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Abstract—Erasure coding has been widely adopted to protect
data storage against failures in production data centers. Given
the hierarchical nature of data centers, characterizing the effects
of erasure coding and redundancy placement on the reliability of
erasure-coded data centers is critical yet largely unexplored. This
paper presents a comprehensive simulation analysis of reliability
on erasure-coded data centers. We conduct the analysis by
building a discrete-event simulator called SIMEDC, which reports
reliability metrics of an erasure-coded data center based on the
configurable inputs of the data center topology, erasure codes,
redundancy placement, and failure/repair patterns of different
subsystems obtained from statistical models or production traces.
Our simulation results show that placing erasure-coded data in
fewer racks generally improves reliability by reducing cross-rack
repair traffic, even though it sacrifices rack-level fault tolerance
in the face of correlated failures.

I. INTRODUCTION

Modern data centers enable large-scale storage management

for cloud computing services and big data analytics. However,

extensive field measurements have shown that failures, either

transient or permanent, are commonplace in data centers [10],

[23], [28]. To protect data storage against failures, modern

data centers (e.g., [10], [18], [20]) increasingly adopt erasure
coding to add redundancy into data storage, so that any

unavailable or lost data can be recovered from other available

redundant data. Erasure coding provides a storage-efficient

way to construct redundancy, and it provably incurs much

lower storage redundancy than simple replication [33]. Its

storage efficiency over replication also implies significant

savings in operational costs, power, and footprints [18]. On the

other hand, erasure coding has a drawback of incurring higher

repair traffic, as the repair of any lost erasure-coded data will

trigger a transfer of much more available data than the actual

amount of lost data. Such repair traffic can reach hundreds of

terabytes per day in production data centers and overwhelm

the bandwidth resources for foreground applications [23].

Thus, extensive studies in the literature focus on minimizing

the repair traffic in erasure-coded storage, via either new

erasure codes (e.g., [8], [18], [24], [26]) or more efficient

repair mechanisms (e.g., [31]). In particular, the repair prob-

lem in erasure-coded data centers poses a unique research

challenge due to the hierarchical data center architecture,

in which multiple nodes (or servers) are grouped in racks,

and the cross-rack bandwidth is typically much more limited

than the inner-rack bandwidth [2], [5]. This leads to two

possible redundancy placement schemes. Most studies (e.g.,

[10], [18], [20], [24]) adopt flat placement, in which erasure-

coded data is distributed across distinct nodes, each of which

is located in a distinct rack, to maximize the tolerance against

rack failures. However, the repair of any lost data in flat

placement inevitably triggers cross-rack transfer of available

data. On the other hand, recent studies [16], [29] argue that

rack failures are much rarer than node failures [7], [10],

and hence advocate hierarchical placement, in which erasure-

coded data is distributed across fewer racks, or equivalently

multiple nodes per rack, to trade rack-level fault tolerance for

the reduction of cross-rack repair traffic. By enabling partial

repair operations within each rack, the cross-rack repair traffic

can be provably minimized [16], with over 40% reduction

of the minimum repair traffic achievable by the classical

minimum-storage regenerating codes [8].
From the perspectives of reliability analysis, the choices of

erasure codes and redundancy placement in erasure-coded data

centers raise new reliability issues, such as: (1) How much can

the reduction of cross-rack repair traffic improve reliability?

(2) What is the reliability trade-off of sacrificing rack-level

fault tolerance for reduced cross-rack repair traffic? (3) How

does the reliability of an erasure-coded data center vary subject

to more complicated failure patterns? While the literature is

rich of modeling- or simulation-based reliability studies on

storage systems, the reliability analysis that specifically takes

into account the hierarchical nature of erasure-coded data

centers remains largely unexplored.
In this paper, we present a comprehensive simulation study

on the reliability of an erasure-coded data center. Our key

contributions are two-fold:

• We build SIMEDC, a discrete-event simulator that charac-

terizes the reliability of an erasure-coded data center. It is

designed to be comprehensive by accounting for various

factors as inputs, including the data center topology, erasure

codes (e.g., the classical Reed-Solomon codes [25], and

the recently proposed Local Reconstruction Codes [18] and

Double Regenerating Codes [16]), redundancy placement

(i.e., flat or hierarchical), as well as failure/repair patterns of

different subsystems derived from either statistical models or

production traces. It reports different reliability metrics that

capture the durability and availability of an erasure-coded

data center.

• We conduct extensive reliability analysis using SIMEDC.

We find that hierarchical placement generally achieves

higher reliability than flat placement due to the reduction of

cross-rack repair traffic, even though its reliability degrades

in the presence of correlated failures. We also observe

similar behaviors based on production traces collected at

Los Alamos National Laboratory [27].
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Fig. 1. Architecture of a hierarchical data center.

II. BACKGROUND AND PROBLEM

A. Data Center Architecture

We consider a hierarchical data center, as shown in Figure 1,

that comprises multiple racks, each of which holds a number

of commodity machines called nodes (or servers). Each node is

further attached with one or multiple disks that provide storage

space. Nodes within the same rack are interconnected by a

top-of-rack (ToR) switch, and the racks are interconnected by

a network core that is composed of layers of aggregation and

core switches [3]. Such a hierarchical data center architecture

is also considered in previous work [5], [16], [29].

