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Abstract—Solid-state drives (SSDs) have been widely de-
ployed in desktops and data centers. However, SSDs suffer
from bit errors, and the bit error rate is time dependent
since it increases as an SSD wears down. Traditional storage
systems mainly use parity-based RAID to provide reliability
guarantees by striping redundancy across multiple devices, but
the effectiveness of RAID in SSDs remains debatable as parity
updates aggravate the wearing and bit error rates of SSDs.
In particular, an open problem is that how different parity
distributions over multiple devices, such as the even distribu-
tion suggested by conventional wisdom, or uneven distributions
proposed in recent RAID schemes for SSDs, may influence the
reliability of an SSD RAID array. To address this fundamental
problem, we propose the first analytical model to quantify the
reliability dynamics of an SSD RAID array. Specifically, we
develop a “non-homogeneous” continuous time Markov chain
model, and derive the transient reliability solution. We validate
our model via trace-driven simulations and conduct numerical
analysis to provide insights into the reliability dynamics of SSD
RAID arrays under different parity distributions and subject
to different bit error rates and array configurations. Designers
can use our model to decide the appropriate parity distribution
based on their reliability requirements.

Keywords-Solid-state Drives; RAID; Reliability; CTMC;
Transient Analysis

I. INTRODUCTION

Solid-state drives (SSDs) emerge to be the next-generation

storage medium. Today’s SSDs mostly build on NAND flash

memories, and provide several design enhancements over

hard disks including higher I/O performance, lower energy

consumption, and higher shock resistance. As SSDs continue

to see price drops nowadays, they have been widely deployed

in desktops and large-scale data centers [10, 14].

However, even though enterprise SSDs generally provide

high reliability guarantees (e.g., with mean-time-between-

failures of 2 million hours [17]), they are susceptible to

wear-outs and bit errors. First, SSDs regularly perform erase

operations between writes, yet they can only tolerate a

limited number of erase cycles before wearing out. For

example, the erasure limit is only 10K for multi-level cell

(MLC) SSDs [5], and even drops to several hundred for the

latest triple-level cell (TLC) SSDs [13]. Also, bit errors are

common in SSDs due to read disturbs, program disturbs,

and retention errors [12, 13, 28]. Although in practice SSDs

use error correction codes (ECCs) to protect data [8, 27],

the protection is limited since the bit error rate increases as

SSDs issue more erase operations [12, 28]. We call a post-

ECC bit error an uncorrectable bit error. Furthermore, bit

errors become more severe when the density of flash cells

increases and the feature size decreases [13]. Thus, SSD

reliability remains a legitimate concern, especially when an

SSD issues frequent erase operations due to heavy writes.

RAID (redundant array of independent disks) [32] pro-

vides an option to improve reliability of SSDs. Using parity-

based RAID (e.g., RAID-4, RAID-5), the original data is

encoded into parities, and the data and parities are striped

across multiple SSDs to provide storage redundancy against

failures. RAID has been widely used in tolerating hard

disk failures, and conventional wisdom suggests that parities

should be evenly distributed across multiple drives so as

to achieve better load balancing, e.g., RAID-5. However,

traditional RAID introduces a different reliability problem to

SSDs since parities are updated for every data write and this

aggravates the erase cycles. To address this problem, authors

in [2] propose a RAID scheme called Diff-RAID which aims

to enhance the SSD RAID reliability by keeping uneven par-

ity distributions. Other studies (e.g., [16, 20, 21, 22, 26, 31])

also explore the use of RAID in SSDs.

However, there remain open issues on the proper architec-

ture designs of highly reliable SSD RAID [19]. One specific

open problem is how different parity distributions generally

influence the reliability of an SSD RAID array subject to

different error rates and array configurations. In other words,

should we distribute parities evenly or unevenly across

multiple SSDs with respect to the SSD RAID reliability?

This motivates us to characterize the SSD RAID reliability

using analytical modeling, which enables us to readily tune

different input parameters and determine their impacts on

reliability. However, analyzing the SSD RAID reliability is

challenging, as the error rates of SSDs are time-varying.

Specifically, unlike hard disk drives in which error arrivals

are commonly modeled as a constant-rate Poisson process

(e.g., see [29, 34]), SSDs have an increasing error arrival

rate as they wear down with more erase operations.

In this paper, we formulate a continuous time Markov

chain (CTMC) model to analyze the effects of different

parity placement strategies, such as traditional RAID-5 and

Diff-RAID [2], on the reliability dynamics of an SSD RAID



array. To capture the time-varying bit error rates in SSDs, we

formulate a non-homogeneous CTMC model, and conduct

transient analysis to derive the system reliability at any

specific time instant. To our knowledge, this is the first

analytical study on the reliability of an SSD RAID array.

In summary, this paper makes two key contributions:

• We formulate a non-homogeneous CTMC model to

characterize the reliability dynamics of an SSD RAID

array. We use the uniformization technique [7, 18, 33]

to derive the transient reliability of the array, and

develop optimization techniques to reduce the compu-

tational cost of transient analysis. We also quantify the

corresponding error bounds of the uniformization and

optimization techniques. Using the SSD simulator [1],

we validate our model via trace-driven simulations.

