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Abstract—Erasure coding has been increasingly used by dis-
tributed storage systems to maintain fault tolerance with low
storage redundancy. However, how to enhance the performance of
degraded reads in erasure-coded storage has been a critical issue.
We revisit this problem from two different perspectives that are
neglected by existing studies: data placement and encoding rules.
To this end, we propose an encoding-aware data placement (EDP)
approach that aims to reduce the number of I/Os in degraded
reads during a single failure for general XOR-based erasure
codes. EDP carefully places sequential data based on the encoding
rules of the given erasure code. Trace-driven evaluation results
show that compared to two baseline data placement methods,
EDP reduces up to 37.4% of read data on the most loaded disk
and shortens up to 15.4% of read time.

I. INTRODUCTION

Failures are prevalent in distributed storage systems [17],
[23]. To maintain data availability, traditional distributed sto-
rage systems often replicate identical data copies across dif-
ferent disks (or storage nodes) [4], [9]. However, replication
incurs substantial storage overhead, especially in the face of
the unprecedented growth of today’s scale of data storage. In
view of this, erasure coding has been increasingly adopted by
distributed storage systems in enterprises (e.g., Google [6],
Microsoft [10], Facebook [21]) as a practical alternative for
maintaining data availability. Erasure coding is shown to incur
much lower storage redundancy, while achieving the same or
even higher fault tolerance than traditional replication [26].
While there are many possible ways to construct an erasure
code, practical erasure codes are often maximum distance
separable (MDS) and systematic. Specifically, an erasure code
can be configured by two parameters k and m. A (k,m) code
treats original data as k equal-size (uncoded) data chunks and
encodes them to form another m equal-size (coded) parity
chunks, such that the k+m dependent chunks are collectively
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called a stripe. The code is MDS if the original data chunks
can be recovered from any k out of the collection of k +m
chunks, while incurring the minimum storage redundancy;
also, the code is systematic if the k uncoded data chunks
are kept in the stripe. A distributed storage system stores
multiple stripes, each of which is independently encoded, and
is tolerable against any m failures.

For general (k,m) codes, recovering each failed chunk
needs to retrieve k available chunks of the same stripe;
this differs from replication, which can recover a lost chunk
by simply retrieving another available chunk replica. Thus,
although erasure coding improves storage efficiency, it triggers
additional I/O and bandwidth due to recovery. In particular,
as opposed to permanent failures (i.e., the stored chunks are
permanently lost), transient failures (i.e., the stored chunks
are temporarily unavailable) account for over 90% of failure
events in real-life distributed storage systems [6], possibly due
to power outages, loss of network connectivity, and system
reboots and maintenance. In the presence of transient failures,
a storage system issues degraded reads to unavailable chunks,
and the read performance incurs higher latency than directly
reading the available chunks when no failure happens. Note
that degraded reads differ from recovering the permanently
lost chunks of entire disks, as the degraded read performance
heavily depends on the read patterns (e.g., sequential or
random access, read size, read positions). Thus, given that
degraded reads trigger additional I/O and bandwidth and they
are frequently performed in practice, how to improve degraded
read performance becomes a critical concern when deploying
erasure coding in distributed storage systems.

In this paper, we study the problem of improving degraded
read performance from two specific perspectives that are
neglected by previous studies (see Section II-C for related
work): (i) data placement (i.e., how data is placed across disks)
and (ii) encoding rules (i.e., how parity chunks are encoded
from data chunks). Here, we focus on single failures (including
a single unavailable chunk in a stripe or a single disk failure),
since they are the most common failure scenarios in practice as
opposed to concurrent multiple failures [6], [10], [20]. Also,
our work is driven to be applicable for general XOR-based



erasure codes, a special class of erasure codes whose encoding
and decoding operations are purely based on XOR operations.
Our intuition is that by carefully examining the encoding rules
of an erasure code, we can arrange the layout of data and parity
chunks, so as to reduce the number of I/Os of degraded reads
without violating the fault tolerance properties of the erasure
code. By reducing the number of I/Os, we not only enhance the
performance of degraded reads, but also reduce the amount of
recovery traffic that can disturb the performance of foreground
jobs [20].

To this end, we propose EDP, an encoding-aware data
placement scheme that aims to enhance the performance of
degraded reads in a single failure for any XOR-based erasure
code. EDP carefully places sequential data over a stripe, so
that the number of I/Os in a degraded read can be reduced.
It attempts to use sequential data for parity generation so that
the requested data of a degraded read can be associated with
common parity information. It also adjusts the order of parity
generation and refines the data placement based on the new
order, so as to reduce the number of I/Os when the requested
data of a degraded read is associated with different parity
information. To the best of our knowledge, EDP is the first
work that addresses degraded read performance for any XOR-
coded storage systems through data placement designs.

