inherently different mapping mechanisms:
consistent hashing operates on the mapping from an object to a node,
while cross-coding operates on the mapping from a chunk to a node.
It means that even if there is only one object that changes its node
mapping under consistent hashing during scaling, its correspond-
ing data chunk, together with all parity chunks of the same stripe,
must be properly updated as the data chunk cannot be mapped to
two nodes. To address Challenge 1, our idea is to allow a data chunk
to be mapped to multiple nodes, such that the scaling process no
longer needs to change a data chunk and hence there is no need to
update the parity chunks of the same stripe. For Challenge 2, we
find that the scaling process may change multiple data chunks of
a stripe under consistent hashing, even though only one node is
added to (or removed from) the system. To address Challenge 2,
our idea is to allow consistent hashing to be aware of the number
of chunks of a stripe by partitioning all the nodes into the same
number of isolated zones. We then distribute the chunks of a stripe
to different zones, such that the scaling process (e.g., adding/remov-
ing a node) only affects the zone that runs scaling and at most one
chunk of the stripe is changed.

Based on the above intuitions, in this paper, we propose a new
erasure coding model called fragmented erasure coding, or FragEC,
that supports fragmented chunks, meaning that one data chunk can
be fragmented into sub-chunks that are mapped to multiple nodes.
Also, we design a consistent hashing scheme based on multiple
hash rings, which partition nodes into multiple isolated zones (i.e.,
one hash ring per zone). To this end, we build a decentralized in-
memory KV store prototype called ECHash, which realizes FragEC
in multiple hash rings. In particular, we improve the conventional
node repair scheme by supporting the repair of sub-chunks in-
stead of chunks in ECHash. We implement ECHash based on the
Memcached protocol [8], which has been the building block in
production large-scale in-memory KV services [3, 38]. Compared
to state-of-the-art approaches, we show via experiments in both
local and cloud settings that the scaling throughput increases by
up to 8.3× (local) and 5.2× (cloud), and the degraded read latency
reduces by up to 81.1% (local) and 89.0% (cloud).

The source code of our ECHash prototype is available for down-
load at: https://github.com/yuchonghu/echash.
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Figure 2: Consistent hashing with virtual nodes.

2 BACKGROUND AND MOTIVATION
We provide the background details of consistent hashing and era-
sure coding for decentralized KV stores. We then show via moti-
vating examples the challenges of combining erasure coding with
consistent hashing and our main ideas.

2.1 Consistent Hashing
Consider a decentralized KV store with M nodes. To balance the
storage load of the M nodes, a naïve way is to map each object
with key o into the node with the index hash(o)mod M . However,
during scaling (e.g., a new node is added), we need to re-hash a lot
of objects to a new set of nodes; for example, the object o is mapped
to the node with the index hash(o)mod (M + 1). To mitigate the
re-hashing overhead, consistent hashing [29] is proposed with the
following three steps: (i) calculating the hash values of all nodes
and mapping them to a hash ring; (ii) calculating the hash values
of all the objects’ keys and mapping them to the same hash ring;
(iii) storing each object in its nearest node in the hash ring along
the clockwise direction. Note that the hash ring is divided intoM
regions by theM nodes, each of which is responsible for the region
between itself and its predecessor node in the hash ring. In this way,
the addition/removal of a node only affects its adjacent nodes in
the hash ring, while other non-adjacent nodes remain unaffected.

However, the basic consistent hashing design leads to load im-
balance, as the regions may have different sizes and be mapped by
different numbers of objects. To achieve load balancing, one ap-
proach is to assign v virtual nodes to each physical node, such that
the hash ring is divided intoM ×v regions byM ×v virtual nodes
[19]. Thus, an object that is covered by a virtual node’s region will
be distributed to the physical node that corresponds to the virtual
node. Figure 2(a) depicts this idea, in which there are three objects
a, b, and c , andM = 3 physical nodes N1, N2, and N3; each physical
node is assigned v = 2 virtual nodes (e.g., node N1 has two virtual
nodes N1−1 and N1−2). Thus, the hash ring is divided into 6 regions.
Here, the objects a and b are covered by the regions (N3−1,N2−2]
and (N3−2,N1−2], and are distributed to N2 and N1 before scaling,
respectively. Figure 2(b) depicts how we re-distribute the objects
when a new node N4 is added. Here, a and b are covered by the
regions (N3−1,N4−1] and (N3−2,N4−2] after scaling, respectively,
and will be relocated to the new node N4. Modern decentralized
KV stores [8, 10, 19, 31] adopt consistent hashing for deterministic
lookups of objects and efficient scaling.

https://github.com/yuchonghu/echash
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2.2 Erasure Coding
An erasure coding scheme, denoted by an (n,k) code, can be con-
structed by two configurable parameters n and k . An (n,k) code
organizes KV objects as fixed-size data units. For every set of k data
units, the KV store encodes them into additional n − k equal-size
parity units, such that any k out of the n data/parity units (collec-
tively called a stripe) suffice to rebuild the original k data units. An
(n,k)-coded KV store withM nodes contains multiple stripes that
are independently encoded, so our discussion only focuses on a
single stripe. Suppose that n < M . Then we distribute all the n units
of a stripe across n of the M nodes to tolerate the failures of any
n − k out of the n nodes.

Erasure coding protects data storage against failures with a sig-
nificantly low degree of redundancy, while tolerating the same
number of any combination of failures as traditional replication.
For example, in Figure 1 (§1), both the 2-way replication and (3, 2)
coding can tolerate any single node failure, but (3, 2) coding incurs
less storage redundancy (1.5×) than 2-way replication (2×). Previ-
ous studies (e.g., [26, 43, 47]) also show via quantitative reliability
analysis that erasure coding achieves much higher durability (in
terms of mean-time-to-failures) than replication in general.

While erasure coding is more storage-efficient than replication,
it incurs higher performance overhead during the reconstruction
of unavailable objects, including (i) the degraded reads to an un-
available object and (ii) repairing all lost objects in a failed node.
The reason is that reconstructing any unavailable object needs to
retrieve multiple available objects of the same stripe for decod-
ing. This is in contrast to replication, which can directly retrieves
another replica of the unavailable object for reconstruction.