• We conduct extensive numerical analysis to compare

the reliability of an SSD RAID array under RAID-5

and Diff-RAID [2]. We observe that Diff-RAID, which

places parities unevenly across SSDs, only improves

the reliability over RAID-5 when the error rate is not

too large, while RAID-5 is reliable enough if the error

rate is sufficiently small. On the other hand, when the

error rate is very large, neither RAID-5 nor Diff-RAID

can provide high reliability, so increasing fault tolerance

(e.g., RAID-6 or a stronger ECC) becomes necessary.

The rest of this paper proceeds as follows. In Section II,

we formulate our model that characterizes the reliability

dynamics of an SSD RAID array, and formally define the

reliability metric. In Section III, we derive the transient

system state using uniformization and some optimization

techniques. In Section IV, we validate our model via trace-

driven simulations. In Section V, we present numerical

analysis results on how different parity placement strategies

influence the RAID reliability. Section VI reviews related

work, and finally Section VII concludes.

II. SYSTEM MODEL

It is well known that RAID-5 is effective in providing

single-fault tolerance for traditional hard disk storage. It

distributes parities evenly across all drives and achieves load

balancing. Recently, Balakrishnan et al. [2] reported that

RAID-5 may result in correlated failures, and hence poor

reliability, for SSD RAID arrays if SSDs are worn out at

the same time. Thus, they propose a modified RAID scheme

called Diff-RAID for SSDs. Diff-RAID improves RAID-5

through (i) distributing parties unevenly and (ii) redistribut-

ing parities each time when a worn-out SSD is replaced so

that the oldest SSD always has the most parities and wears

out first. However, it remains unclear whether Diff-RAID

(or placing parities unevenly) really improves SSD RAID

reliability over RAID-5 in all error patterns, as there is a

lack of comprehensive studies on the reliability dynamics of

SSD RAID arrays under different parity distributions.

In this section, we first formulate an SSD RAID array,

then characterize the age of each SSD based on the age of the

array (we will formally define the concept of age in later part

of this section). Lastly, we model the error rate based on the

age of each SSD, and formulate a non-homogeneous CTMC

to characterize the reliability dynamics of an SSD RAID

array under various parity distributions, including different

parity placement distributions like RAID-5 or Diff-RAID.

Table I lists the major notations used in this paper.

Specific Notations of SSD

M : Erasure limit of each block (e.g., 10K)
B : Total number of blocks in each SSD
λi(t) : Error rate of a chunk in SSD i at time t

Specific Notations of RAID Array

N : Number of data drives (i.e., an array has N +1 SSDs)
S : Total number of stripes in an SSD RAID array

pi : Fraction of parity chunks in SSD i, and ∑N
i=0 pi = 1

k : Total number of erasures performed on SSD RAID array
(i.e., system age of the array)

ki : Number of erasures performed on each block of SSD i
(i.e., age of SSD i)

T : Average inter-arrival time of two consecutive erasure
operations on SSD RAID array

π j(t) : Probability that the array has j stripes that contain
exactly one erroneous chunk each, (0 ≤ j ≤ S)

πS+1(t): Probability that at least one stripe of the array contains

more than one erroneous chunk, so ∑S+1
j=0 π j(t) = 1

R(t) : Reliability at time t, i.e., probability that no data loss
happens until time t, R(t) = ∑S

j=0 π j(t)

Table I: Notations.

A. SSD RAID Formulations

An SSD is usually organized in blocks, each of which

typically contains 64 or 128 pages. Both read and program

(write) operations are performed in unit of pages, and each

page is of size 4KB. Data can only be programmed to clean

pages. SSDs use an erase operation, which is performed

in unit of blocks, to reset all pages in a block into clean

pages. To improve write performance, SSDs use out-of-place

writes, i.e., to update a page, the new data is programmed to

a clean page while the original page is marked as invalid. An

SSD is usually composed of multiple chips (or packages),

each containing thousands of blocks. Chips are independent

of each other and can operate in parallel. We refer readers

to [1] for a detailed description about the SSD organization.

We now describe the organization of an SSD RAID array

that we consider, as shown in Figure 1. We consider the

device-level RAID organization where the array is composed

of N+1 SSDs numbered from 0 to N. In this paper,

we address the case where the array is tolerable against

a single SSD failure, as assumed in traditional RAID-4,

RAID-5 schemes and the modified RAID schemes for SSDs

[2, 16, 20, 21, 22, 26, 31]. Each SSD is divided into

multiple non-overlapping chunks, each of which can be

mapped to one or multiple physical pages. The array is



Figure 1: Organization of an SSD RAID array.

further divided into stripes, each of which is a collection

of N+1 chunks from the N+1 SSDs. Within a stripe, there

are N data chunks, and one parity chunk encoded from the

N data chunks. We call a chunk an erroneous chunk when

uncorrectable bit errors appear in that chunk; or a correct

chunk otherwise. Since we focus on single-fault tolerance,

we require that each stripe contains at most one erroneous

chunk without data loss so that it can be recovered from

other surviving chunks in the same stripe.

Suppose that each SSD contains B blocks, and the array

contains S stripes (i.e., S chunks per SSD). For simplicity,

we assume that all S stripes are used for data storage.

To generalize our analysis, we organize parity chunks in

the array according to some probability distribution. We let

SSD i contain a fraction pi of parity chunks. In the special

case of RAID-5, parity chunks are evenly placed across all

devices, so pi =
1

N+1
for all i if the array consists of N +1

drives. For Diff-RAID, pi’s do not need to be equal to 1
N+1

,

but only need to satisfy the condition of ∑N
i=0 pi = 1.