Our contributions are summarized as follows.
• We present EDP, a new data placement scheme that aims

to improve degraded read performance for any XOR-
coded storage system.

• We present a greedy algorithm for EDP that can efficient-
ly determine how to place sequential data according to
the encoding rules and how to order the parity generation.
We also present an algorithm for EDP to refine data
placement. Both algorithms are shown to have polynomial
complexities.

• We realize EDP on a real storage systems equipped with
representative erasure codes. Experiments based on real-
world workloads show that compared with two baseline
data placement schemes, EDP reduces up to 37.4% of
read data on the most loaded disk and shortens up to
15.4% of read time.

The rest of this paper proceeds as follows. Section II will in-
troduce the research background and related works. Section III
will describe the motivating argument of this research. We will
present the detailed design of EDP in Section IV and evaluate
it in Section V. Finally, Section VI will conclude this paper.

II. BACKGROUND AND RELATED WORK

A. Basics of XOR-based Erasure Codes

XOR-based erasure codes perform purely XOR operations
in encoding and decoding operations, thereby having higher
computational efficiency than erasure codes that operate over
finite fields (e.g., Reed-Solomon Codes [22], SD Codes [18],
and STAIR Codes [14]). Existing XOR-based erasure codes
support different levels of fault tolerance. They can tolerate
double failures (e.g., EVENODD Code [1], RDP Code [5],
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Fig. 1: Element layout of RDP Code under horizontal data placement
over p + 1 disks (p = 5). Note that the numbers in data elements
represent the logical order of how the data elements are stored, and
the elements with the same shape belong to the same parity chain
for a given encoding direction. We use these representations in our
illustrations throughout the paper.
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Fig. 2: Element layout of X-Code under horizontal data placement
over p disks (p = 5).

X-Code [32], P-Code [12], HDP Code [28], H-Code [29], HV
Code [24], D-Code [7]), triple failures (e.g., STAR Code [11]
and TIP Code [34]), or a general number of failures (e.g.,
Cauchy Reed-Solomon Code [2]). We focus on XOR-based
erasure codes that are MDS, such that their storage redundancy
is minimum (see Section I).

XOR-based erasure codes often configure the number of
disks as a function of a prime number p. Note that the value
of p may imply different numbers of disks for different codes
(e.g., p + 1 disks for RDP Code [5] and p disks for X-Code
[32]). To perform encoding or decoding, XOR-based erasure
codes often divide a data or parity chunk into sub-chunks
called elements (called data elements and parity elements,
respectively). In other words, each stripe contains multiple
rows of elements. Since each stripe is independently encoded
(see Section I), our discussion focuses on a single stripe.

To illustrate, Figure 1 shows the element layouts of RDP
Code [5] for a single stripe over six disks, where p = 5, k =
p−1 = 4, and m = 2 (see Section I for the definitions of k and
m), while Figure 2 shows the element layouts of X-Code [32]
for a single stripe over five disks, where p = 5, k = p−2 = 3,
and m = 2. In our illustrations, we use numbers to specify the
logical order of how data elements are stored on disks. Let #i
be the i-th data element stored in a stripe based on the logical



order. We say that the data elements are sequential if they
follow a continuous logical order. For example, in Figure 1,
#1 and #2 are two sequential data elements. The logical order
depends on the data placement strategy, as will be explained
in Section II-B.

Each parity element is encoded (or XOR-ed) from a subset
of elements of a stripe. Each XOR-based erasure code has
its own encoding rule, which specifies the encoding direction
(e.g., horizontal, diagonal, or anti-diagonal) and which ele-
ments are used for generating a parity element. Let Ri be the
i-th parity element in a stripe. For example, in Figure 1(a),
the parity element R1 :=#1⊕#2⊕#3⊕#4 (where ⊕ denotes
the XOR operation), implying that R1 is encoded from the
data elements of the same row in the horizontal direction.
Note that a parity element may be encoded from another
parity element. For example, in Figure 1(b), the parity element
R5 :=#1⊕ #15⊕ #12 ⊕ R2, which is encoded from the
data and parity elements along the diagonal direction. We
define a parity chain as the collection of a parity element
and the elements that are XOR-ed together to form the parity
element. In our illustrations, we mark the elements in the same
shape if they belong to the same parity chain for a given
encoding direction. For example, the collection {#1, #2,#3,
#4, R1} forms the horizontal parity chain in Figure 1(a), and
the collection {#1, #15, #12, R2, R5} forms the diagonal
parity chain in Figure 1(b). Note that the data element #1
belongs to both of the two parity chains.