We assume that the data transfer performance of a hierar-

chical data center is bottlenecked by the available cross-rack

bandwidth. In practice, the cross-rack bandwidth is much more

constrained than the inner-rack bandwidth due to oversub-

scription in the network core [2], [5]. Although data transfers

can also be slowed down by disk I/Os, in practical data

centers, each node can be attached with an array of multiple

commodity disks to readily achieve much higher sequential

disk I/O throughput than the network speed [5]. Furthermore,

in the context of storage reliability, the bandwidth allocated

for storage-repair tasks are often throttled [18], [31], which

further limits the reconstruction performance of failed data

and hence degrades the overall storage reliability. Thus, how

the cross-rack bandwidth affects storage reliability is one key

topic of our reliability analysis.

B. Failure Model

Practical data centers are susceptible to failures. In our

analysis, we focus on failures occurring at three levels of

subsystems: racks, nodes, and disks. Failures can be as either

transient, in which a subsystem is only temporarily unavailable

without causing actual data loss (e.g., due to network discon-

nection, reboots, or maintenance), or permanent, in which a

subsystem failure can lead to permanent data loss (e.g., due

to disk crashes).

Failures can be further classified as independent, in which

subsystems fail independently, or correlated, in which a num-

ber of subsystems fail simultaneously due to a common failure

event. Correlated failures are more severe than independent

failures. For example, when a ToR switch of a rack is broken,

all nodes within the rack will become temporarily unavailable.

One common type of failures is power outages, in which a

significant fraction of nodes (up to 1%) will crash after a

power-on restart and cause permanent data loss [4], [30].

Our work considers the following failure events:

• Disk failures: We focus on permanent disk failures, in which

all data on a failed disk is lost. For simplicity, we currently

do not consider latent sector errors that damage only partial

data of a disk, as their severity heavily depends on the

complicated data layout on the whole disk.

• Node failures: We consider both transient and permanent

node failures. In the former, all disks attached to a failed

node are only temporarily unavailable without data loss,

while in the latter, we assume that the data stored on all

disks is permanently lost.

• Rack failures: We only consider transient rack failures, in

which the data of all nodes within a failed rack becomes

unavailable, yet there is no data loss.

• Correlated failures: We treat a rack as the largest failure

domain, such that a correlated failure brings down a fraction

of nodes within a rack. We focus on permanent correlated

failures, such that the failed nodes incur data loss (e.g., due

to power outages [4], [30]).

C. Erasure Coding

An erasure code is often constructed by two parameters n
and k, where k < n. Suppose that a data center organizes data

as fixed-size units called chunks. Then for every k original

uncoded chunks, an erasure code encodes them into n coded

chunks of the same size, such that the collection of the n coded

chunks is called a stripe. A data center typically contains

multiple stripes that are independently encoded. An erasure

code is said to be Maximum Distance Separable (MDS) if any

k out of the n coded chunks of a stripe can reconstruct the

original k uncoded chunks (i.e., an MDS code can tolerate the

failures of up to n− k chunks), while the amount of storage

redundancy is minimum (i.e., storage-optimal).

Most erasure codes deployed in practice are systematic
codes, meaning that the original data is kept in storage after

encoding. That is, for (n, k) codes, k of the n chunks of each

stripe are exactly the original k uncoded chunks that can be

directly accessed. In our analysis, we do not differentiate be-

tween uncoded and coded chunks, and we focus on measuring

the durability and availability of all chunks stored in a data

center (see Section III). We use “chunks” to collectively refer

to both uncoded and coded chunks if the context is clear.

Erasure coding incurs high repair penalty as it needs to

retrieve multiple chunks in order to repair a failed chunk that

is unavailable or lost. We define the repair traffic as the amount

of information retrieved for a repair. For example, for (n, k)
MDS codes, a standard approach of repairing a failed chunk

is to retrieve k available chunks of the same stripe (i.e., the

repair traffic is k chunks). Since the most common failure

scenario in practice [18], [23] is a single failure (i.e., each

stripe has only one single failed chunk), many erasure codes

have been proposed to improve the repair performance by

reducing the repair traffic for a single-chunk repair. In this

paper, we focus on three representative erasure codes that incur

different amounts of repair traffic for a single-chunk repair:

• Reed-Solomon (RS) codes: RS codes [25] are the classical

MDS codes that have been widely deployed in modern



data centers [10], [31]. RS codes follow the standard repair

approach of MDS codes. That is, given (n, k), the repair

traffic of a single-chunk repair in RS codes is k chunks.

• Local Reconstruction Codes (LRC): Some erasure codes

(e.g., [18], [26]) exploit locality to reduce repair traffic.

In this paper, we focus on Azure’s LRC [18]. It divides

k uncoded chunks of a stripe into l local groups (assuming

that k is divisible by l) and creates one local coded chunk for

each local group, and additionally creates n− k − l global

coded chunks by encoding all k uncoded chunks. Given

(n, k, l), the repair traffic of repairing an uncoded chunk or

a local coded chunk is k
l chunks (retrieved from the same

local group), while that of repairing a global coded chunk

is k chunks (retrieved from the same stripe). Note that LRC

is non-MDS: even though each stripe has n − k additional

coded chunks, LRC cannot tolerate all possible failures of

n − k chunks. For example, LRC(16,12,2) cannot tolerate

the failures of four chunks in the same local group, even

though it has four parity chunks in total in each stripe.