Each block in an SSD can only sustain a limited number

of erase cycles, and is supposed to be worn out after the

limit. We denote the erasure limit by M, which corresponds

to the lifetime of a block. To enhance the durability of SSDs,

efficient wear-leveling techniques are often used to balance

the number of erasures across all blocks. In this paper, we

assume that each SSD achieves perfect wear-leveling such

that every block has exactly the same number of erasures.

Let ki (≤ M) be the number of erasures that have been

performed on each block in SSD i, where 0 ≤ i ≤ N. We

denote ki as the age of each block in SSD i, or equivalently,

the age of SSD i when perfect wear-leveling is assumed.

When an SSD reaches its erasure limit, we assume that it

is replaced by a new SSD. For simplicity, we treat ki as a

continuous value in [0,M]. Let k be the total number of erase

operations that the whole array has processed, and we call

k the system age of the array.

B. SSD Age Characterization

In this subsection, we proceed to characterize the age

of each SSD for a given RAID scheme. In particular, we

derive ki, denoting the age of SSD i, when the whole array

has already performed a total of k erase operations. This

characterization enables us to model the error rate in each

SSD accurately (see Section II-C). We focus on two RAID

schemes: traditional RAID and Diff-RAID [2].

We first quantify the aging rate of each SSD in an array.

Let ri be the aging rate of SSD i. Note that for each stripe,

updating a data chunk also has the parity chunk updated.

Suppose that each data chunk has the same probability of

being accessed. On average, the ratio of the aging rate of

SSD i to that of SSD j can be expressed as [2]:

ri

r j

=
piN +(1− pi)

p jN +(1− p j)
. (1)

Eq. (1) states that the parity chunk ages N times faster than

each data chunk. Given the aging rates ri’s, we can quantify

the probability of SSD i being the target drive for each erase

operation, which we denote by qi. We model qi by making

it proportional to the aging rate of SSD i, i.e.,

qi =
ri

∑N
i=0 ri

=
piN +(1− pi)

∑N
i=0(piN +(1− pi))

. (2)

We now characterize the age of Diff-RAID which places

parities unevenly and redistributes parity chunks after the

worn-out SSD is replaced so as to maintain the age ratios

and always wear out the oldest SSD first. To mathematically

characterize the system age of Diff-RAID, define Ai as the

remaining fraction of erasures that SSD i can sustain right

after an SSD replacement. Clearly, Ai = 1 for a brand-

new drive and Ai = 0 for a worn-out drive. Without loss

of generality, we assume that the drives are sorted by Ai

in descending order, i.e., A0 ≥ A1 ≥ ·· · ≥ AN , and we

have A0 = 1 as it is the newly replaced drive. Diff-RAID

performs parity redistribution to guarantee that the aging

ratio in Eq. (1) remains unchanged. Therefore, the remaining

fraction of erasures for each drive will converge, and the

values of Ai’s in the steady state are given by [2]:

Ai=
∑N

j=i r j

∑N
j=0 r j

=
∑N

j=i(p jN+(1−p j))

∑N
j=0(p jN+(1−p j))

, 0≤ i≤N. (3)

In this paper, we study Diff-RAID after the age distribution

of SSDs right after each drive replacement converges, i.e.,

the initial remaining fractions of erasures of SSDs in Diff-

RAID follow the distribution of Ai’s in Eq. (3).

We now characterize ki for Diff-RAID. Recall that each

SSD has B blocks. Due to perfect wear-leveling, every block

of SSD i has the same probability qi/B of being the target

block for an erase operation. Thus, if the array has processed

k erase operations, the age of SSD i is:

Diff-RAID: ki =
(kqi

B
mod

qi

qN

(M−kN0)
)

+ki0, (4)

where ki0 = M(1−Ai) is the initial number of times that

each block of SSD i has been erased right after a drive

replacement, and the notation mod denotes the modulo



operation. The rationale of Eq. (4) is as follows. Since we

sort the SSDs by Ai in descending order, SSD N always

has the highest aging rate and will be replaced first. Thus,

after each block of SSD N has performed (M−kN0) erasures,

SSD N will be replaced, and each block of SSD i has just

been erased
qi

qN
(M−kN0) times. Therefore, for SSD i, a drive

replacement happens when each block has been erased every
qi

qN
(M−kN0) times. Moreover, the initial number of erasures

on each block of SSD i right after a drive replacement is

ki0. Thus, the age of SSD i is derived as in Eq. (4). Since

ki0 = M(1−Ai) and AN = qN , Eq. (4) can be rewritten as:

Diff-RAID: ki = ((kqi/B) mod Mqi)+M(1−Ai). (5)

For traditional RAID (e.g., RAID-4 or RAID-5), parity

chunks are kept intact, and will not be redistributed after a

drive replacement. So after the array has performed k erase

operations, each block of SSD i has just performed kqi/B

erasures, and an SSD will be replaced every time when each

block performed M erasures. Thus, the age of SSD i is:

Traditional RAID: ki = (kqi/B) mod M. (6)

C. Continuous Time Markov Chain (CTMC)

We first model the error rate of an SSD. We assume that

the error arrival processes of different chunks in an SSD

are independent. Since different chunks in an SSD have the

same age, they must have the same error rate. We let λi(t)
represent the error rate of each chunk in SSD i at time t, and

model it as a function of the number of erasures on SSD i

at time t, which is denoted by ki(t) (the notation t may be

dropped if the context is clear). Furthermore, to reflect that

bit errors increase with the number of erasures, we model

the error rate based on a Weibull distribution [35], which

has been widely used in reliability engineering. Formally,

λi(t) = cα(ki(t))
α−1, α >1, (7)

where α is called the shape parameter and c is a constant.