XOR-based erasure codes have different placement strate-
gies for parity elements. They may place data and parity
elements in separate disks, such as RDP Code [5] (see
Figure 1), or spread parity elements across all disks, such
as X-Code [32] (see Figure 2). Our work retains the same
placement of parity elements for a given erasure code and
hence preserves its fault tolerance. Specifically, our work
focuses on a different placement strategy of data elements for
more efficient degraded reads.

B. Data Placement

Data placement refers to how we place data elements across
disks when they are first stored. Given a data placement, parity
elements are placed accordingly based on the erasure code.
To our knowledge, most existing studies do not specifically
consider the data placement of XOR-coded storage systems
(see Section II-C for related work). Here, we consider two
baseline data placement strategies: horizontal and vertical.
Horizontal Data Placement. Horizontal data placement pro-
poses to place sequential data elements across disks. For exam-
ple, Figures 1 and 2 illustrate the layouts of RDP Code [5] and
X-Code [32] under horizontal data placement, respectively.

Horizontal data placement brings two benefits. First, it
can take full advantage of parallelization [13] to reduce the
access latency. For example, when a storage system requests
data elements {#1,#2} in Figure 1, it can read them from
disk 1 and disk 2 respectively in parallel. Second, horizontal
data placement can effectively reduce the number of elements
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Fig. 3: Element layout of RDP Code under vertical data placement
over p+ 1 disks (p = 5).
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Fig. 4: Element layout of X-Code under vertical data placement over
p disks (p = 5).

retrieved in degraded reads when an erasure code has hori-
zontal parity chains. For example, in Figure 1, suppose that
disk 1 fails and the storage system issues a read operation
that requests elements {#1,#2,#3}. Then the storage system
only needs to retrieve another two elements {#4, R1}, such
that the unavailable element #1 can be recovered through the
horizontal parity chain (see Figure 1(a)).

However, the second advantage will be lost if the erasure
code does not have a horizontal parity chain, such as X-
Code [32]. In these codes, the sequential data elements placed
on the same row may not have a common parity element.
Consequently, when the storage system issues degraded reads
to the sequential data elements in a same row, it may need
to retrieve additional elements for data reconstruction. For
example, Figure 2 illustrates the layout of X-Code where data
elements are horizontally placed. Suppose that disk 1 fails and
the storage system issues a read to data elements {#1,#2,#3}.
To reconstruct #1, the storage system needs to read three
additional elements (i.e., {#7,#13,R4} in Figure 2(a), or
{#10,#14,R8} in Figure 2(b)).
Vertical Data Placement. Vertical data placement puts se-
quential data elements along the columns in a stripe. For
example, Figures 3 and Figure 4 illustrate the element layouts
of RDP Code and X-Code under the vertical data placement,
respectively. Vertical data placement is also assumed in previ-
ous works (e.g., [36]).

However, vertical data placement has two limitations. First,
it restricts parallel access. For example, reading data elements



{#1,#2,#3} will only be limited to disk 1 (shown in Figure 3).
Second, vertical data placement often needs to retrieve a large
number of elements in degraded reads, as the reconstructed
elements residing in the same disk do not share any com-
mon parity element. For example, suppose disk 1 fails in
Figure 3(a) and the storage system issues a read to the lost
data {#1,#2,#3}, it needs to retrieve another 12 elements
(i.e., {#5,#6,#7,#9,#10,#11,#13,#14,#15, R1,R2,R3}) to
recover the lost data elements and then serve the read request.

C. Related Work

We summarize existing studies on enhancing the perfor-
mance of degraded reads, and also identify their limitations.

New erasure code constructions have been proposed to
explicitly incorporate the optimization of degraded reads. For
example, Khan et al. [13] design Rotated RS Codes, which
extend Reed-Solomon Codes [22] to include additional parity
elements so as to improve the performance of degraded reads
across stripes. Local Reconstruction Codes [10] construct
additional local parity elements so as to reduce the lengths
of parity chains, so that the number of I/Os in degraded reads
can be reduced. However, both Rotated RS Codes and Local
Reconstruction Codes are non-MDS (see Section I), and hence
incur additional storage redundancy. In addition, HV Code
[24] and D-Code [7] are two RAID-6 codes (i.e., double-fault-
tolerant codes) specifically designed for reducing the amount
of I/Os in degraded reads. HV Code [24] proposes to shorten
the parity chain lengths and place sequential data elements on
horizontal parity chains, while D-Code [7] extends X-Code
[32] by adding horizontal parity chains and evenly distributing
parity elements across disks.