There are two ways of applying (n,k) coding for KV stores: self-
coding [30, 40] and cross-coding [10, 15, 33, 49]. For self-coding, we
partition each object into k data units and encode them into n − k
parity units. We then store all the n units in n nodes. Self-coding is
suitable for storing large objects (e.g., over 1MB [40]) in big data
analytics. On the other hand, for cross-coding, we distribute objects
across different nodes, and in each node, we combine multiple
objects into a fixed-size data chunk (which corresponds to a data
unit). We encode the k data chunks into n − k parity chunks of the
same size, and store all the n chunks in n nodes.

To elaborate how cross-coding works, Figure 3 illustrates (3, 2)
cross-coding with consistent hashing for eight objects a to h. The
eight objects are first distributed across two nodes N1 and N2 via
consistent hashing. There are two data chunks data1 (composed of
a, b, c , and d) and data2 (composed of e , f , д, and h). A parity chunk
parity is generated by XOR-ing data1 and data2, and is placed in
the third node N3. Figure 3 shows two merits of cross-coding over
self-coding in decentralized KV stores.

• Cross-coding can support small objects simply by combining
them into chunks of fixed size. In fact, real-life KV store work-
loads (e.g., Facebook [12]) are often dominated by small objects
whose sizes range from few bytes to tens or hundreds of bytes. In
particular, one of Facebook’s five workloads [12] has values with
2 bytes only, while another workload has up to 40% of values
with only 2, 3, and 11 bytes.

• Cross-coding can directly calculate (rather than look up) the
location of an object via consistent hashing. For example, we can
calculate that a is stored atN1. Thus, cross-coding can easily issue
object access requests without centralized metadata lookups,
thereby enabling decentralized object management in KV stores.
In contrast, it is inefficient for self-coding to be applied to de-

centralized KV stores. First, it is inappropriate to divide extremely
small objects (e.g., 2 bytes) into data units. Also, the fact that each
object is divided into small data units makes object access requests
require centralized lookups to determine and manage the locations
of all small data units before reconstructing the object. Thus, we
believe that cross-coding is a sound erasure coding technique for
decentralized KV stores. In this paper, we focus on cross-coding.

2.3 Scaling
To handle the dynamic storage demands, a KV store may perform
vertical scaling (i.e., adding/removing resources of an existing node)
or horizontal scaling (i.e., adding/removing nodes in a KV store).
In this paper, we focus on horizontal scaling, and refer to it as
“scaling” in short. Our work considers two scaling processes: (i)
scale-out, in which we add s nodes to a KV store and denote this
process as (n,k, s)-scaling, and (ii) scale-in, in which we remove s
nodes from a KV store and denote this process as (n,k,−s)-scaling.
Note that we still maintain (n,k) coding before and after scaling. A
scaling process performs two steps: (i) object migration, which re-
distributes objects due to node additions or removals, and (ii) parity
updates, which re-compute new parity chunks based on relocated
objects. We argue that improving the scaling performance is critical
in practice, due to the following two reasons.
Scaling always happens:Many decentralized KV stores [19, 31]
serve hundreds of millions of users at peak times. Due to the huge
number of users, real-life KV stores have to frequently adapt to
users’ current performance and reliability service-level agreements,
and allow users to dynamically scale-out or scale-in their resources
based on their desired request loads. For example, Amazon Web
Services (AWS) provides a KV caching service called ElastiCache
[3] that can effectively scale in-memory KV storage instances (e.g.,
Memcached [8]) to meet the current user demands. It also supports
auto-scaling [4], which automatically scales the storage capacity to
balance performance and monetary costs.
Scaling traffic is significant: Scaling for erasure-coded distributed
storage systems inevitably triggers substantial scaling traffic (i.e.,
the amount of transferred data during scaling) [27, 48, 50], as the
scaling process needs to migrate data chunks to different nodes and
update parity chunks based on the new data chunk layout. Similarly,
decentralized KV stores using consistent hashing and cross-coding
also incur significant scaling traffic. First, scaling triggers traffic
for object migration, since the regions associated with some of the
nodes are changed after node additions/removals, and the objects
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need to be migrated to the other nodes that are currently in charge
of their storage (§2.1). More importantly, scaling triggers a lot of ad-
ditional traffic for parity updates after object migration, since many
migrated objects will change the data chunks with which they are
associated (before or after scaling), and the KV store must transfer
data to re-compute the parity chunks. Thus, mitigating the scaling
traffic due to parity updates is necessary to accelerate the scaling
process and avoid disturbing normal KV storage applications.

2.4 Motivating Examples
In this work, our main goal is to minimize the scaling traffic due to
parity updates in decentralized KV stores that build on consistent
hashing and cross-coding. We use two toy examples to illustrate
the challenges and our main ideas posed in §1.

Example 1:We address Challenge 1 by allowing a data chunk to
be fragmented into sub-chunks that are stored in different nodes.
We motivate this idea via an example of (3, 2, 1)-scaling in Figure 4;
here, we only show the physical nodes and omit the virtual nodes
for simplicity. Suppose that a new node N4 is added and two objects
d and h are migrated from the old nodes N1 and N2, respectively, to
N4. Note that the migrations of d and h change their corresponding
data chunks, so we need to update the parity chunk of the same
stripe. Also, we need to create a new parity chunk for d and h after
they are moved to N4, so as to provide them with fault tolerance
(the creation of a new parity chunk is not shown in the figure).

To elaborate, in Figure 4(a), the data chunks data1 and data2
are changed to data′1 and data′2 (which no longer have d and h),
respectively. In the traditional erasure coding design, the whole
parity chunkparity has to be updated toparity′. On the other hand,
in Figure 4(b), suppose that we allow the data chunks data1 and

data2 to be fragmented across N1, N2, and N4 as sub-chunks. Then
data1 and data2 remain unchanged (logically), even though their
sub-chunks (i.e., d and h) are (physically) migrated to the new node
N4. In this case, we do not need to update the parity chunk parity.