Note that even if the error rates of SSDs are time-varying,

they only vary with the number of erasures on the SSDs. If

we let tk be the time point of the kth erasure on the array,

then during the period (tk, tk+1) (i.e., between the kth and

(k + 1)th erasures), the number of erasures on each SSD

is fixed, hence the error rates during this period should be

constant, and the error arrivals can be modeled as a Poisson

process. In particular, ki(t) = ki(k) if t ∈ (tk, tk+1), and the

function ki(k) is expressed by Eq. (5) and (6).

We now formulate a CTMC model to characterize the

reliability dynamics of an SSD RAID array. Recall that the

array provides single-fault tolerance for each stripe. We say

that the CTMC is at state i if and only if the array has i

stripes that contain exactly one erroneous chunk each, where

0≤ i≤S. Data loss happens if any one stripe contains more

than one erroneous chunk, and we denote this state by S+1.

Let X(t) be the system state at time t. Formally, we have
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Figure 2: State transition of the non-homogeneous CTMC.

X(t)∈ {0,1, ...,S+1},∀t ≥ 0. To derive the system state, we

let π j(t) be the probability that the CTMC is at state j at

time t (0≤ j≤S+1), so the system state can be characterized

by the vector π(t) = (π0(t),π1(t), ...,πS+1(t)).
Let us consider the transition of the CTMC. For each

stripe, if it contains one erroneous chunk, then the erroneous

chunk can be reconstructed from the other surviving chunks

in the same stripe. Assume that only one stripe can be

reconstructed at a time, and that the reconstruction time

follows an exponential distribution with rate µ . The state

transition diagram of the CTMC is depicted in Figure 2. To

elaborate, suppose that the RAID array is currently at state

j, if an erroneous chunk appears in one of the (S− j) stripes

that originally have no erroneous chunk, then it will move to

state j+1 with rate (S− j)∑N
i=0 λi(t); if an erroneous chunk

appears in one of the j stripes that already have another

erroneous chunk, then the system will move to state S+1

(in which data loss occurs) with rate j ∑N
i=0 λi(t).

We now define the reliability of an SSD RAID array at

time t, and denote it by R(t). Formally, it is the probability

that no stripe has encountered data loss until time t.

R(t) = ∑
S

j=0
π j(t). (8)

Note that our model captures the time-varying nature of

reliability over the lifespan of the SSD RAID array. Next,

we show how to analyze this non-homogeneous CTMC.

III. TRANSIENT ANALYSIS OF CTMC

In this section, we derive π(t), the system state of an

SSD RAID array at any time t. Once we have π(t), we can

then compute the instantaneous reliability R(t) according to

Eq. (8). There are two major challenges in deriving π(t).
First, it involves transient analysis, which is different from

the conventional steady state Markov chain analysis. Second,

the underlying CTMC {X(t), t ≥ 0} is non-homogeneous, as

the error arrival rate λi(t) is time varying.

Note that the error rates of SSDs within a period (tk, tk+1)
(k = 0,1,2, ...) are constant, so if we only focus on a partic-

ular time period of the CTMC, then it is time-homogeneous.

Therefore, the intuitive way to derive the transient solution

of the CTMC {X(t), t ≥ 0} is to divide it into many time-

homogeneous CTMCs {X(t), tk < t ≤ tk+1} (k = 0,1,2...),



then use the uniformization technique [7, 18, 33] to ana-

lyze these time-homogeneous CTMCs one by one in time

ascending order. Specifically, one can first derive π(t1) from

the initial state π(0), then takes π(t1) as the initial state and

derives π(t2) from π(t1) and so on.

However, this computational approach may take a pro-

hibitively long time to derive π(tk+1) when k is very large,

which usually occurs in SSDs. Since k denotes the number of

erasures performed on an SSD RAID array, it can grow up to

(N+1)BM, where both B (the number of blocks in an SSD)

and M (the erasure limit) could be very huge, say, 100K and

10K, respectively (see Sec. V). Therefore, simply applying

the uniformization technique is computationally infeasible

to derive the reliability of an SSD RAID array.

To overcome the above challenge, we propose an op-

timization technique which combines multiple periods to-

gether. The idea is that since the difference of the generator

matrices at two consecutive periods is very small in general,

we combine s consecutive periods, where s is called the

step size. For simplicity of discussion, let T be the average

inter-arrival time of two consecutive erasure operations, i.e.,

tk = kT . To analyze the non-homogeneous CTMC over s

periods {X(t), lsT < t ≤ (l+1)sT} (l = 0,1, ...), we define

another time-homogeneous CTMC {X̃(t), lsT <t≤(l+1)sT}
to approximate it and quantify the error bound. The deriva-

tion of π((l+1)sT ) given π(lsT ) proceeds as follows.