Some studies propose to optimize the recovery performance
for general XOR-based erasure codes. For example, Khan et
al. [13] and Zhu et al. [35] study the problem of achieving
optimal single failure recovery for general XOR-based erasure
codes by searching for the solution with minimum number
of I/Os. Both of their approaches address the recovery of the
permanently failed data in a whole-disk failure, while our work
focuses on the degraded reads for general XOR-based erasure
codes and pays special attention to the characteristics of read
operations. Zhu et al. [36] assume vertical data placement
and address the degraded read performance in heterogeneous
storage systems. In contrast, our work focuses on designing
encoding-aware data placement to improve degraded read
performance.

Note that Shen et al. [25] also study the data placement
problem for general XOR-coded storage systems. However,
their proposed data placement scheme aims to improve partial-
stripe write performance, while our data placement scheme
aims to improve degraded read performance and hence has an
inherently different design.

Some studies address degraded reads from different perspec-
tives. Zhang et al. [33] consider the routing of degraded reads
in different topologies of data centers. Li et al. [15] study the
degraded read performance when MapReduce runs on erasure-
coded storage, and propose a different task scheduling algo-
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Fig. 5: Read size of real workloads in MSR Cambridge Traces [16].

rithm that allows degraded reads to exploit unused network
resources. Xia et al. [30] propose to switch between erasure
coding parameters so as to balance the trade-off between
storage redundancy and degraded read performance. Fu et al.
[8] propose a framework that improves parallelism of degraded
reads for Reed-Solomon Codes [22] and Local Reconstruction
Codes [10]. On the other hand, our work focuses on reducing
the number of I/Os in degraded reads, and can be integrated
with the above approaches for further performance gains in
degraded reads.

III. PROBLEM

In this paper, our primary objective is to design a new data
placement strategy that reduces the number of elements to be
retrieved for degraded reads for any XOR-based erasure code.
Our data placement strategy should preserve the encoding rule
of the given XOR-based erasure code, so as to preserve its fault
tolerance. Also, it makes no effect on normal reads, which can
still access the same elements directly for systematic erasure
codes.

Here, we focus on the degraded reads for a single failure,
which is the most common failure event in practical distributed
storage systems (see Section I). Note that most existing studies
on enhancing the performance of degraded reads also focus on
single failures (e.g., [10], [13], [21]). In addition, we assume
that read requests in many scenarios are sequential and have
small read sizes. For example, Figure 5 analyzes the read size
distributions of several real-world I/O workloads from MSR
Cambridge Traces [16] (see Section V for more details of the
traces). The figure indicates that small reads are common. For
example, the small reads whose read sizes are no more than
8KB account for more than 50% of all read operations.

We address the objective through three motivations. In the
following, we use X-Code over p = 5 disks and assume that
disk 1 fails as our motivating examples.
Motivation 1: Generating Parity Elements from Sequential
Data Elements. We first consider how we reduce the number
of elements to be retrieved in a degraded read within a
parity chain. Our observation is that we can generate parity
elements by using sequential data elements. If sequential data
elements in a parity chain are requested in a degraded read,
then the available elements in the request can be reused
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Fig. 6: Explanations of Motivation 1, based on X-Code over p = 5
disks. Anti-diagonal data placement (figure (b)) retrieves fewer ele-
ments than horizontal data placement (figure (a)) for the degraded
read {#1,#2,#3}. The shape with dashed line denotes the extra
element to be read for data recovery.

to reconstruct the unavailable element in the request. This
reduces the number of additional elements to be retrieved for
data reconstruction.

For example, Figure 6 shows the element layouts of X-Code
under both horizontal and anti-diagonal data placements. Sup-
pose that disk 1 fails and a degraded read requests sequential
data elements {#1,#2,#3}. In horizontal data placement (see
Figure 6(a)), the same degraded read will access three elements
(i.e., {#10,#14,R8}) for reconstructing the unavailable el-
ement #1. On the other hand, we can place sequential data
elements to generate the anti-diagonal parity element R4, as
shown in Figure 6(b). In this case, the degraded read only
needs to retrieve one additional element (i.e., R4) for the
reconstruction of #1.
Motivation 2: Parity Generation Orders. We also consider
how to reduce the number of elements to be retrieved in a
degraded read across parity chains. Our observation is that
we can exploit the generation orders of parity elements, so as
to make more elements included in different parity chains.
We call the data elements that join different parity chains
overlapped data elements, which can be used to repair many
lost data elements if we read sequential data elements that
span across parity chains. This further reduces the number of
extra elements to be retrieved for data reconstruction.