• Double Regenerating Codes (DRC): Some studies (e.g.,

[16], [29]) focus on reducing the cross-rack repair traf-

fic in an erasure-coded data center by storing multiple

chunks in one rack (Section II-D explains the details of

chunk placement). In this paper, we focus on DRC [16],

which provably minimizes the cross-rack repair traffic. It

distributes n chunks of a stripe across r distinct racks,

where n is divisible by r, and each rack holds n
r chunks

in different nodes within the rack. In a single-chunk repair,

DRC exploits a two-phase approach: it first performs partial

repairs by selecting a node (called relayer) to encode the

available chunks of the same stripe within each rack, and

then re-encodes the encoded chunks from multiple relayer

nodes across different racks to reconstruct the failed chunk.

Like RS codes, DRC is also MDS with optimal storage

redundancy. Note that DRC can be viewed as an extension

to the classical minimum-storage regenerating (MSR) codes
[8], which minimize the repair traffic for a single-chunk

repair under the minimum storage redundancy. If we set

r = n (i.e., one chunk per rack), DRC achieves the same

minimum repair traffic, given by n−1
n−k chunks, as MSR

codes. In general, given (n, k, r), the minimum cross-rack

repair traffic of DRC is r−1
r−�kr/n� chunks [16].

If a stripe contains more than one failed chunk but no more

than n − k failed chunks, we resort to the standard repair

approach by retrieving k available chunks of the same stripe

(note that the repair of LRC may fail as it is non-MDS).

Specifically, for a failed chunk, if it is the only failed chunk

in a stripe, the repair traffic follows the improve single-chunk

repair approach of the given erasure code; otherwise, the repair

traffic is k chunks. We assume that we repair one failed chunk

of a stripe at a time, and we do not consider repairing multiple

failed chunks simultaneously in one stripe.

D. Chunk Placement

To tolerate node or rack failures, erasure coding places the

chunks of each stripe in different nodes and racks. We consider

… … … … ……

(a) Flat placement

… … … … ……

(b) Hierarchical placement

Fig. 2. Example of repairing a failed chunk under flat placement and
hierarchical placement, using RS codes with n = 6 and k = 3. The nodes
that hold the chunks of the same stripe are represented in dark color. In flat
placement, the six chunks of a stripe reside in six racks, while in hierarchical
placement, the six chunks of a stripe reside in three racks.

two chunk placement schemes for each stripe of n chunks:

• Flat placement: The n chunks of a stripe are stored in n
different nodes that reside in n distinct racks (i.e., one chunk

per rack). This provides the maximum fault tolerance against

both node and rack failures. The trade-off is that repairing a

failed chunk must retrieve available chunks from other racks,

and hence incurs a significant amount of cross-rack repair

traffic. Flat placement is commonly used in production data

centers [10], [18], [20], [24].

• Hierarchical placement: The n chunks of a stripe are stored

in n different nodes that reside in r < n distinct racks, each

of which has n/r chunks, assuming that n is divisible by r.

This reduces the cross-rack repair traffic, as repairing any

failed chunk can leverage the available chunks within the

same rack. The trade-off is that fewer rack failures can be

tolerated than flat placement.

Note that RS codes and LRC can adopt both flat and

hierarchical placements. Figure 2 shows an example of how

hierarchical placement incurs less cross-rack repair traffic than

flat placement, using RS codes with n = 6 and k = 3. Suppose

that a node wants to reconstruct a failed chunk in its local

storage. In flat placement (see Figure 2(a)), each of the six

chunks of a stripe is placed in a distinct rack. Repairing the

failed chunk will retrieve three chunks across racks. On the

other hand, in hierarchical placement (see Figure 2(b)), we can

place two chunks in a rack. Repairing the failed chunk can

retrieve one chunk from the same rack and two more chunks

from other racks, so the cross-rack repair traffic is reduced to

two chunks. DRC specifically exploits hierarchical placement

to minimize the cross-rack repair traffic.

In practice, the numbers of nodes and racks are much larger

than the stripe size n. Thus, we adopt the notion of declustered
placement [32] to place n chunks: for flat placement, we

randomly select n racks from all available racks, followed by

randomly selecting one node from all available nodes within

the same rack; for hierarchical placement, we again randomly

select r racks and n/r nodes per rack. Thus, when we repair



Fig. 3. SIMEDC architecture.

a failed node that stores the failed chunks of multiple stripes,

we can retrieve available chunks from all available nodes

and racks in the whole data center, thereby better harnessing

parallelism to improve repair performance and hence storage

reliability [32]. Based on declustered placement, our goal is

to study the reliability trade-off between flat and hierarchical

placements for different erasure codes.

III. SIMEDC DESIGN

We present SIMEDC, a discrete-event simulator that char-

acterizes the reliability of an erasure-coded data center via

simulation. SIMEDC builds on the High-Fidelity Reliability

Simulator (HFRS) [12], which is written in Python and orig-

inally designed for the reliability simulation of a monolithic

disk array. SIMEDC extends HFRS to support various erasure

codes and chunk placement schemes in a hierarchical data

center with the cross-rack network bandwidth constraint.

A. Architectural Overview

Figure 3 shows the SIMEDC architecture. At a high level,

SIMEDC performs reliability simulation over a sufficiently

large number of iterations. In each iteration, it takes the

data center topology, erasure code construction, and chunk

placement as inputs for initialization. It records the chunk

positions for a number of stripes, specified by the storage

capacity that is simulated, across different nodes and racks;

note that the chunk positions vary across iterations. It generates

a sequence of failure and repair events, and processes them in

chronological order until a failure event triggers data loss or a

pre-specified system mission time (e.g., 10 years) is reached. It

then outputs a set of reliability metrics for the iteration. Finally,

it reports the reliability metrics averaged over all iterations.