Step 1: Constructing a time-homogeneous CTMC

{X̃(t), lsT < t≤(l+1)sT} with generator matrix Q̃l . Note

that there are s periods in the interval (lsT,(l+1)sT ). We

denote the generator matrices of the original Markov chain

{X(t)} during each of the s periods by Qls, Qls+1, ...

, Q(l+1)s−1. To construct {X̃(t), lsT < t ≤ (l + 1)sT}, we

define Q̃l as a function of the s generator matrices.

Q̃l = f (Qls,Qls+1, ...,Q(l+1)s−1), l = 0,1, ... (9)

Intuitively, Q̃l can be viewed as the “average” over the

s generator matrices. To illustrate, consider a special case

where α in Eq. (7) is set to be α = 2. Then the error arrival

rate of each chunk of SSD i becomes 2cki. In this case, each

element of the generator matrix Qk becomes

qi, j(k)=







































−SΣ, i= j=0,

−µ−SΣ, 0< i≤S, j= i,

(S−i)Σ, 0≤ i<S, j= i+1,

iΣ, 0< i≤S, j=S+1,

µ , 0< i≤S, j = i−1,

0, otherwise ,

(10)

where Σ = ∑N
i=02cki and ki is computed by Eq. (5) and (6).

Now, for the Markov chain X̃(t), we let Q̃l be an average

of these s generator matrices Qk. Mathematically,

Q̃l =
(

∑
(l+1)s−1

k=ls
Qk

)

/s, l = 0,1, ... (11)

Note that our analysis is applicable for other values of α ,

with different choices of defining Q̃l in Eq. (9) and different

error bounds. In the following discussion, we fix α = 2,

whose error bound is also derived.

Step 2: Deriving the system state π̃((l+1)sT ) under the

time-homogeneous CTMC {X̃(t)}. To derive the system

state at time (l+1)sT , which we denote as π̃((l+1)sT ), we

solve the Kolmogorov’s forward equation and we have

π̃((l+1)sT )=π̃(lsT )∑
∞

n=0
(Q̃lsT )n/n!, l = 0,1, ... (12)

where the initial state is π̃(0) = π(0).
Step 3: Applying uniformization to solve Eq. (12). We let

Λ̃l ≥ maxls≤k≤(l+1)s−1 max0≤i≤S+1 | − qi,i(k)|, and let P̃l =

I+ Q̃l

Λ̃l
. Based on the uniformization technique [7], the system

state at time (l +1)sT can be derived as follows.

π̃((l+1)sT )=∑
∞

n=0
e−Λ̃lsT (Λ̃lsT )n

n!
vl(n), l=0,1, ... (13)

where vl(n) = vl(n− 1)P̃l and vl(0) = π̃(lsT ). The initial

state is π̃(0) = π(0).
Step 4: Truncating the infinite summation in Eq. (13)

with a quantifiable error bound. We denote the truncation

point for interval (lsT,(l+1)sT ) by Ul and the system state

at time (l+1)sT after truncation by ˆ̃π((l+1)sT ). We also

denote the error caused by combining s periods together

and truncating the infinite series in interval (lsT,(l+1)sT )
by ˆ̃εl = || ˆ̃π((l+1)sT )−π((l+1)sT )||1, where π((l+1)sT )
denotes the accurate system state obtained by iteratively an-

alyzing the time-homogeneous CTMCs {X(t),kT < t ≤ (k+
1)T} (k = 0,1, ...,(l+1)s−1) from π(0). Now, ˆ̃π((l+1)sT )
and ˆ̃εl can be computed using the following theorem.

Theorem 1: After truncating the infinite series, the system

state at time (l + 1)sT for the Markov chain {X̃(t)} with

step size s can be computed as follows.

ˆ̃π((l+1)sT )=∑
Ul

n=0
e−Λ̃lsT (Λ̃lsT )n

n!
vl(n), l=0,1, ... (14)

where vl(n) = vl(n− 1)P̃l and vl(0) = ˆ̃π(lsT ). The initial

state is ˆ̃π(0) = π(0). The error is bounded as follows.

ˆ̃εl ≤ ˆ̃εl−1+
(

1−∑
Ul

n=0
e−Λ̃lsT (Λ̃lsT )n/n!

)

, l=0,1, ... (15)

where ˆ̃ε0 = || ˆ̃π(0)−π(0)||1 = 0.

Proof: Please refer to our technical report [23].

By now, we present the mathematical foundation on

computing the system state of SSD RAID arrays and the

corresponding error bounds. In particular, according to The-

orem 1, we are able to compute the system state at the time

when the kth erasure operation has just occurred, i.e., ˆ̃π(kT ).
With respect to the implementation, we use the following

inputs. We fix s = BM/20, meaning that for each SSD, we

consider at least 20 time points before it reaches its lifetime

of BM erasures. We bound the total error to be ε = 10−3.



We also set π0(0) = 1 and π j(0) = 0 for j > 0 to indicate

that the array has no erroneous chunk initially.

Note that the dimension of the matrix P̃l is (S + 2)×
(S+ 2) (S is the number of stripes), which could be very

large for large SSDs. To further speed up our computation,

we develop another optimization technique by truncating

the states with large state numbers from the CTMC so

as to reduce the dimension of P̃l . Intuitively, if an array

contains many stripes with exactly one erroneous chunk, it

is more likely that a new erroneous chunk appears in one

of such stripes (and hence data loss occurs) rather than in

a stripe without any erroneous chunk. That is, the transition

rate qi,i+1 becomes very small when i is large. We can

thus remove such states with large state numbers without

losing accuracy. In the interest of space, please refer to our

technical report for details [23].