For example, Figure 7 illustrates two data placements in
X-Code, in which we follow Motivation 1 to place sequential
data elements along the same parity chain if possible. Suppose
that disk 1 fails and a degraded read requests data elements
{#1,#2,· · ·,#5}. First, we consider the data placement in
which we place sequential data elements along anti-diagonal
parity chains only. To repair the unavailable elements #1
and #4, we need to retrieve three additional elements (i.e.,
R3, R4, and #6) through the anti-diagonal parity chains
(see Figure 7(a)); and we do not exploit the diagonal parity
chains because even more additional elements will be retrieved
(another six elements to be read as shown in Figure 7(b)). Now
we consider another data placement in which we first place
the sequential data elements {#1,#2,#3} in an anti-diagonal
chain (see Figure 7(c)), followed by placing the remaining
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sequential data elements {#4,#5} in a diagonal parity chain
(see Figure 7(d)). In this case, the overlapped data element #2
can be used in the reconstruction of both #1 and #4. Thus, the
degraded read only needs to retrieve two additional elements
(i.e., R4 in Figure 7(c) and R10 in Figure 7(d)).
Motivation 3: Refinement of Data Placement. Our observa-
tion is that if we only concern about how to find overlapped
data elements (Motivation 2), we may not keep the sequential



data elements in the same parity chain (Motivation 1). For
example, in Figure 7(d), although we have an overlapped data
element #2, the diagonal parity chain to generate R10 holds
the non-sequential data elements {#2,#4,#5}. In view of
this, our third motivation is to refine the positions of data
elements. Suppose that we first generate a parity element Ri,
followed by Rj . We can make their overlapped data elements
be the last data elements in the parity chain of Ri, so that the
overlapped data elements become the first few data elements
in the parity chain of Rj . This refinement ensures that we
can keep the sequential data elements in each parity chain if
possible.

For example, Figure 8 shows our refined data placement
by switching the positions of #2 and #3. This refinemen-
t keeps the same number of overlapped data element for
{#1,#2,· · ·,#5}, but ensures that each of the anti-diagonal
and diagonal parity chains stores the sequential data ele-
ments. Suppose that disk 1 fails and a degraded read requests
{#3,#4,#5}. The original data placement in Figure 7(d)
should retrieve two additional elements (i.e., #2 and R10) to
reconstruct the unavailable element element #4. On the other
hand, our refined data placement in Figure 8 only needs to
retrieve one additional element (i.e., R10 in Figure 8(b)).

IV. ENCODING-AWARE DATA PLACEMENT

We propose an encoding-aware data placement (EDP) that
addresses the problem and motivations in Section III. EDP
builds on two algorithms. The first algorithm places sequential
data elements in the same parity chain (Motivation 1) and
exploits a greedy approach to select an order of generating
parity elements (Motivation 2), with the goal of maximizing
the number of overlapped data elements across parity chains.
The second algorithm refines the positions of data elements
so that the overlapped data elements lie at the intersection of
parity chains (Motivation 3).

A. Greedy Parity Generation

As shown in Section III, a key step of reducing the number
of additional elements to be retrieved in a degraded read is
to maximize the number of overlapped data elements across
parity chains, by ordering the generation of parity elements.
However, how to find the right generation order is a non-
trivial problem. A straightforward approach is to enumerate
all possible generation orders of all parity elements, yet its
complexity is extremely high. For example, for X-Code with
2p parity elements in a stripe, the enumeration would require
(2p)! permutations in total.

In this paper, we propose a greedy approach to efficiently
search for a generation order for parity elements, as shown
in Algorithm 1. The main idea is that in each iteration, we
select a parity element to be generated, such that its parity
chain can produce the maximum number of overlapped data
elements with respect to the parity chain of the parity elements
generated in the last iteration. Here, we only need to examine
the overlapped data elements in two parity chains (i.e., in the
current and last iterations), based on the observation that our

Algorithm 1: Greedy parity generation.

Input: A given XOR-based erasure code.
Output: Parity generation order O.