SIMEDC allows to generate events from two sources, either

statistical models for the failure and repair behaviors, or event

traces that record the failure and repair events in a production

data center. Both sources of events can be specified as inputs

to SIMEDC before the simulation starts.

B. Reliability Metrics

SIMEDC measures three reliability metrics:

• Probability of data loss (PDL): It measures the likelihood

that a data center experiences the unrecoverable loss of any

chunk (i.e., the number of permanently failed chunks in

an erasure-coded stripe exceeds the tolerable limit) over a

mission time.

• Normalized magnitude of data loss (NOMDL): It is

proposed by Greenan et al. [14] to measure the expected

amount of data loss (in bytes) normalized to the storage

capacity. It has several key properties that arguably improve

existing reliability metrics [14].

• Blocked ratio (BR): It measures the fraction of time that

a chunk cannot be directly accessed due to the transient or

permanent failures of the subsystem that holds the chunk.

Note that such an inaccessible chunk may still be recover-

able from other available chunks of the same stripe in other

subsystems, but it incurs extra overhead of reconstructing

the chunk. Thus, the BR models the duration when a chunk

cannot be directly accessed in normal mode.

In Section III-D, we elaborate how these metrics are com-

puted in our implementation. Note that both PDL and NOMDL

are used to measure durability, while the BR is used to

measure availability. A data center achieves good reliability

if the values of the metrics are small.

C. Event Handling

Each failure or repair event in SIMEDC is represented in

a tuple of three fields: (1) the timestamp when the event

occurs, (2) the event type, and (3) the subsystem associated

with the event. SIMEDC stores all events in an event queue,

which is implemented as a priority queue that returns the

event with the smallest timestamp for the event handler to

process accordingly (see Figure 3). We handle permanent and

transient failures separately, and consider four event types: (1)

a permanent failure, (2) a transient failure, (3) a permanent

failure repair, and (4) a transient failure repair.

Failure handling: Each subsystem (i.e., rack, node, or disk) is

associated with one of the three states during the simulation:

(1) normal (i.e., no failure occurs), (2) unavailable (i.e., a

transient failure occurs), and (3) crashed (i.e., a permanent

failure occurs). In terms of severity, normal is the least severe,

unavailable is the middle, and crashed is the most severe.

We assume that if a subsystem fails, its state will be updated

only if the state becomes more severe. That is, a normal or

unavailable state becomes crashed for a permanent failure,

or a normal state becomes unavailable for a transient

failure; however, a crashed state remains unchanged. Also,

all its descendant subsystems in a hierarchical data center will

inherit the same state that is more severe. That is, if a node

is crashed, then all the disks attached to the node are also

crashed; if a rack (resp. node) is unavailable, then all the

nodes and disks within the rack (resp. all attached disks) are

also unavailable if they are originally normal.

SIMEDC processes failure events (see Section II-B) from

the event queue. Upon receiving a permanent failure event, it

checks if every chunk stored in the crashed subsystem can be

repaired by a sufficient number of available chunks of the same

stripe. If not, it concludes that there is data loss and returns the

reliability metrics for the current iteration. If there is no data

loss or a transient failure event is received, SIMEDC triggers



a repair event of the same type (i.e., permanent or transient)

for the failed subsystem and inserts the event into the event

queue for later repair handling.

Repair handling: Before inserting a repair event into the

event queue, SIMEDC computes the repair time needed to

repair a permanent or transient failure. For a permanent failure,

the repair time is calculated by dividing the total amount of

cross-rack repair traffic for all failed chunks by the available

cross-rack bandwidth. For a transient failure, the repair time is

determined by either the statistical models or the event traces

for the corresponding subsystem (see Section III-A).

One subtlety is that when a permanent failure occurs, a

failed chunk may not be able to be repaired immediately, since

other subsystems associated with the same stripe are currently

under transient failures and there are insufficient available

chunks for repairing the failed chunk (although there is no

data loss). Thus, if we find that the failed chunk cannot be

repaired immediately due to too many transient failures in the

same stripe, we add the repair time for the failed chunk by the

amount of time until there are sufficient available chunks for

the repair, by checking the repair times of the repair events of

the related transient failures in the event queue.

To simplify repair handling, we do not consider how to

optimally schedule the repairs of multiple failed chunks of

a permanently failed subsystem to minimize the total repair

time. In addition, if a stripe that is currently under repair has

an additional failed chunk, we do not modify the repair time of

any already triggered repair event. Our observation is that each

stripe has at most one failed chunk in most cases throughout

the mission time in our evaluation (see Section IV); in fact,

field studies also confirm that single-chunk repairs dominate

in practice [18], [23]. Thus, the repair time of a permanently

failed chunk is mostly determined by the cross-rack repair

traffic incurred for a single-chunk repair.

When a repair event is received from the event queue,

SIMEDC updates the state of the associated subsystem to the

normal state. In addition, if any descendant subsystem has

the same failure type, we also update its state to normal.

For example, if a crashed (resp. unavailable) node is

repaired, any of its associated disks that is crashed (resp.

unavailable) is also repaired and its state becomes normal.

Finally, SIMEDC creates the next failure event of the same

type (i.e., permanent or transient) for the subsystem and inserts

the event into the event queue for later failure handling.