IV. MODEL VALIDATION

In this section, we validate via trace-driven simulation

the accuracy of our CTMC model on quantifying the RAID

reliability R(t). We use the Microsoft’s SSD simulator [1]

based on DiskSim [3]. Since each SSD contains multiple

chips that can be configured to be independent of each other

and handle I/O requests in parallel, we consider RAID at

the chip level (as opposed to device level) in our DiskSim

simulation. Specifically, we configure each chip to have its

own data bus and control bus and treat it as one drive, and

also treat the SSD controller as the RAID controller where

parity-based RAID is built.

To simulate error arrivals, we generate error events based

on Poisson arrivals given the current system age k of the

array. As the array ages, we update the error arrival rates

accordingly by varying the variable ki(t) in Eq. (7). We

also generate recovery events whose recovery times follow

an exponential distribution with a fixed rate µ = 1. Both

error and recovery events are fed into the SSD simulator as

special types of I/O requests. We consider three cases: error

dominant, comparable, and recovery dominant, in which the

error rate is larger than, comparable to, and smaller than the

recovery rate, respectively.

Our validation measures the reliability of the traditional

RAID and Diff-RAID with different parity distributions.

Recall that Diff-RAID redistributes the parities after each

drive replacement, while traditional RAID does not. We

consider (N + 1) chips where N = 3,5,7. For traditional

RAID, we choose RAID-5, in which parity chunks are

evenly placed across the chips; for Diff-RAID, 10% of parity

chunks placed in each of the N chips and the remaining

parity chunks are placed in the last flash chip.

We generate synthetic uniform workload in which the

write requests access the addresses of the entire address

space with equal probability. The workload lasts until all

drives are worn out and replaced at least once. We run

the DiskSim simulation 1000 times, and in each run we

record the age when data loss happens. Finally, we derive

the probability of data loss and the reliability based on

our definitions. To speed up our DiskSim simulation, we

consider a small-scale RAID array, in which each chip

contains 80 blocks with 64 pages each, and the chunk size

is set to be the same as the page size 4KB. We also set a

low erasure limit at M = 100 cycles for each block.

Figure 3 shows the reliability R(t) versus the system age

k obtained from both the model and DiskSim results. We

observe that our model accurately quantifies the reliability

for all cases. Also, Diff-RAID shows its benefit only in

the comparable case. In the error dominant case, traditional

RAID always shows higher reliability than Diff-RAID; in

the recovery dominant case, there is no significant difference

between traditional RAID and Diff-RAID. We will further

discuss these findings in Section V.

V. NUMERICAL ANALYSIS

In this section, we conduct numerical analysis on the

reliability dynamics of a large-scale SSD RAID array with

respect to different parity placement strategies. To this end,

we summarize the lessons learned from our analysis.

A. Choices of Default Model Parameters

We first describe the default model parameters used in our

analysis, and provide justifications for our choices.

We consider an SSD RAID array composed of N + 1

SSDs, each being modeled by the same set of parameters. By

default, we set N = 9. Each block of an SSD has 64 pages of

size 4KB each. We consider 32GB SSDs with B = 131,072

blocks. We configure the chunk size equal to the block size,

i.e., there are S = B = 131,072 chunks1. We also have each

block sustain M =10K erase cycles.

We now describe how we configure the error arrival rate,

i.e., λi = 2cki, by setting the constant c. We employ 4-bit

ECC protection per 512 bytes of data, the industry standard

for today’s MLC flash. Based on the uncorrectable bit error

rates (UBERs) calculated in [2], we choose the UBER in

the range [10−16,10−18] when an SSD reaches its rated

lifetime (i.e., the erasure limit M is reached). Since we set

the chunk size to be equal to the block size, the probability

that a chunk contains at least one bit error is roughly in

the range of [2× 10−10,2× 10−12]. Based on the analysis

on real enterprise workload traces [30], an RAID array can

have several hundred gigabytes of data being accessed per

day. If the write request rate is set as 1TB per day (i.e.,

50 blocks per second), then the error arrival rate per chunk

at its rated lifetime (i.e., λi = 2cM) is approximately in the

range [10−8,10−10]. The corresponding parameter c is in the

range [0.5×10−12,0.5×10−14].

1In practice, SSDs are over-provisioned [1], so the actual number of
blocks (or chunks) that can be used for storage (i.e., S) should be smaller.
However, the key observations of our results here still hold.
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Figure 3: Model validation with respect to different values of N and different error rates.

For the error recovery rate µ , we note that the aggregate

error arrival rate when all N +1 drives are going to die out

is 2cMS(N + 1). If N = 9, then the aggregate error arrival

rate is roughly in the range [10−2,10−4]. We fix µ = 10−3.

We compare different cases when the error arrivals are

more dominant than error recoveries, and vice versa. We

consider three cases of error patterns: c = 1.1 × 10−13,

c = 0.4 × 10−13, and c = 0.1 × 10−13, which correspond

to the error dominant, comparable, and recovery dominant

cases, respectively. Specifically, when c = 0.4× 10−13, the

aggregate error arrival rate of the array when all SSDs reach

their rated lifetime is around 2cMS(N + 1) ≈ 10−3 (where

N = 9, M =10K, and S = 131,072).