Example 2: In Example 1, the failure of N4 causes both d and h to
be unavailable and leads to Challenge 2. We address this challenge
by partitioning all the nodes into n isolated zones that are managed
by multiple hash rings and distributing the chunks of each stripe
across distinct hash rings (one chunk per hash ring). We motivate
this via an example of (3, 2, 1)-scaling in Figure 5, which illustrates
the difference between a single hash ring and the multiple hash
rings. In Figure 5(a), both d and h may have not been migrated to
the new node N4 in the early phase of scaling, so issuing a read to
d through N4 will fail. Instead, we may issue a degraded read to
d by decoding d from data2 and parity in N2 and N3, respectively.
However, the degraded read to d will not work if h has now been
migrated away from N2 in which data2 resides, as data2 no longer
contains h for the decoding. In contrast, in Figure 5(b), we distribute
all the chunks data1, data2, and parity across n = 3 distinct hash
rings, such that the addition/removal of a node only occurs at one
hash ring at a time. In this way, we can issue a degraded read to d
by decoding it from other chunks in other hash rings.

Motivation: Example 1 motivates us to design a new erasure cod-
ing model, called FragEC (§3), that enables fragmented data chunks;
that is, each data chunk can be fragmented into sub-chunks (called
fragments) across different nodes instead of being stored in a sin-
gle node. In this way, we keep the data chunks unchanged during
scaling and hence do not need to update the parity chunks, thereby
eliminating the scaling traffic due to parity updates. Example 2
further motivates us to design a FragEC-based KV store, called
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ECHash (§4), that manages all the nodes via multiple hash rings
and distributes the chunks of a stripe across distinct hash rings, so
as to ensure that all objects remain available during scaling.

3 FragECMODEL
In this section, we introduce the FragEC model, which allows each
data chunk to be fragmented and stored in multiple nodes, so as to
efficiently integrate cross-coding with consistent hashing.
Object organization: For object indexing, we introduce the Object
Index (Figure 6), which is a hash table that maps an object’s key to
a 64-bit bucket. Each bucket comprises four values (Table 1): the
object’s length, the object’s offset in the chunk in which the object
resides, the ID of the stripe in which the object resides, and the
chunk index within the stripe (indexed from 0 to n − 1).
Coding details:We store objects with hybrid-encoding [15], which
performs erasure coding on the values of objects while storing the
keys and metadata in replication. We encode the objects via (n,k)
cross-coding described in §2.2: (i) we select multiple objects from
the Object Index; (ii) we combine the selected objects’ values into
k fixed-size data chunks (4 KiB as the default size [15, 49]) until
the chunk size is reached; (iii) we encode the k data chunks into
n − k parity chunks of the same size using Reed-Solomon coding
[41], a popular erasure code construction adopted in production
(e.g., [21, 39]); (iv) we distribute all objects of the k data chunks
via consistent hashing across k nodes, such that each object can be
accessed directly via consistent hashing, while distributing parity
chunks across n − k different nodes in a round-robin fashion [15].
Note that when nodes are later added to or removed from the KV
store, FragEC may partition the k data chunks into fragments that
are distributed across more than k nodes.

For each data chunk, we prepend a unique 32-bit Chunk ID for
chunk identification; for each stripe, we also prepend a unique
32-bit Stripe ID for stripe identification. For the i-th (1 ≤ i ≤ n − k)
parity chunk of a stripe, we treat it as an object and generate its
key based on its Stripe ID and i .
Chunk organization: Note that FragEC allows an object to be
directly read and written via consistent hashing. Also, FragEC
supports update and degraded read operations by locating the data
and parity chunks of the same stripe. To this end, FragEC leverages
Chunk Index and Stripe Index for chunk organization (Figure 6). The
Chunk Index is a hash table that maps the Chunk ID of a data chunk
to a list showing how the data chunk organizes the objects. We

Bits Values Description
0-11 Length Length of the object value
12-23 Offset Offset of the object within the chunk
24-55 Stripe ID Identifier of the stripe
55-63 Chunk index Index of the chunk within the stripe

(0 to n − 1)

Table 1: Object Index’s bucket format.

call this list Object Index Reference List (or OIRList), which specifies
the references of all the object indices in the Object Index, as well
as the organization order of all the objects in the data chunk. The
Stripe Index is a hash table that maps the Stripe ID of a stripe to
the stripe metadata, which includes the Chunk IDs of the k data
chunks and the n − k parity chunks.
Enabling fragmented data chunks: Existing erasure-coded KV
stores mainly bind each data chunk to a specific node. On the
other hand, FragEC stores objects in different nodes via consistent
hashing and records objects’ information in the Object Index. It
also generates data chunks from objects based on the Object Index
and records how the objects form the data chunks in the OIRList.
In other words, the Object Index records objects that can reside in
different nodes based on consistent hashing, and each data chunk
generated based on the Object Index can be formed by objects that
are spread more than one node. Thus, FragEC realizes fragmented
data chunks that decouples the relation between data chunks and
nodes, such that each data chunk does not change during scaling if
its OIRList stays unchanged, thereby incurring no parity updates.

4 ECHash DESIGN
We present ECHash, a decentralized KV store with the following
design goals:
• No parity updates during scaling: ECHash realizes FragEC,
such that there is no need to update parity chunks during scaling
(§4.3).

• Efficient degraded reads: ECHash proposes a multi-hash-ring
design, such that degraded reads can be efficiently issued during
scaling (§4.4).

• Efficient node repair: ECHash proposes a fragment-repair de-
sign, which issues the repair of a failed node at the fragment level
rather than at the chunk level (§4.5).

4.1 Architecture
We first introduce the architecture of ECHash and state our design
assumptions.

ECHash targets consistent-hashing-based in-memory KV stores
that are commonly deployed in decentralized environments [3,
11, 38], while its design idea is applicable for KV stores with per-
sistent storage as well. Currently, ECHash is implemented atop
Memcached [8] (§5.1). Integrating ECHash into other decentralized
KV stores must deal with the compatibility issues; for example,
Swift [10] (a persistent KV store) uses a different consistent hash-
ing scheme from Memcached. We pose the integration to other
decentralized KV stores as future work.

Figure 7 shows ECHash’s architecture for in-memory KV stor-
age. ECHash mainly comprises multiple servers for storing objects,
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multiple clients for interfacing with user applications, as well as a
proxy for relaying clients’ requests and distributing objects across
the servers. Each server allocates a memory region for storing ob-
jects that are distributed by the proxy. The servers are organized
via multiple hash rings based on three principles: (i) all theM nodes
are dispersed across n isolated hash rings, so that allM nodes can
be managed by the n hash rings; (ii) one hash ring contains at least
one node for storing objects, so that (n,k) coding can be performed
across the n hash rings; and (iii) scaling occurs at no more than
n − k hash rings at a time, so that any object remains available as
(n,k) coding can tolerate up to n − k failures. The proxy serves
as a front-end interface for clients to access objects in servers. It
implements FragEC and performs erasure coding, scaling, degraded
reads, and node repair operations. It has n buffers corresponding
to n hash rings for gathering data objects to form data chunks.
It also stores the Object Index, the Chunk Index, and the Stripe
Index. ECHash currently assumes a single proxy. To avoid the
single-point-of-failure of the proxy, ECHash can be attached with
multiple backup proxies for synchronizing the proxy-side metadata
and the server connection status. It can also be attached with a
database for persistent storage.