D. Putting It All Together

Algorithm details: Algorithm 1 shows the pseudo-code of

the workflow of SIMEDC. The MAIN procedure (Lines 1-6)

executes the reliability simulation function SIMULATE over a

number of iterations X , where X is tunable (see below). In

each iteration, the SIMULATE function first performs initial-

ization (Line 8), and inserts the first permanent and transient

failure events for each subsystem into the event queue Q
(Lines 9-11). For each event popped from Q, SIMULATE

terminates if the event time exceeds the mission time T
(Line 15); otherwise, it processes the event according to one of

Algorithm 1 SIMEDC

1: procedure MAIN

2: for i = 1 to X do
3: (PDLi, NOMDLi, BRi) ← SIMULATE

4: end for
5: return 1

X

∑X
i=1(PDLi, NOMDLi, BRi)

6: end procedure

7: function SIMULATE

8: Initialize data center, erasure code, and chunk placement
9: Generate first permanent failure event for each node/disk

10: Generate first transient failure event for each rack/node
11: Push all failure events to the event queue Q
12: while true do
13: (time t, type y, subsystem s) ← Q.Pop;
14: if t > T then
15: return (0, 0, BR)
16: end if
17: if y is a permanent failure then
18: if data loss occurs then
19: return (1, NOMDL, BR)
20: else
21: s.state ← crashed
22: for each s’s descendant sd do
23: sd.state ← crashed
24: end for
25: tR ← Cross-rack repair traffic

Cross-rack bandwidth
26: Q.Push(t+ tR, permanent failure repair, s)
27: end if
28: else if y is a transient failure then
29: if s.state == normal then
30: s.state ← unavailable
31: for each s’s normal descendant sd do
32: sd.state ← unavailable
33: end for
34: end if
35: tR ← Repair time of s from models or traces
36: Q.Push(t+ tR, transient failure repair, s)
37: else if y is a permanent failure repair then
38: if s.state == crashed then
39: s.state ← normal
40: for each s’s crashed descendant sd do
41: sd.state ← normal
42: end for
43: end if
44: tF ← time to next permanent failure
45: Q.Push(t+ tF , permanent failure, s)
46: else if y is a transient failure repair then
47: if s.state == unavailable then
48: s.state ← normal
49: for each s’s unavailable descendant sd do
50: sd.state ← normal
51: end for
52: end if
53: tF ← time to next transient failure
54: Q.Push(t+ tF , transient failure, s)
55: end if
56: end while
57: end function

the four event types: permanent failure (Lines 18-27), transient

failure (Lines 29-36), permanent failure repair (Lines 38-45),

and transient failure repair (Lines 47-54). Each failure (resp.

repair) event will trigger the next repair (resp. failure) event of



the same type (i.e., permanent or transient). This ensures that

each subsystem must have exactly one failure or repair event

for both permanent and transient types in the event queue.

SIMULATE returns a tuple of PDL, NOMDL, and BR in

each iteration. For the PDL, it is 0 if there is no data loss

(Line 15), or 1 otherwise (Line 19). For the NOMDL, it is 0

if there is no data loss (Line 15); otherwise, it is given by the

total number of chunks that are unrecoverable divided by the

total number of chunks stored in the data center (Line 19). For

the BR, it is computed as the fraction of time that a chunk is

in the normal state over the mission time, averaged over all

chunks stored in the data center.

Configuring the number of iterations: One key question

is how to configure the “right” number of iterations X in

our simulation. A large X improves simulation accuracy, but

incurs a significantly long simulation time. In SIMEDC, we

use the relative error (RE) of the measured PDL to configure

the number of iterations. Suppose that we choose the 95%

confidence interval. Then the RE of the currently measured

PDL (denoted by p) is given by:

RE =
1.96

p

√
p(1− p)

X − 1
. (1)

Our goal is to run a sufficient number of iterations such

that RE is less than 20% [12]. Initially, we set X = 1,000 and

obtain p. If the RE is less than 20%, we stop the simulation,

and return p as the PDL as well as both measured NOMDL

and BR. Otherwise, we compute a new X from Equation (1)

with RE = 20% and the current value of p. We then run more

iterations until the total number of executed iterations is equal

to the new X . We check the RE again and add more iterations

if needed.

To control the simulation time, we set the maximum total

number of iterations to be executed as 20,000, and stop the

simulation anyway if the maximum number of iterations is

reached. The main limitation is that for the erasure codes that

are highly reliable (e.g., the codes with high redundancy or

small repair traffic), the measured PDL may be too small such

that the RE remains high, or we may not even observe a data

loss event when the maximum total number of iterations is

reached [12]. In such cases, the reliability results should not

be fully trusted, although they can provide indicators that the

storage system is already very reliable.

Parallelizing simulation: Our simulation is embarrassingly

parallel as the iterations are independent. Thus, we further ac-

celerate the whole simulation through parallelization. Specifi-

cally, we split the X iterations of SIMULATE in Algorithm 1

into multiple subsets, each of which is executed by a stan-

dalone process. We distribute the processes across multiple

CPU cores in multiple machines. Finally, we collect the results

from all processes and compute the average results.

IV. SIMULATION RESULTS

In this section, we present the results of our reliability

analysis based on SIMEDC.

A. Simulation Setup

Our simulation uses the following default settings unless

otherwise specified.