We now configure T , the time interval between two

neighboring erase operations. Suppose that there are 1TB

of writes per day as described above. The inter-arrival time

of write requests is around 3×10−4 seconds for 4KB page

size. Thus, the average time between two erase operations is

1.9×10−2 seconds as an erase is triggered after writing 64

pages. In practice, each erase causes additional writes (i.e.,

write amplification [15]) as it moves data across blocks, so

T should be smaller. Here, we fix T = 10−2 seconds.

We compare the reliability dynamics of RAID-5 and

different variants of Diff-RAID. For RAID-5, each drive

holds a fraction 1
N+1

of parity chunks; for Diff-RAID, we

choose the parity distribution (i.e., pi’s for 0 ≤ i ≤ N) based

on a truncated normal distribution. Specifically, we consider

a normal distribution N (N + 1,σ2) with mean N + 1,

and standard deviation σ , and let f be the corresponding

probability density function. We then choose pi’s as follows:

pi =

∫ i+1
i f (x)dx

∫ N+1
0 f (x)dx

, 0 ≤ i ≤ N. (16)

We can choose different distributions of pi by tuning the

parameter σ . Intuitively, the larger σ is, the more evenly

pi’s are distributed. We consider three cases: σ = 1, σ = 2,

and σ = 5. Suppose that N = 9. Then for σ = 1, SSD N and

SSD N−1 hold 68% and 27% of parity chunks, respectively;



for σ = 2, SSD N, SSD N − 1, and SSD N − 2 hold 38%,

30%, and 18% of parity chunks, respectively; for σ = 5, the

proportions of parity chunks range from 2.8% (in SSD 0)

to 16.6% (in SSD N). After choosing pi’s, the age of each

block of SSD i (i.e., ki) can be computed via Eq. (5).

B. Impact of Different Error Dynamics

We now show the numerical results of RAID reliability

based on the parameters described earlier. We assume that

drive replacement can be completed immediately after the

oldest SSD reaches its rated lifetime. When the oldest drive

is replaced, all its chunks (including any erroneous chunks)

are copied to the new drive. Thus, the reliability (or the

probability of no data loss) remains the same. We consider

three error cases: error dominant, comparable, and recovery

dominant cases, as described above.

Case 1: Error dominant case. Figure 4(a) first shows

the numerical results for the error dominant case. Initially,

RAID-5 achieves very good reliability as all drives are

brand-new. However, as SSDs wear down, the bit error

rate increases, and this makes the RAID reliability decrease

very quickly. In particular, the reliability drops to zero (i.e.,

data loss always happen) when the array performs around

5 × 109 erasures. For Diff-RAID, the more evenly parity

chunks are distributed, the lower RAID reliability is. In the

error dominant case, since error arrival rate is much bigger

than the recovery rate, the RAID reliability drops to zero

very quickly no matter what parity placement strategy is

used. We note that Diff-RAID is less reliable than traditional

RAID-5 in the error dominant case. The reason is that for

Diff-RAID, the initial ages of SSDs when constructing the

RAID array are non-zero, but instead follow the convergent

age distribution (i.e., based on Ai’s in Eq. (3)). When error

arrival rate is very large, the array suffers from low reliability

even if the array only performs small number of erasures.

However, for RAID-5, since it is always constructed by using

brand-new SSDs, it starts with a very high reliability.

Case 2: Comparable case. Figure 4(b) shows the results for

the comparable case. RAID-5 achieves very good reliability

initially, but decreases dramatically as the SSDs wear down.

Also, all drives wear down at the same rate, the reliability

of the array is about zero when all drives reach their

erasure limits, i.e., when the system age is around 1.3×1010

erasures. Diff-RAID shows different reliability dynamics.

Initially, Diff-RAID has less reliability than RAID-5, but

the drop rate of the reliability is much slower than that of

RAID-5 as SSDs wear down. The reason is that Diff-RAID

has uneven parity placement, SSDs are worn out at different

times and will be replaced one by one. When the worn-out

SSD is replaced, other SSDs perform fewer erase operations

and have small error rates. This prevents the whole array

suffering from a very large error rate as in RAID-5. Also,

the reliability is higher when the parity distribution is more

skewed (i.e., smaller σ ), as also observed in [2].

Case 3: Recovery dominant case. Figure 4(c) shows the

results for the recovery dominant case. RAID-5 shows high

reliability in general. Between two replacements (which

happens every 1.3×1010 erasures), its data loss probability

drops by within 3%. Its reliability drops slowly right after

each replacement, and its drop rate increases as it is close to

be worn out. Diff-RAID shows higher reliability than RAID-

5 in general, but the difference is small (e.g., less than 6%

between Diff-RAID for σ = 1 and RAID-5). Therefore, in

the recovery dominant scenario, we may deploy RAID-5

instead of Diff-RAID, as the latter introduces higher costs

in parity redistribution in each replacement and has smaller

I/O throughput due to load imbalance of parities.

C. Impact of Different Array Configurations

We further study via our model how different array config-

urations affect the RAID reliability. We focus on Diff-RAID

and generate the parity distribution pi’s with σ = 1. Our goal

is to validate the robustness of our model on characterizing

the reliability for different array configurations.