The proxy-based design is also used in cloud storage studies (e.g.,
[16, 46]) and production systems (e.g., OpenStack [9]). Our ECHash
implementation builds on a Memcached client, which acts as the
proxy. We emphasize that the proxy is not the bottleneck in the
scaling process, as the scaling performance mainly depends on the
object migration and parity update overheads. Our FragEC model
for consistent hashing is orthogonal to the proxy-based design.
Also, our evaluation fairly compares all schemes under the same
proxy-based setting (§5).

In this work, we assume that the size of each object is fixed and
will not change after the object is stored, but the sizes of different
objects may be different. We also do not consider space reclamation
of deleted objects, which can be done offline in the background.

4.2 Basic Requests
ECHash supports four basic requests in normal mode (i.e., without
failures): write, read, update, and delete.

Write inserts a new object into ECHash. The proxy stores the
object in one of the servers, by first selecting a hash ring via

hash(key) mod n (where key is the object’s key) and further de-
termining a server in the selected hash ring to store the object
via consistent hashing. To realize FragEC, the proxy appends the
value of each object to the buffer of the corresponding hash ring.
As soon as k of the n buffers of the hash rings reach the chunk size,
these k buffers will be flushed and the objects in each of the flushed
buffers are combined into each of the k data chunks. The proxy
associates each data chunk with a unique Chunk ID, and updates
the corresponding ORILists in the Chunk Index. Also, the proxy
encodes the k data chunks into n − k parity chunks, and associates
the parity chunks of the same stripe with a unique Stripe ID. The
Object Index records the information of the flushed objects and the
parity objects as described in Table 1. For parity chunks, the proxy
chooses the n − k hash rings that are different from the hash rings
of the k data chunks. It places each parity chunk in each of the n−k
selected hash rings via consistent hashing, and records the stripe
metadata in the Stripe Index.
Read retrieves an object from ECHash. The proxy first selects the
hash ring based on the object’s key. It then retrieves the object in
the hash ring via consistent hashing.
Update changes an existing object’s old value into a new value. The
proxy first selects the hash ring based on the object’s key. It then
finds the object’s Stripe ID, offset, and length from the Object Index.
It locates the whole stripe by the Stripe Index (which contains all
Chunk IDs and parity keys). It retrieves all the parity chunks and
the old values of the objects. It computes all the parity chunks’ new
values, and writes the new object and the updated parity chunks to
the servers.
Delete removes an object from ECHash. The proxy treats delete
requests equivalently as update requests by updating the object’s
value to zero-bytes. The free space of the deleted objects can later
be reclaimed in the background (§4.1).

4.3 Scaling
ECHash performs scaling when a new node is added or removed, in
which it performs object migration and parity updates (§2.3). Here,
we describe the scale-out process with s = 1 (i.e., adding a new
node); the case of s > 1 can be generalized in a similar way. We
also discuss the scale-in case, which can be viewed as the reverse
of the scale-out process.
Object migration: Recall from §2.1 that the scaling process under
consistent hashing will change the regions of nodes and migrate
some objects among nodes. In ECHash, it migrates the affected ob-
jects and updates the corresponding metadata. Specifically, suppose
that the addition of a new node is associated with v virtual nodes
(§2.1). ECHash first identifies thev new regions covered by the new
node’s v virtual nodes that are mapped to the hash ring. It then
traverses the Object Index to identify the objects being covered by
the v new regions (i.e., the objects that need to be migrated) in the
hash ring. It also identifies the v old virtual nodes in which the mi-
grated objects reside before scaling (i.e., the nodes that are adjacent
to the v new virtual nodes in the hash ring along the clockwise
direction). Finally, it retrieves the objects from the physical nodes
of the corresponding v old virtual nodes and stores them in the
new node. Figure 8 depicts the object migration process in ECHash
(with the same setting as in Figure 2). In the figure, ECHash first
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Figure 8: Illustration of ECHash’s scaling with s = 1.

identifies two new regions (N3−1,N4−1] and (N3−2,N4−2] due to
the addition of the new node N4. It then identifies the objects a and
b covered by the two regions from the Object Index. It finds the two
old virtual nodes N2−2 and N1−2, reads and deletes a and b from
N2 and N1, respectively, and writes them to the new node N4.
Parity updates: Recall from §3 that under FragEC, ECHash does
not change the OIRList of each data chunk during scaling. Although
some objects have been migrated due to consistent hashing, the
object organization within each data chunk determined by the
OIRList keeps unchanged. Thus, ECHash does not need to change
any data chunk after scaling, thereby eliminating parity updates and
significantly reducing the scaling traffic. For example, in Figure 8,
a data chunk is constructed by three objects a, b, and c , while the
objects a and b are migrated to the new node N4 during scaling.
Note that ECHash can ensure via the data chunk’s OIRList that the
data chunk is still formed by a, b, and c after scaling.
Discussion: Scale-in can be in general viewed as the reverse of
scale-out, yet they incur different savings of parity chunk updates
in ECHash. Specifically, for scale-out, objects are migrated from
existing nodes to newly added nodes, so ECHash can save the
parity updates of the stripes that involve existing nodes. In contrast,
for scale-in, objects are migrated from the removed nodes to other
existing nodes, so ECHash can save the parity updates of the stripes
that involve the removed nodes.

4.4 Degraded Reads
Wefirst describe the basic approach of performing degraded reads to
objects. Suppose that there arek data chunks andn−k parity chunks
of a stripe, and one of the k data chunks now becomes unavailable.
If we want to read an object that belongs to the unavailable data
chunk, then we decode the unavailable data chunk by retrieving
any k out of the remaining n − 1 available chunks via the FragEC
model, and we access the object within the decoded data chunk.