1 Set all cells of a stripe to be blank; set R to include all parity
elements of a stripe; set O = ∅

2 for each candidate parity element Ri ∈ R do
3 Calculate λi

4 Select Rj , where λj = max{λi|Ri ∈ R}
5 Place sequential data elements on the blank cells of the parity

chain of Rj

6 Remove Rj from R and append Rj to O
7 Repeat steps 2-6 until all cells in the stripe are occupied by

data elements
8 Generate the remaining parity elements in R through placed

data elements
9 Return O
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Fig. 9: An example of greedy selection for parity generation orders.

target workloads have small read sizes (see Section III) and
hence most read operations span at most two parity chains.
Details of Algorithm 1. Let R be the set of candidate parity
elements that can be selected in each iteration; let O record the
generation order of parity elements generated from sequential
data elements; let λi be the number of overlapped data
elements derived from the generation of the parity element
Ri ∈ R, with respect to the parity chain of the parity elements
selected in the last iteration. In addition, we define a cell as
the storage region (e.g., disk sector or block) that holds an
element, and let Ci,j be the cell whose position is at the i-
th row and the j-th column in a stripe. Initially, for a given
XOR-based erasure code, we first set all cells in a stripe to
be blank, meaning that no element is stored in each cell. We
also set R to include all parity elements of a stripe, O to be
empty (step 1).

In each iteration, the algorithm calculates λi for each
Ri ∈ R (steps 2-3). It selects Rj ∈ R that produces the
maximum number of overlapped data elements (step 4). It
places sequential data elements on the blank cells of the parity
chain of Rj (step 5). The algorithm removes Rj from R and
appends it to O (step 6). The algorithm repeats steps 2-6 until
all cells have been occupied by data elements (step 7). It then
completes the encoding by generating the remaining parity
elements in R from the placed data elements (step 8). The
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Fig. 10: Data placement of X-Code (p = 5) after running Algorith-
m 1.

algorithm finally returns O (step 9).
Example. We take X-Code (p = 5) as an example to show
how Algorithm 1 works. As X-Code has 2p parity elements,
we initialize R = {R1, R2, · · · , R10} and O = ∅. In the
first iteration, since O is empty, all parity elements have no
overlapped data elements. Without loss of generality, we select
R1, so we place sequential data elements {#1,#2,#3} on the
cells {C1,3, C2,4, C3,5}, respectively (see Figure 9(a)). We
then update R = {R2, R3, · · · , R10} and O = {R1}.

In the second iteration, we find that R7 gives the maximum
number of overlapped data elements (with λ7 = 1). We place
the sequential data elements on the cells {C3,3, C2,4, C1,5}
(see Figure 9(b)). Finally, we obtain the data placement when
Algorithm 1 finishes, as shown in Figure 10.

B. Position Refinement for Data Elements

Given the parity generation order O from Algorithm 1, EDP
further proposes to refine the positions of data elements, as
shown in Algorithm 2.
Details of Algorithm 2. Initially, the algorithm marks all data
elements to as “movable”, meaning that the positions of the
data elements can be changed (step 1). It sets Rcur as the
first parity element in O and Rnxt as the next one after Rcur

(step 2). For each data element #i in the parity chain of Rcur

(step 3), the algorithm checks if #i is movable and appears in
the parity chain Rnxt (i.e., #i is an overlapped data element
for the parity chains of Rcur and Rnxt) (step 4). If yes, the
algorithm finds another data element #j that appears as the
last one among all movable data elements in the parity chain
of Rcur (step 5). It then switches the positions of #i and #j
(step 6) and marks both data elements as non-movable (step 7).
After that, it then tries the next pair of parity elements in O
(step 8). The algorithm repeats steps 3-8 until reaching the
last parity element in O (step 9).
Example. Based on the data placement in Figure 9, Figure 11
shows how we can further refine the data placement. Initially,
R1 and R7 are the first two parity elements to be generated in
O. Thus, we set Rcur = R1 and Rnxt = R7. We scan the data
elements {#1,#2,#3} in the parity chain of R1, and find that
#2 involves in the parity chain of R7 and is movable. Also,
we find the data element #3 as the last data element that is not
fixed in the parity chain of R1. We can switch the positions

Algorithm 2: Position refinement for data elements.

Input: Parity generation orders O.
Output: A new data layout after refinement.