Impact of N. Figure 5(a) shows the impact of the RAID size

N. We fix other parameters as the same in the comparable

case, i.e., µ = 10−3, c = 0.4× 10−13, and M = 104. The

larger the system size, the lower the RAID reliability.

Intuitively, the probability of having one more erroneous

chunk in a stripe increases with the stripe width (i.e., N+1).

Note that the reliability drop is significant when N increases.

For example, at 2.6×1010 erasures, the reliability drops from

0.7 to 0.2 when N increases from 9 to 19.

Impact of ECC. Figure 5(b) shows the impact of different

ECC lengths. We fix µ = 10−3, M = 104, and N = 9. We

also fix the raw bit error rate (RBER) as 1.3× 10−6 [2],

and compute the UBER using the formulas in [28]. Then as

described in Section V-A, we derive c for different ECCs

that can correct 3, 4, 5 bits per 512 byte sector, and the

corresponding values are 4.4×10−11, 4.7×10−14, and 4.2×
10−17, respectively. We observe that the RAID reliability

drops to zero very quickly for 3-bit ECC at around 105

erasures, while the RAID reliability for 5-bit ECC starts to

decrease until the array performs 1011 erasures. This shows

that RAID reliability heavily depends on the reliability of

each single SSD, or the ECC length employed in each SSD.

Impact of M. Figure 5(c) shows the impact of the erasure

limit M, or the endurance of a single SSD, on the RAID

reliability. We fix other parameters with µ = 10−3, N = 9

and c = 0.4× 10−13. We observe that when M decreases,

the RAID reliability increases. For example, at 1.3× 1010

erasures, the RAID reliability increases from 0.85 to 0.99

when M decreases from 10K to 1K. Recall that the error

rates increase with the number of erasures in SSDs. We

now have the increase of bit error rates capped by the small

erasure limit. The trade-off is that the SSDs are worn out

and replaced more frequently with smaller M.
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Figure 4: Reliability dynamics of SSD arrays.
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Figure 5: Impact of different RAID configurations on the reliability.

D. Discussion

Our results provide several insights into constructing

RAID for SSDs.

• The error dominant case may correspond to the low-end

MLC or TLC SSDs with high bit error rates, especially

when these types of SSDs have low I/O bandwidth

for RAID reconstruction. Both traditional RAID-5 and

Diff-RAID show low reliability. A higher degree of

fault tolerance (e.g., using RAID-6 or stronger ECC)

becomes necessary in this case.

• When the error arrival and recovery rates are similar,

Diff-RAID, with uneven parity distribution, achieves

higher reliability than RAID-5, especially when RAID-

5 reaches zero reliability when all SSDs are worn out

simultaneously. This conforms to the findings in [2].

• In the recovery dominant case, which may correspond

to the high-end single-level cell (SLC) SSDs that typi-

cally have very small bit error rates, RAID-5 achieves

very high reliability. We may choose RAID-5 over Diff-

RAID in RAID deployment to save the overhead of

parity redistribution in Diff-RAID.

• Our model can effectively analyze the RAID reliability

with regard to different RAID configurations.

VI. RELATED WORK

There have been extensive studies on NAND flash-based

SSDs. A detailed survey of the algorithms and data struc-

tures for flash memories is found in [11]. Recent papers

empirically study the intrinsic characteristics of SSDs (e.g.,

[1, 5]), or develop analytical models for the write perfor-

mance (e.g., [9, 15]) and garbage collection algorithms (e.g.,

[24]) of SSDs.

Bit error rates of SSDs are known to increase with the

number of erase cycles [12, 28]. To improve reliability, prior

studies propose to adopt RAID for SSDs at the device level

[2, 16, 21, 22, 26, 31], or at the chip level [20]. These studies

focus on developing new RAID schemes that improve the

performance and endurance of SSDs over traditional RAID.

The performance and reliability implications of RAID on

SSDs are also experimentally studied in [19]. In contrast,

our work focuses on quantifying reliability dynamics of SSD

RAID from a theoretical perspective. Authors of Diff-RAID

[2] also attempt to quantify the reliability, but they only

compute the reliability at the instants of SSD replacements,

while our model captures the time-varying nature of error

rates in SSDs and quantifies the instantaneous reliability

during the whole lifespan of an SSD RAID array.

RAID was first introduced in [32] and has been widely

used in many storage systems. Performance and reliability

analysis on RAID in the context of hard disk drives has been

extensively studied (e.g., see [4, 6, 25, 29, 36]). On the other

hand, SSDs have a distinct property that their error rates

increase as they wear down, so a new model is necessary to

characterize the reliability of SSD RAID.



VII. CONCLUSIONS

We develop the first analytical model that quantifies the re-

liability dynamics of SSD RAID arrays. We build our model

as a non-homogeneous continuous time Markov chain, and

use uniformization to analyze the transient state of the RAID

reliability. We validate the correctness of our model via

trace-driven DiskSim simulation with SSD extensions.

One major application of our model is to characterize the

reliability dynamics of general RAID schemes with different

parity placement distributions. To demonstrate, we compare

the reliability dynamics of the traditional RAID-5 scheme

and the new Diff-RAID scheme under different error patterns

and different array configurations. Our model provides a

useful tool for system designers to understand the reliability

of an SSD RAID array with regard to different scenarios.
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