There are two major cases that trigger degraded reads to objects.
The first case refers to a transient or permanent server failure
that leads to unavailable objects. In this case, it can be handled
via the above basic approach of degraded reads. The second case
refers to a scaling operation (e.g., adding a new node), which is
frequent in decentralized KV stores (§2.3). In this case, the scaling
operation may migrate multiple objects of a stripe to other new
nodes based on consistent hashing. As shown in Example 2 in §2.4,
the degraded reads cannot be applied directly under traditional
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Figure 9: Workflow of the degraded read to object b: (1) se-
lecting Hash Ring 1 and looking up the Object Index to
obtain the Stripe ID, offset, and length of b; (2) from the
Stripe ID, obtaining the stripe metadata and the chunk IDs
of the chunks data2 and parity; (3) from data2’s Chunk ID,
constructing the data chunk data2 based on its OIRList in
Hash Ring 2, as well as the parity chunk in Hash Ring 3; (4)
decoding data1 from data2 and parity; (5) retrieving object b
by its offset and length from the decoded data1.

consistent hashing if we organize all the servers in a single hash ring.
Handling degraded reads becomesmore challenging in a single hash
ring if the scaling operation involves multiple nodes, since many
objects will be migrated. Currently, our ECHash implementation
keeps a copy of every object in a persistent MySQL database (§5.1).
If an object cannot be decoded (e.g., ccMemcached in our evaluation
(§5.1)) , it will be retrieved from the MySQL database. This increases
the degraded read latency.

To efficiently deal with degraded reads under scaling, ECHash
organizes nodes in multiple hash rings. Specifically, it writes an
object by first selecting a hash ring, followed by distributing the
objects within the selected hash ring (§4.2). To issue a degraded read
to an unavailable object, ECHash first selects the hash ring in which
the object resides. It locates the object’s stripe from the Object Index
using the object’s key. It looks up the stripe metadata by Stripe ID
to obtain the Chunk IDs of available data chunks and parity chunks
for decoding, so as to decode the data chunk in which the requested
object resides. Here, ECHash can retrieve the objects of the retrieved
data chunks from their OIRLists as well as the parity chunks to
decode the data chunk in which the requested object resides. Finally,
it recovers the requested object from the decoded data chunk from
the Object Index using the offset and length information. A key
advantage of using multiple hash rings, as opposed to using a single
hash ring, is that we can stage the additions/removals of nodes to
ensure that objects remain available at any time (assuming that
the number of failures is within the tolerable limit), while still
preserving the existing consistent hashing design in each hash ring
(i.e., during scaling, we can re-distribute the objects in the same
hash ring based on the original consistent hashing scheme).

Figure 9 depicts the above degraded read workflow for an un-
available object b stored in the data chunk data1 (composed of a, b,
and c), by retrieving the data chunk data2 (composed of d , e , and
f ) and the parity chunk parity for decoding. Note that the chunks
data1, data2, and parity reside in three different hash rings.
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Figure 10: Illustration of chunk-repair and fragment-repair.

4.5 Node Repair
We now study how ECHash repairs a node failure, in which it re-
constructs all the objects of the failed node through chunk decoding.
Based on FragEC, there are two types of data to repair: the original
objects and the parity chunks, so we need to repair them separately.
However, we find that it is inefficient to repair the original objects
in ECHash. The reason is that FragEC enables fragmented data
chunks and operates on fragments instead of chunks, while the
traditional repair in erasure coding operates on chunks (or called
chunk-repair). In other words, even if there is only one object as a
fragment in the failed node, the chunk-repair still needs to decode
the whole data chunk by retrieving other available data chunks
and parity chunks of the same stripe. For example, Figure 10(a)
shows how to repair the object a3 in a failed node based on chunk-
repair. There are three data chunks (i.e., data1, data2, and data3)
and one parity chunk (i.e., parity) in the stripe, and the object a3
resides in data1. To repair a3, the chunk-repair approach needs to
decode data1 (composed of a1, a2, a3, and a4) by reading all the
other available chunks (i.e., data2, data3, and parity). This means
that all the objects of data2 (composed of b1, b2, b3, and b4) and
data3 (composed of c1, c2, and c3), as well as the parity chunk, all
have to be retrieved in order to repair the only one object a3.

In view of this, ECHash enhances its repair performance to han-
dle the above inefficiency by proposing a fragment-repair approach
for node repair. Our idea is inspired by repair pipelining [32], in
which the repair of an erasure-coded chunk can be done by de-
composing a chunk into smaller sub-chunks and performing the
repair at the sub-chunk level. The fragment-repair approach works
as follows.

Object repair: The main idea of fragment-repair in ECHash is to
only retrieve the necessary objects to repair the fragments of a
failed node. To this end, ECHash can use the OIRLists to retrieve
all the necessary objects, since any object in each data chunk can
be exactly located via the OIRLists and we can identify all the
necessary objects to repair the required fragments by searching
through the OIRLists.

Specifically, to repair the fragments of a failed node (called failed
fragments), ECHash performs four steps. First, for each failed frag-
ment, ECHash identifies all the positions of objects of the failed
fragment in its data chunk and stores the information in a list called
PosLenList, which includes the offsets and lengths of the objects of
the failed fragment. Second, ECHash locates the fragment’s stripe
by the Stripe ID from the Object Index via any key of the objects in
the failed fragment. Third, ECHash retrieves the necessary objects

from the chunks of the fragment’s stripe via their offsets and lengths
in the PosLenList. Finally, ECHash decodes the failed fragment from
the necessary objects as well as the parity chunks determined by
the stripe metadata. For example, Figure 10(b) shows how to repair
the object a3 in a failed node based on fragment-repair. To repair
a3, the fragment-repair approach only retrieves b2 and b3 in data2,
c3 in data3, and parity, so as to decode a3.

Parity repair: To repair a parity chunk, ECHash first obtains the
Stripe ID, and locates the available data chunks of the same stripe
via the Chunk IDs and the stripe metadata. It then retrieves all data
objects for each data chunk in the stripe, and combines them into
the data chunks via their OIRLists, offsets and lengths. Finally, it
encodes the data chunks into the parity chunk being repaired.

Discussion: The fragment-repair approach is only applied to re-
pairing the objects but not the parity chunks. For example, in Fig-
ure 10(b), to repair object a3, ECHash has to retrieve the whole
parity chunk parity, since ECHash treats each parity chunk as an
object (§3), which cannot be divided into fragments. We can further
improve the repair performance by reading the fragments of the
parity chunk parity instead of the whole parity, and we pose this
issue as future work.