1 Let Rcur be the first parity element in O and Rnxt be the next
parity element after Rcur

2 Mark all data elements as “movable”
3 for each data element #i in the parity chain of Rcur do
4 if #i is movable and appears in the parity chain of Rnxt

then
5 Let #j be the last movable data element in the parity

chain of Rcur

6 Switch #i with #j
7 Mark both #i and #j as non-movable

8 Set Rcur to be Rnxt, and Rnxt to be the next parity element
after Rcur in O

9 Repeat steps 3-8 until Rcur is the last parity element in O.
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Fig. 11: An example to refine the data placement when generating
R7. In this example, Rcur = R1 and Rnxt = R7, where sequential
data elements {#1,#2,#3} is placed to generate R1.

of #2 and #3, and a new data placement will be obtained
as shown in Figure 11(b). After the refinement, both #2
and #3 will be non-movable in the subsequent iterations. By
scanning every two parity elements whose generation orders
are adjacent in O, we can adjust the positions of overlapped
data elements and finally obtain a refined data placement, as
shown in Figure 12.

C. Complexity Analysis

Given an XOR-based erasure code, suppose that there are
a total of K data elements and M parity elements in a stripe.
For Algorithm 1, it scans every candidate parity element in
R and will proceed no more than M times. Therefore, its
complexity is O(M2). For Algorithm 2, it needs to scan every
parity element in O and the associated data elements. As the
number of data elements in a parity chain is no more than
K, its complexity is O(KM). In summary, EDP maintains a
polynomial complexity.

V. PERFORMANCE EVALUATION

We conduct experiments to evaluate the performance of
EDP and aim to address the following three questions:

1) How much reduction of I/Os on degraded reads can EDP
achieve?
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Fig. 13: The number of elements to be retrieved when replaying the workloads. Smaller values are better.
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Fig. 12: Data placement of X-Code (p = 5) after refinement.

2) How much reduction on the degraded read time can
EDP gain?

3) Will EDP maintain its effectiveness for different XOR-
based erasure codes?

Evaluation Methodology: In the evaluation, we choose three
representative XOR-based erasure codes, namely RDP Code
[5], X-Code [32], and Balanced P-Code (BP-Code) [31]. These
three codes have different properties:

• RDP Code [5] is a RAID-6 code (i.e., double-fault-
tolerant) that separates the storage of data elements and
parity elements on different disks (see Figure 1). Its
construction is based on horizontal parity chains and
diagonal parity chains. It does not reach the optimal
update efficiency.

• X-Code [32] is another RAID-6 code constructed based
on diagonal parity chains and anti-diagonal parity chains
(see Figure 2). Unlike RDP Code, X-Code spreads parity
elements across all disks and reaches the optimal update
efficiency.

• Balanced P-Code (BP-Code) [31] is a RAID-6 code
designed for supercomputing data centers. Unlike RDP
Code and X-Code, BP-Code is built by vertical parity
chains only. It extends P-Code [12] by evenly spreading
the data elements of a common parity chain across rows.
It also achieves the optimal update efficiency.

In our evaluation, we select p = 7 for RDP Code, X-
Code, and BP-Code. Note that the same p may imply different
numbers of disks in a stripe, as shown in Table I. Note that

TABLE I: Configurations of erasure codes with respect to p.

Coding Scheme number of disks in a stripe k m

RDP Code [5] p+ 1 p− 1 2
X-Code [32] p p− 2 2

BP-Code [31] p− 1 p− 3 2

our choice of p, and hence the number of disks in a stripe,
is similar with the stripe size in many well-known erasure-
coded storage systems [3], [6], [10]. For example, the number
of disks in a stripe of Google Colossus FS is 9 [30].

Our evaluation is driven by real-world block-level work-
loads from MSR Cambridge Traces [16]. The workloads are
collected from 36 volumes that span 179 disks of 13 servers
for one week, and describe various access characteristics of
enterprise storage servers. Each workload records the start
position of the I/O request and the request size. Here, we select
four volumes and mainly focus on the read operations (which
allow us to evaluate the impact of degraded reads). Table II
lists the characteristics of our selected workloads, which show
the types of workloads and the statistics of the read operations.