Topology: We consider a data center with a total of 1,024

nodes that are evenly located in 32 racks (i.e., 32 nodes per

rack). Each node is attached with one disk of size 1 TiB,

so the total storage capacity of the simulated data center is

1 PiB. We set the cross-rack bandwidth as 1 Gb/s, as obtained

from Facebook’s cluster measurements [26], and also set the

chunk size as 256 MiB, as the default chunk size in Facebook’s

warehouses. We set the system mission time of the data center

as 10 years [31]. While different erasure codes have different

amounts of redundancy, we store the same number of data

chunks, of a total size 0.5 PiB, for each erasure code setting.

Failure and repair models: Prior studies provide various

statistical models for failure and repair patterns. Table I

summarizes the default failure and repair models used in our

simulation, and we justify our choices based on prior findings

as follows.

• Permanent disk failures: The mean time of a permanent disk

failure often ranges from few years (e.g., 4 years [26]) to

tens of years [6], [10], [31]. We model the time-to-failure

as Weibull distributed with a characteristic life of 10 years.

The repair time depends on the amount of cross-rack repair

traffic and the cross-rack bandwidth (see Section III-C).

• Permanent node failures: According to the statistics of Ya-

hoo! cluster [30], about 0.8% of nodes permanently fail each

month. Thus, we set the time-to-failure as exponentially

distributed with mean 125 months. Like permanent disk

failures, the repair time of a permanent node failure depends

on the amount of cross-rack repair traffic and the cross-rack

bandwidth.

• Transient node failures: A node temporarily fails once every

4 months, and the failure duration lasts no more than

15 minutes [10]. We set the time-to-failure and the repair

time of a transient node failure as exponentially distributed

with means 4 months and 15 minutes, respectively.

• Transient rack failures: We follow the same model in [31],

in which the time-to-failure is exponentially distributed

with mean 10 years [10], while the repair time is Weibull

distributed with a characteristic life of 24 hours [7].

• Permanent correlated failures: The above failure types all

belong to independent failures. We also consider a per-

manent correlated failure due to a power outage, which

occurs once a year in production environments [30]. We set

the time-to-failure as exponentially distributed with mean

one year. We assume that a power outage affects a single

rack and makes the rack temporarily unavailable until a

power-on restart. We set the repair time of the power

outage as exponentially distributed with mean 15 hours1.

Furthermore, after the power-on restart, we permanently fail

1We analyze failure records (see Section IV-D for details) on node failures
due to power outage or power spike, and find that the repair times range
from 9 hours to 24 hours. Thus, we choose 15 hours as the average time for
restoring a power outage.



TABLE I
DEFAULT FAILURE AND REPAIR MODELS.

Failure type Time-to-failure Repair time

Permanent disk failures W(1.12, 10 years, 0) Determined by cross-
rack repair traffic and
cross-rack bandwidthPermanent node failures Exp( 1

125 months
)

Transient node failures Exp( 1
4 months

) Exp( 1
0.25 hours

)

Transient rack failures Exp( 1
10 years

) W(1, 24 hours, 10)

Permanent correlated failures Exp( 1
1 year

) Exp( 1
15 hours

)

W(β, η, γ) denotes a Weibull distribution with the shape parameter β,
the characteristic life η, and the location parameter γ; Exp(λ) denotes
an exponential distribution with the rate parameter λ.

1% of nodes in the rack, as in production environments [30].

We repair the permanent node failures as above.

Erasure codes: We compare RS codes, LRC, and DRC under

flat and hierarchical chunk placements. We set the parameters

n, k, l (for LRC only), and r (where r = n and r < n
correspond to flat and hierarchical placements, respectively)

based on production settings as follows.

• RS(n, k): We choose three settings of (n, k): RS(9,6) with

r = 9 and r = 3, RS(14,10) with r = 14 and r = 7,

and RS(16,12) with r = 16 and r = 4. Note that RS(9,6)

is reportedly used by QFS [21], RS(14,10) is reportedly

used by Facebook [20], and RS(16,12) correspond to the

parameters of Windows Azure [18] (see below).

• LRC(n, k, l): We choose LRC(16,12,2), reportedly used by

Windows Azure [18], with r = 16 and r = 4. In hierarchical

placement, we place each local group of chunks in the

fewest possible racks to minimize the cross-rack repair

traffic in a single-chunk repair. In our case, we divide the

r = 4 racks into two rack groups with two racks each, such

that each of the l = 2 local groups of chunks (with six

uncoded chunks and one local coded chunk) and a global

coded chunk are placed in eight nodes of one rack group.

• DRC(n, k, r): We choose DRC(9,6,3), whose systematic

code construction has been proposed [17].

Note that all the above erasure code settings have similar

amounts of storage redundancy (i.e., n/k) between 1.33× and

1.5×. Figure 4 illustrates the cross-rack repair traffic (in unit

of chunks) for a single-chunk repair of different erasure code

settings; for LRC codes, we average the cross-rack repair

traffic for each type of chunks (see Section II-C).

In the following, we present the results of PDL, NOMDL,

and BR. For the PDL, we also show the relative error; for both

PDL and NOMDL, we use the log scale for the y-axis.

B. Independent Failures

We first study the reliability of various erasure code settings

under independent failures only (i.e., the first four failures in

Table I), by disabling the permanent correlated failures.