4.6 Discussion
Finally, we discuss three open issues in our ECHash design: con-
sistency, degraded writes, and metadata management. We describe
how they can be addressed in ECHash, while their implementation
and evaluation are posed as future work.

Consistency: It is critical for ECHash to provide consistency sup-
port in both proxy-based design and erasure-coded updates. For
the proxy-based design, we need to ensure that the proxy and its
backup proxies maintain consistent states. This can be realized via
the standard coordination systems, such as Zookeeper [28] and
etcd [5].

For erasure-coded updates, we need to ensure that if a data chunk
is updated, all n − k parity chunks of the same stripe in (n,k) cross-
coding are consistently updated via atomic broadcast to reflect the
update of the data chunk [15]. One way to handle consistent parity
updates is based on the two-phase commit protocol. Specifically,
ECHash can allocate a temporary buffer in each server for hold-
ing parity chunks. First, the servers store the parity chunks in the
buffer and acknowledge the proxy whether the required parity
chunks have been correctly stored. After the proxy receives the
acknowledgements from all servers that store the parity chunks,
it can notify all the servers to commit all parity chunks from the
temporary buffers; otherwise, it notifies all the servers to rollback
and discard the parity chunks. We may also leverage a piggyback-
ing approach to reduce two rounds of messages in the two-phase
commit process into one round as in [15].

Degraded writes: ECHash addresses the fault tolerance in access-
ing an object through degraded reads (§4.4) and node repair (§4.5).
However, it may fail to write objects to a server via consistent
hashing if the server is failed. In this case, ECHash can re-hash
the object to another non-failed redirected server to temporarily
store the object, and maintain the metadata information for the
redirection in the proxy. When the failed server is restored, the
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proxy can migrate any re-hashed object from the redirected servers
to the restored server.

Metadata management: ECHash has low metadata overhead as
shown in our evaluation (§5.5). Currently, we store the metadata in
the proxy (§4.1). For fault tolerance, we may store and replicate the
metadata in the servers.

5 EVALUATION
In this section, we present evaluation results on ECHash in both
local and cloud settings. We show the performance gain of ECHash
in scaling compared to state-of-the-arts.

5.1 Implementation
We implement ECHash atop the Memcached protocol [8], which is
widely used in decentralized in-memory KV stores (e.g., Amazon
ElastiCache [3]). Specifically, we extend libMemcached [7] with
about 3,600 SLoC in C++ on Linux as the proxy that performs
FragEC (§3), supports basic requests (§4.2), scaling (§4.3), degraded
reads (§4.4), and node repair (§4.5). ECHash performs (n,k) cross-
coding based on Reed-Solomon codes [41], where (n,k) is varied
from (5, 3) [15] to (8, 6). Each data chunk is set to 4 KiB [15, 49] by
default in coding. ECHash leverages two APIs of Intel’s ISA-L [6]
to accelerate the erasure coding computations: ec_init_tables,
which specifies coding coefficients, and ec_encode_data, which
specify encoding/decoding operations.

To show ECHash’s performance improvements, we also extend
Memcached and implement the cross-coding scheme used in ex-
isting erasure-coded Memcached systems (e.g., Cocytus [15] and
BCStore [33]). We call this Memcached implementation with the
existing cross-coding scheme ccMemcached. ccMemcached man-
ages all nodes in a single hash ring, and records the metadata as in
ECHash on the proxy side. Based on cross-coding, ccMemcached
combines the objects that are distributed to the same node via con-
sistent hashing into the fixed-size data chunks. It then encodes k
data chunks that are stored in different nodes into n − k parity
chunks and writes them to other different nodes.

5.2 Summary of Findings
We evaluate the performance of Vanilla (i.e., the vanilla Memcached
without erasure coding), ccMemcached, and ECHash in various op-
erations, including basic I/O , scale-out and scale-in, degraded reads
during scaling, and node repair. We conduct these experiments in
both a local setting (i.e., a local testbed cluster) and a cloud setting
(i.e., Amazon EC2 and Elasticache Memcached). In our experiments,
we focus on evaluating the scaling operations based on erasure
coding without considering replication, as replication incurs signifi-
cantly more redundancy than erasure coding at the same reliability
level (§2.2).

We highlight our evaluation results as follows:

• ECHash incurs low overhead. It has similar throughput to Vanilla
and ccMemcached, and incurs only a small increase in write
latency compared to Vanilla.

• ECHash achieves high scale-out and scale-in performance. It
achieves up to 8.3× (local) and 5.2× (cloud) of scale-out through-
put compared to ccMemcached.

• ECHash accelerates degraded read operations during scaling. It
reduces the degraded read latency during scaling by up to 81.1%
(local) and 89.0% (cloud) compared to ccMemcached.

• ECHash has close node repair performance to ccMemcached.
It smartly repairs the data stored in failed nodes based on frag-
ments instead of chunks to maintain the similar node repair
performance to ccMemcached.

5.3 Performance in the Local Setting

Setup: We conduct testbed experiments in a local environment
with commodity configurations. To set up the architecture in §4.1,
we deploy a cluster of seven physical machines, among which one
machine acts as the proxy, one machine acts as the backup proxy,
and the remaining five machines run Memcached instances that act
as servers. Each physical machine runs Red Hat Enterprise Linux
Server release 6.5 with the Linux kernel version 2.6.32. All physical
machines are equipped with an 8-core Intel(R) Xeon(R) CPU E5-
2630 v3 @ 2.40GHz and 100GiB of RAM, and are interconnected
via a 10Gb/s network. We also deploy an additional MySQL-5.1.71
database to store all the objects persistently in case both the read
and degraded read operations fail. We configure 45 Memcached in-
stances among the five servers, with the same configuration applied
to Vanilla, ccMemcached, and ECHash.