In the evaluation, the element size is set as 16KB. We then
erase the data on one of the nodes in a stripe to simulate a
single failure, and replay the read operations in the selected
workloads. We run the evaluation by erasing the data for every
node, repeat this evaluation, and obtain the overall average. We
compare EDP with the two baseline data placement schemes
(see Section II-B): horizontal and vertical data placements. In
the comparison, we always choose the degraded read solution
that reads less data for data recovery. For example, if an
unavailable element is included in two parity chains, we will
select the one that repairs the element with less elements that
are additionally retrieved
Evaluation Environment: The evaluation is run on a Linux
server with an X5472 processor and 8GB memory. The
operating system is SUSE Linux Enterprise Server and the
filesystem is EXT3. The deployed disk array consists of 15
Seagate/Savvio 10K.3 SAS disks, each of which has 300GB
storage capability and 10,000 rmp. The machine and the disk
array are connected by a Fiber cable with the bandwidth of
800MB/sec. The selected erasure codes are realized based
on Jerasure 1.2 [19], a widely-used library to realize erasure
coding storage systems.



TABLE II: Characteristics of selected workloads.

Workloads mds 0 rsrch 1 web 1 web 3

Types Media server Research project Web/SQL server Web/SQL server
Number of read operations 132,318 43 87,058 10,050

Average read size (KB) 25.3 13.9 45.9 74.9
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Fig. 14: The time to complete a read pattern. Smaller values are better.
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Fig. 15: The number of elements to be retrieved on the most loaded disk. Smaller values are better.

A. Total number of read elements
We first evaluate the number of elements to be read in

degraded reads when replaying the read patterns in the work-
loads. The read elements include the originally requested ele-
ments from front-end and the additionally retrieved elements
for recovery. The final results are shown in Figure 13.

We can derive two observations from Figure 13. First, EDP
significantly decreases the number of elements to be read,
compared with another two data placements for most of the
selected workloads. Take the workload web 1 as an example,
the reduction on the number of read elements brought by
EDP will be up to 18.9% (compared with the horizontal data
placement over X-Code). This is because EDP always tries to
reuse the originally requested elements to repair the lost data,
and thus reduces the number of elements to be additionally
retrieved.

Second, the horizontal data placement reads fewer elements
than the vertical data placement when deployed over RDP
Code, and this advantage will be lost for X-Code and BP-
Code. This is because for RDP Code, the requested data that
are in the same row with the unavailable data, associate with a
common horizontal parity element and can be reused for data
recovery. For X-Code and BP-Code, in which data elements in
the same row will join different parity chains, the horizontal
data placement cannot reuse the requested data in the same row

for data recovery and thus causes nearly the same amount of
read data as vertical data placement.

B. The time to complete a read pattern
We further replay the four workloads and record the time to

complete each read pattern. Figure 14 shows the final results.
We have two observations. First, the read time not only

relates to the average read size, but also associates with the
ratio of read patterns with small read size. For example, it
needs about 20ms to complete a read pattern in the workload
web 3, while the read time in the workload rsrch 1 is no
more than 1.6ms. These two workloads have different read
sizes and ratios of the read operations with small read sizes
(e.g., read size no more than 8KB in Figure 5).

Second, EDP can markedly reduce the read time by up to
15.4% (in the workload web 3) when deployed over X-Code
and BP-Code. It also indicates that the improvement on the
degraded read speed will be up to 18.2%, as the read speed
is proportional to the inverse of the read time. However, the
improvement on RDP Code is not very significant. This test
also implies that EDP is more suitable to the codes with the
optimal update efficiency (e.g., X-Code and BP-Code).

C. The number of read elements on the most loaded disk
We also measure the number of read elements on the most

loaded disk after replaying the workloads. Suppose the storage



system consists of N disks and the i-th disk is requested to
read Qi elements during the workload replaying. This metric
can be calculated by Qmax = Max{Qi|1 ≤ i ≤ N}. The
evaluation results are presented in Figure 15.

We can observe that EDP can well lighten the I/O burden
on the most loaded disk when compared with another two data
placements. Compared with the vertical data placement, EDP
reduces up to 37.4% read I/Os (in the workload rsrch 1) on
the most loaded disk. Besides, EDP can also lighten the read
burden by up to 18.7% on the most loaded disk compared
with the horizontal data placement (in the workload web 1).
This test indicates that EDP should be more effective for the
storage systems [27] that are sensitive to the read traffic.

VI. CONCLUSION

Erasure codes have been intensively used in current storage
systems for their high storage efficiency. In view of the com-
monplace of single failure and read operations in real-world
applications, this paper proposes EDP, an encoding-aware
data placement scheme to optimize single-failure degraded
reads. EDP suggests generating parity elements by using
sequential data elements. It then designs an order to generate
parity elements and refines the data layout to achieve further
optimization. Experimental results show that compared with
two baseline data placement methods, EDP reduces up to
37.4% of read data on the most loaded disk and shortens up
to 15.4% of read time.
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