Frequency of single-chunk repairs: We examine the repair

events in our simulation, and find that over 99.5% of repairs

are single-chunk repairs for all erasure code settings. Thus,

the repair time mostly depends on the amount of cross-rack
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Fig. 4. Cross-rack repair traffic (in chunks) for different erasure code settings.

repair traffic of a single-chunk repair (as shown in Figure 4)

of each erasure code setting.

Erasure codes in flat placement: Figure 5 shows the reliabil-

ity results under independent failures only based on the default

settings; in particular, the cross-rack bandwidth is 1 Gb/s. We

first consider RS codes and LRC in flat placement (i.e., r = n).

RS(14,10) has the lowest PDL and NOMDL among all RS

codes, as it tolerates more failed chunks than RS(9,6) and

has less repair traffic than RS(16,12). Note that LRC(16,12,2)

has almost the same PDL as RS(16,12) even though it incurs

less repair traffic, mainly because it is non-MDS and cannot

tolerate all combinations of four failed chunks as RS(16,12).

However, LRC(16,12,2) has less NOMDL (by 26.5%) as it

may have fewer failed chunks when data loss occurs.

Comparison of flat placement and hierarchical placement:
We again use Figure 5 to compare flat placement (i.e., r = n)

and hierarchical placement (i.e., r < n). Hierarchical place-

ment generally achieves better reliability than flat placement

for the same erasure code, mainly because of the reduction of

cross-rack repair traffic. For example, compared to flat place-

ment, hierarchical placement decreases the PDL of RS(9,6)

by 80% and that of LRC(16,12,2) by 89%. In particular, DRC

achieves the best reliability among all erasure code settings we

consider; the relative error of PDL is high due to the small

value of PDL (see Equation 1). We also observe that the BR

closely matches the cross-rack repair traffic of each erasure

code setting as shown in Figure 4; that is, the BR increases

with the amount of cross-rack repair traffic.

Impact of cross-rack bandwidth: We now reduce the cross-

rack bandwidth from 1 Gb/s to 400 Mb/s and evaluate the

reliability of different erasure code settings. Figure 6 shows

the results. All erasure code settings under flat placement

have PDL equal to one (i.e., data loss always occurs), while

DRC(9,6,3) has PDL equal to 1.26%. It shows the significance

of minimizing the cross-rack repair traffic under limited cross-

rack bandwidth (similar observations are made if we increase

the failure rates of subsystems). We emphasize that the PDL of

DRC(9,6,3) remains too high in practical deployment, and we

should adopt erasure codes with much higher fault tolerance.

Our evaluation here only demonstrates the need of minimizing

the cross-rack repair traffic in extreme scenarios.
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Fig. 5. Reliability under independent failures only, with the cross-rack bandwidth 1 Gb/s.
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Fig. 6. Reliability under independent failures only, with the cross-rack bandwidth 400 Mb/s.

C. Correlated Failures

We now add permanent correlated failures to our simulation

in addition to independent failures. Our investigation finds

that over 99.3% of repairs are single-chunk repairs, so the

repair time is still mainly determined by the amount of cross-

rack repair traffic of a single-chunk repair. Figure 7 shows

the results. For RS(14,10) and RS(16,12), they both incur

high cross-rack repair traffic, so hierarchical placement can

decrease their PDL values by reducing the cross-rack repair

traffic. However, for RS(9,6) and LRC(16,12,2), although

hierarchical placement reduces BR, it has worse PDL and

NOMDL than flat placement as it sacrifices rack-level fault

tolerance and becomes more vulnerable to correlated failures.

Note that DRC(9,6,3) still achieves higher reliability than

RS(9,6) with r = 3.

D. Trace Analysis

We now evaluate the reliability of different erasure code

settings based on production traces of failure and repair

events. We consider traces (downloadable from [1]) from

high performance computing (HPC) environments reported by

Schroeder et al. [27]. The traces span 22 HPC systems of

one to 1,024 nodes each at Los Alamos National Laboratory.

They contain failure records about node failures. Each record

includes the time when the failure starts, the time when it is

repaired, the root cause labeled by system operators, etc.

In our analysis, we focus on large-scale HPC systems with

at least 128 nodes each and deploy them as hierarchical data

centers. Thus, we select a total of 14 HPC systems, whose

system IDs are 4-11 and 13-18 [27]. They have 128, 164, 256,

512, or 1024 nodes each, and we partition the nodes evenly

into 16, 41, 32, 32, and 32 racks, respectively. We follow the

default settings in Section IV-A to configure each system. Note

that the traces span less than the system mission time (10 years

in our case). In our simulation, after a trace reaches the end,

we replay it from the beginning to end, and repeat the replay

process until the system mission time is reached.

We parse the failure records and categorize the failures

based on their root cause labels. If the root causes are related to

network slowdown, maintenance, or power outage (e.g., “Net-

work”, “Console Network Device”, “Maintenance”, “Power

Outage”, and “Power Spike”), we treat them as transient

node failures and obtain their repair times directly from the

failure records. If the root causes are related to disks (e.g.,

“Disk Drive”, “SCSI Controller”, “SAN Controller”), we treat

them as permanent node failures (which also bring down

the attached disks). We set the repair times based on the

amount of cross-rack repair traffic and cross-rack bandwidth

to reflect how much failed data needs to be repaired. For

permanent disk failures and transient rack failures, we do not

observe them in our traces, but we still generate them based

on the models in Table I. For permanent correlated failures,

we do not specifically generate them, but we observe that a

contiguous set of nodes fail within a short time in our traces

(see discussion below).