Workloads:We use workloads generated by Yahoo! Cloud Serving
Benchmark (YCSB) [18] to evaluate Vanilla, ccMemcached, and
ECHash. Specifically, we set the size of the key for each object
using the default setting in YCSB (which is a variable size of around
20 bytes). We set the size of the value of an object as 64 bytes,
256 bytes, and 1 KiB according to Facebook’s Memcached workload;
that is, 99% of Facebook Memcached request sizes are no more than
800 bytes, and the median size is 135 bytes [38]. We limit the total
data size to 4GiB and the numbers of 64-byte, 256-byte, and 1-KiB
objects are 64 million, 16 million, and 4 million, respectively. We
evaluate the systems with different read/write ratios (read:write),
including read-only (100%:0%), read-mostly (95%:5%), and write-
intensive (50%:50%) [15, 49].

Experiment 1 (Basic I/O performance): We compare Vanilla,
ccMemcached, and ECHash in terms of throughput (in number
of operations per second), read and write latency under different
read/write ratio workloads. Our goal is to show that ECHash main-
tains high basic I/O performance. Figures 11(a) and 11(b) show
that ECHash has similar throughput performance for read-only
and read-mostly scenarios compared to Vanilla and ccMemcached.
Figure 11(c) shows that ccMemcached and ECHash incur small per-
formance overhead under write-intensive scenarios compared to
Vanilla, since Vanilla does not perform additional coding nor store
parity chunks for data availability as opposed to ccMemcached and
ECHash. Figures 11(d)-11(f) show that ECHash has similar read
latency for read-only, read-mostly, and write-intensive scenarios
compared to Vanilla and ccMemcached. Figures 11(g)-11(h) show
that ccMemcached and ECHash have similar write latency for read-
mostly and write-intensive scenarios, but both of them have higher
write latency compared to Vanilla due to chunk encoding and hence
a longer I/O path in the write operations.
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Figure 11: Experiment 1: Comparison of throughput, read and write latency of three read/write ratio workloads in (5, 3) coding
in the local setting.
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Figure 12: Experiments 2, 3, and 4: Comparisons of scaling throughput, degraded read latency, and node repair throughput in
the local setting.

Experiment 2 (Scale-out/Scale-in performance):We compare
ccMemcached and ECHash in terms of scaling throughput, which
is equal to the amount of scaling traffic divided by the total running
time. We consider different coding schemes (i.e., (n,k)) and different
numbers of added/removed nodes (i.e., ±s).

Figures 12(a) and 12(b) show the results of scale-out and scale-in
for different coding schemes with n−k = 2 (i.e., the maximum num-
ber of tolerable failed nodes is two). In Figure 12(a), the scale-out
throughput of ECHash is significantly higher than that of ccMem-
cached, because the former does not consume any bandwidth and
computation overhead to update parity chunks. For example, in
(8, 6, 1)-scaling, the scaling throughput of ECHash is 8.3× compared
to that of ccMemcached. In Figure 12(b), the scale-in throughput of
ECHash is also higher than that of ccMemcached, but with the same

values of n, k , and s , the improvement of (n,k,−s)-scaling is not
as significant as that of (n,k, s)-scaling. For example, in (8, 6,−1)-
scaling, the scaling throughput of ECHash is 67.1% higher than that
of ccMemcached.

Figures 12(c) and 12(d) show the results of scale-out (i.e., s = 1)
and scale-in (i.e., s = −1) with different numbers of fault tolerance,
in which n−k ranges from 1 to 3. We find that compared to ccMem-
cached, the scaling throughput gain of ECHash increases with n−k .
The reason is that a larger n−k implies that more parity chunks are
stored in a stripe, so ECHash, which eliminates the parity updates
during scaling (Goal 1 in §4), can achieve a higher performance
gain compared to ccMemcached.

Experiment 3 (Degraded read performance during scaling):
We compare ccMemcached and ECHash in terms of the degraded
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Figure 13: Experiment 5: Comparison of scaling throughput, degraded read latency, and node repair throughput in the cloud
setting.

read latency during scaling, which is equal to the average latency
of all the degraded read operations during scaling. Note that if
the degraded read operation fails, then we continue to accomplish
the degraded read operation by accessing the persistent MySQL
database.

Figure 12(e) shows the degraded read latency results under differ-
ent coding schemes (i.e., (n,k)) with s = 1 (i.e., adding a new node).
We see that ECHash incurs lower degraded ready latency than
ccMemcached by 26.5-36.2%, since it can perform all the degraded
read operations during scaling (Goal 2 in §4), while ccMemcached
has to access the persistentMySQL database for failed degraded read
operations. Note that the degraded read latencies of both ECHash
and ccMemcached increase with k , mainly because a larger k means
that we need more data chunks to decode the unavailable object in
a stripe (§4.4).

Figure 12(f) shows the degraded read latency results under dif-
ferent numbers of added nodes (i.e., s) with (n,k) = (5, 3). We find
that ECHash maintains the degraded read latency, because k keeps
constant and a degraded read to an unavailable object can be done
successfully by decoding it from k available chunks. In contrast,
ccMemcached increases the degraded read latency when the num-
ber of added nodes increases since more added nodes may cause
more object re-distribution. As a result, more degraded read opera-
tions may fail (§4.4). For example, under (5, 3, 5)-scaling. ECHash
reduces the degraded read latency by 81.1% compared to ccMem-
cached.

Experiment 4 (Node repair performance):We compare ccMem-
cached and ECHashwith chunk-repair and fragment-repair schemes
in terms of the node repair throughput, which is equal to the stor-
age capacity of a node over the repair time. We consider different
values of k with n − k = 2. Figure 12(g) shows that fragment-repair,
which is proposed for the efficient repair of data objects (§4.5), sig-
nificantly improves the node repair performance of chunk-repair.
For example, fragment-repair increases the node repair throughput

by up to 16.5× (when k = 6). Note that compared to ccMemcached,
ECHashwith fragment-repair still has a small degradation of repair
performance, ranging from 7.6% (when k = 3) to 4.5% (when k = 6).
The reason is that the current fragment-repair scheme has not been
applied to parity chunks yet (see our discussion in §4.5).

5.4 Performance in the Cloud Setting

Setup: We conduct experiments on Amazon Cloud (EC2 [2] and
Elasticache [3]) to evaluate ECHash and ccMemcached in a cloud
environment. To set up the architecture in §4.1, we deploy 45
cache.r4.large Memcached instances of Elasticache in US-West
(North California) that act as the servers, two m5d.2xlarge in-
stances of Amazon EC2 in US-West (North California) that act as
the proxy and the backup proxy, and one m5d.2xlarge instance of
Amazon EC2 that hosts a persistent MySQL database.

Experiment 5 (Performance in the cloud setting): Figures 13(a)-
13(g) repeat the experiments of Figures 12(a)-12(g) in the cloud
setting. Figures 13(a)-13(d) show that compared to ccMemcached,
ECHash improves the scale-out throughput and the scale-in through-
put by up to 5.2× (when k = 8) and 53.2% (when k = 8), respectively.
We find that the improvements in the cloud setting are not as sig-
nificant as in the local setting due to the following reason. Table 2
compares the average throughput and read/write latency in both
the local and cloud settings, and we see that the performance in the
cloud setting is generally worse than that in the local setting. Thus,
the cloud setting slows down both object migration and parity up-
dates in the node scaling process (§4.3). The object migration (which
appear in both ccMemcached and ECHash) is totally composed of
read andwrite operations, while the parity updates (which appear in
ccMemcached only) includes parity chunk computation in addition
to the read and write operations. Thus, in ccMemcached, the object
migration slows down more significantly than the parity updates
in the cloud setting, implying that ECHash, which eliminates the
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Settings Throughput ( 103 ops/s) Latency (µs)
Read Write

Local 366.5 81.0 110.3
Cloud 269.3 118.1 155.5

Table 2: Average throughput and read/write latency of
ECHash in both local and cloud settings.

Value size 64 bytes 128 bytes 256 bytes 512 bytes 1 KiB
Ratio 31.7% 17.2% 9.1% 4.7% 2.5%

Table 3: Ratio of the metadata size to the object data size un-
der (5, 3) coding.

parity updates, has less improvement in the scaling performance in
the cloud setting.

Figures 13(e) and 13(f) show that similar to the local setting,
ECHash still outperforms ccMemcached in the cloud setting in the
degraded read latency during scaling. For example, ECHash reduces
the degraded read latency by 89.0% compared to ccMemcached
in (5, 3, 5)-scaling. The improvement of ECHash in the cloud set-
ting here is higher than in the local setting, since ccMemcached’s
MySQL queries become slower in the cloud setting, which has less
available network bandwidth than in the local setting.

Figure 13(g) shows that similar to the local setting, the node
repair performance of ECHash is close to that of ccMemcached.

5.5 Metadata Analysis
Recall that the metadata in ECHash includes the Object Index,
the Chunk Index and the Stripe Index, all of which incur storage
overhead on the proxy side. Thus, we evaluate the ratio of the
metadata size to the object data size, in which we vary the value
size. Table 3 shows that the ratio of the metadata size to the object
data size decreases with the value size. For example, when the value
size equals 1 KiB, the metadata only takes up 2.5% of the data size.
Note that the metadata is mainly needed for object reconstruction
from failures. Thus, the metadata can be stored in a secondary
storage device, so as to further save memory resources.

6 RELATEDWORK
Erasure coding in storage systems: Erasure coding has been
extensively employed in distributed file systems [13, 25–27, 32, 37,
43, 44, 48, 50] and KV stores [15, 17, 33, 36, 40, 45, 49]. Prior studies
on erasure coding focus on improving storage efficiency (e.g., [37]),
repair performance (e.g., [26, 32, 43, 44]), update performance [13,
33], consistency [17], memory management [15, 25, 36, 40, 49], and
scaling performance [27, 45, 48, 50]. In particular, to improve scaling
performance in erasure-coded storage, previous studies focus on
minimizing the scaling traffic in distributed storage systems [27,
48, 50] or simplifying key-to-node mappings in decentralized KV
stores [45], yet they target the scaling operations that change the
redundancy parameters (i.e., (n,k)). In contrast, ECHash keeps the
redundancy parameters unchanged. Also, it targets decentralized
KV stores based on consistent hashing.

The erasure coding models in the above studies assume that each
data chunk is tightly coupled to a specific node. Our FragEC model
decouples the relation between one data chunk and one node, and

it is applicable for general erasure-coded storage systems for high
scalability. To avoid rebuilding the whole data chunk during repair,
we propose the fragment-repair algorithm by repairing the partial
fragments in a data chunk.

Decentralized KV stores: There have been many studies on build-
ing decentralized KV stores. In particular, Dynamo [19] and Cas-
sandra [31] are two well-known decentralized KV stores, both of
which provide high availability and scalability via replication and
consistent hashing (note that our discussion in this paper is based
on the original Dynamo paper [19], while Amazon DynamoDB
[1], the commercial database service at Amazon that builds on the
principles of Dynamo, may have a different implementation). Mem-
cached [8] is one well-known in-memory KV store that serves as a
data caching solution in Facebook [38] and Twitter [11]. ECHash
builds atop the Memcached protocol and uses consistent hashing
for high scalability, but applies erasure coding (rather than repli-
cation) for high availability with low redundancy. Nevertheless,
ECHash’s design is applicable to state-of-the-art decentralized KV
stores in general.

Recent studies have focused on optimizing the designs of decen-
tralized in-memory KV stores in different aspects, such as memory
efficiency [40, 49], parallelism [35], concurrency [20, 34], availabil-
ity [15, 33], memory management [20, 24, 42], and load balancing
[23, 40]. Some closely related studies to ours include: Facebook’s
Memcached [38], which scales memcached clusters with replication;
ElMem [22], which proactively migrates hot data through scaling
for power and operator cost savings; Ring [45], which proposes
stretched Reed-Solomon coding to simplify key-to-node mappings
when the redundancy parameters (n,k) change (see our discus-
sion above). ECHash complements prior in-memory KV storage
optimizations by improving scaling performance under consistent
hashing in erasure-coded decentralized in-memory KV storage.

7 CONCLUSIONS
We study how to effectively apply erasure coding to decentralized
KV stores based on consistent hashing, so as to provide low-cost
fault-tolerant storage via erasure coding, while preserving the scal-
ing feature (i.e., adding or removing nodes) via consistent hashing.
We propose FragEC, a novel fragmented erasure coding model that
supports efficiently scaling without incurring parity updates. We
also design a new consistent hashing scheme based on multiple
hash rings to support efficient degraded reads. To this end, we real-
ize a FragEC-based KV store prototype system, ECHash, atop the
Memcached protocol and further design a fragment-repair scheme
to improve the node repair performance. Testbed experiments in
both local and cloud settings demonstrate the efficiency of ECHash
in basic I/O, scaling, degraded reads and node repair.
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