We mainly compare RS(9,6) with r = 9 and r = 3, as well

as DRC(9,6,3). We find that eight of the 14 systems (whose

IDs are 9, 10, 11, 13 and 15-18) have almost zero values in all

three metrics, so we only plot the results for the remaining six

systems, as shown in Figure 8. For system IDs 4, 6, 7, and 14,

we observe the same trends as our previous experiments that

derive failure and repair events from statistical models. That

is, hierarchical placement is more reliable than flat placement,

and DRC achieves the best reliability by minimizing the cross-
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Fig. 7. Reliability under both independent and correlated failures.
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Fig. 8. Reliability under trace-driven failures. Although the sequence of events from traces is deterministic, we still observe relative errors in PDL, mainly
because we generate permanent disk failures and transient rack failures from statistical models and the chunk positions vary across iterations.

rack repair traffic.

However, we find that for system ID 5, RS(9,6) under hier-

archical placement has the worst reliability, while for system

ID 8, it has the highest PDL and NOMDL. Our investigation

finds that some contiguous nodes fail within a short time. For

example, for system ID 5, we observe that nodes 16-19 in the

same rack fail within 13 hours. For hierarchical placement, if

three chunks of a stripe are stored in those failed nodes, then

an additional failed chunk will lead to data loss before they

are repaired. Flat placement is more robust against this type of

contiguous node failures by storing only one chunk of a stripe

in a distinct rack. Nevertheless, DRC(9,6,3) still achieves the

best reliability among all three erasure code settings.

E. Summary

We summarize the key findings of our simulation as follows.

• When there are independent failures only, hierarchical place-

ment generally achieves better reliability than flat placement

by reducing the cross-rack repair traffic. Among all erasure

code settings, DRC achieves the best reliability. In particular,

the BR increases with the amount cross-rack repair traffic.

• The significance of reducing cross-rack repair traffic is more

prominent in extreme scenarios (e.g., when the available

cross-rack bandwidth is limited).

• When there are correlated failures, hierarchical placement

may have higher PDL and NOMDL than flat placement as it

tolerates fewer rack failures. Nevertheless, for erasure codes

with high repair traffic (e.g., RS(14,10) and RS(16,12)),

hierarchical placement still achieves better reliability.

• We make consistent observations for both statistically gen-

erated and trace-driven failure and repair events.

V. RELATED WORK

We review related work on reliability studies of distributed

storage systems, from modeling and simulation perspectives.

Modeling: Most reliability studies are based on Markov

modeling, under the assumptions that both failure and repair

times follow exponential distributions. Weatherspoon and Ku-

biatowicz [33] show via Markov modeling that erasure coding

incurs significantly less bandwidth and storage overhead than

replication for the same reliability. Rao et al. [22] model

the redundancy within and across storage nodes. They show

that the reliability heavily depends on the node repair time,

which depends on the amount of data transferred for repair.

Ford et al. [10] model stripe availability of Google storage

subject to factors such as redundancy policies, recovery rates,

and the presence of correlated failures. Some studies (e.g.,

[18], [26]) also analyze the reliability of new repair-friendly

erasure code constructions based on Markov modeling. While

the correctness of Markov modeling for reliability analysis

is questionable [14], Iliadis et al. [19] justify the usefulness

of Markov modeling and related non-Markov approaches for

obtaining the MTTDL metrics.

In the context of chunk placement, Greenan et al. [13]

leverage reliability modeling to determine the chunk placement

of flat XOR-based erasure codes. Venkatesan et al. [32]

analyze the reliability of erasure-coded storage systems subject

to chunk placement and repair rates. Hu et al. [17] present

simplified Markov models to compare flat and hierarchical

placements under special cases. Our work takes a simulation

approach and complements existing modeling studies by con-

sidering more general and complicated failure/repair patterns.



Simulation: Several storage reliability simulators have been

proposed in the literature. Greenan [12] presents the High-

Fidelity Reliability Simulator (HFRS) for reliability simulation

on disk arrays. We extend HFRS for data center environments.

Silberstein et al. [31] develop a simulator to show the effective-

ness of lazy repair (i.e., the repair of a stripe is deferred until

its number of failed blocks exceeds a threshold) in distributed

storage, but they do not consider hierarchical data centers. Fu

et al. [11] conduct simulation analysis to study the reliability

of primary storage when deduplication is deployed. Epstein et
al. [9] combine simulation and combinatoric computations to

estimate the durability of storage system, and take into account

the available network bandwidth in the repair process. Hall

[15] presents a simulator framework called CQSim-R, which

evaluates the reliability in data center environments, and also

studies the effects of chunk placement. Our work differs from

previous simulators by specifically taking into account the

impact of cross-rack repair traffic given the hierarchical nature

of data centers. In addition, we consider more complicated

failure patterns, including correlated failures and empirical

failure traces; in CQSim-R [15], only independent disk-drive

failures are considered.

VI. CONCLUSIONS

We present a simulation analysis to characterize the relia-

bility of erasure-coded data centers. Our analysis specifically

addresses the hierarchical nature of data centers, and studies

how various erasure code constructions and chunk placement

schemes affect the overall storage reliability due to different

amounts of cross-rack repair traffic. To enable our analysis,

we design a discrete-event simulator SIMEDC, and present

simulation results for different failure and repair patterns

derived from statistical models and production traces. The

source code of our SIMEDC implementation is available at

http://adslab.cse.cuhk.edu.hk/software/simedc.
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