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Abstract—Modern cloud-scale data centers necessitate self-
healing (i.e., the automation of detecting and repairing component
failures) to support reliable and scalable cloud services in the face
of prevalent failures. Traditional policy-based self-healing solutions
rely on expert knowledge to define the proper policies for choosing
repair actions, and hence are error-prone and non-scalable in
practical deployment. We propose AIHS, an automated intelligent
healing system that applies machine learning to achieve scalable
self-healing in cloud-scale data centers. AIHS is designed as a full-
fledged, general pipeline that supports various machine learning
models for predicting accurate repair actions based on raw
monitoring logs. We conduct extensive trace-driven and production
experiments, and show that AIHS achieves higher prediction
accuracy than current self-healing solutions and successfully fixes
92.4% of the total of 33.7 million production failures over seven
months. AIHS also reduces 51% of unavailable time of each
failed server on average compared to policy-based self-healing.
AIHS is now deployed in production cloud-scale data centers at
Alibaba with a total of 600 K servers. We open-source a Python
prototype that reproduces the self-healing pipeline of AIHS for
public validation.

I. INTRODUCTION

Cloud-scale data centers in production are susceptible to
various types of component failures (e.g., hardware crashes,
software bugs, network disconnection, and performance anoma-
lies). To maintain high availability of commercial cloud services
at scale, modern cloud-scale data centers often support self-
healing [4], [14], which refers to the automation of the
detection and repair of component failures with limited human
intervention.

Enabling efficient and scalable self-healing in production
environments is challenging. First, the accurate diagnosis of
failures is non-trivial in the face of numerous types of failures,
and such failures can also occur abruptly at any time. Second,
automating the repair process in a timely manner is difficult,
since multiple repair actions are possible for each type of
failure. Choosing an incorrect repair action inevitably increases
the repair cost. For example, for a transient server failure, it
is preferable to simply reboot the server instead of sending
human operators to manually check and fix the server, as the
latter unnecessarily delays the repair process and adds extra
manual efforts.

Traditional self-healing solutions are policy-based, in which
human experts specify the policies that map failures to the
appropriate repair actions. Such policies heavily rely on expert
knowledge based on the observed historical failures, and
hence cannot be readily updated to reflect emerging failures.
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To mitigate the dependence on expert knowledge in repair
decision making, some production self-healing solutions (e.g.,
Microsoft AutoPilot [8], [15] and Facebook FBAR [18], [19])
reportedly adopt machine learning to predict repair actions
based on historical data (see Section VI for details). While
machine learning is widely believed as an effective tool for data-
driven prediction, there remains limited analysis of machine-
learning-based self-healing solutions in real-world cloud-scale
data center deployment. In particular, some key deployment
questions are unexplored, such as: (i) how a complete machine-
learning-based self-healing pipeline should be deployed; (ii)
how the prediction accuracy of self-healing varies across
different machine learning models; and (iii) how different
stages of a machine-learning-based self-healing pipeline affect
the overall prediction accuracy of self-healing.

In this practical experience report, we propose AIHS, an
Automated Intelligent Healing System that applies machine
learning to self-healing in cloud-scale data centers. AIHS
provides a full-fledged, general pipeline that supports various
machine learning models, and predicts a repair action for a
given failure based on the learning of raw monitoring logs and
historical repair actions. Specifically, it employs a three-stage
workflow: (i) it first uses unsupervised machine learning to
transform the raw monitoring logs in text form into numerical
features; (ii) it feeds the numerical features into supervised
machine learning for the prediction of a repair action; and
(iii) it further uses supervised machine learning to predict how
likely a predictive repair action can fix the failures, such that
only the repair actions with a high probability of success will
be executed.

AIHS is currently deployed in production cloud-scale data
centers with about 600K servers at Alibaba. To validate the
effectiveness of AIHS, we conduct extensive evaluation via both
trace-driven and production experiments. Our evaluation shows
that AIHS outperforms state-of-the-art self-healing solutions
and can successfully repair 92.4% of a total of 33.7 million
production failures over a seven-month span. In particular, AIHS
reduces 51% of unavailable time of each failed server compared
to policy-based self-healing. AIHS also effectively addresses
emerging failures that cannot be readily solved by policy-based
self-healing solutions. Finally, we discuss the insights and
lessons learned from our design and deployment of AIHS, so
as to help the community better understand machine-learning-
based self-healing.

Due to proprietary concerns, we cannot publicize the
production traces and the production implementation of
AIHS. Instead, we built an AIHS prototype in Python



that can reproduce the complete three-stage workflow
of AIHS based on synthetic traces for public valida-
tion. The source code of our AIHS prototype now is
available at the repository: https://github.com/alibaba-
edu/dcbrain/tree/master/AIHS_prototype.

II. BACKGROUND

In this section, we introduce our cloud infrastructure and its
challenges of supporting self-healing.

Cloud infrastructure. We first provide an overview of our
cloud infrastructure atop which AIHS is deployed. Our cloud
infrastructure comprises 22 data centers and runs about 150
applications. Each data center hosts multiple servers that are
organized in clusters, each of which serves one application.
Our cloud infrastructure includes 5,100 clusters with a total of
1.1 million servers. Currently, AIHS is deployed across 600 K
servers in 2,200 of the 5,100 clusters.

Monitoring system. Our cloud infrastructure includes a

monitoring system that centrally monitors all servers in real

time and collects raw monitoring logs from each server. The
raw monitoring logs are represented in the form of attributes,
which describe the operational status and error information of

a server based on multiple sources of logs, such as system

logs and key performance indicators (KPIs). Currently, the

monitoring system collects 165 attributes that cover different
dimensions of operational status and can be categorized as
follows:

o Hardware attributes: Each hardware attribute describes the
operational status of a hardware component. For example,
the DiskHang attribute reports whether the attached disk of
a server is healthy.

o Network attributes: Each network attribute describes the
network-related issues. For example, the Ping attribute
reports whether a server can be reached by ping messages.

o Environment attributes: Each environment attribute de-
scribes the software environment issues. For example, the
PythonEnvCheck attribute reports whether the Python envi-
ronment of a server works normally.

o Others: They refer to the attributes that do not belong to the
above three classes. For example, the Load attribute reports
the CPU utilization.

Each attribute is associated with one of the six levels of failure

severity (in the increasing order of severity): info, good,

warning, error, critical, and fatal. For the latter three

(i.e., error, critical, and fatal), the server is considered

to be failed, and the monitoring system will trigger different

types of repair actions (see below) on the failed server.

Repair actions. Our cloud infrastructure supports different
repair actions to fix a failed server (similar to Microsoft
AutoPilot [15]), including:

e No operation (NOP): It waits and queries the status of the
server after a fixed time interval (e.g., 20 minutes) to see if
the server returns to normal.

e Management service restart (MSR): It restarts the manage-
ment service on the server.

o Environment reinstallation (ER): It reinstalls the runtime
environment for software (e.g., Java Runtime Environment
(JRE)) on the server. Note that any running service on the
server remains unaffected.

e Reboot (RB): It reboots the server; before the reboot, any
service hosted on the server is migrated to a different server.

e Re-imaging (RI): It re-images the server, by first migrating
the services hosted on the server to a different server and
then reinstalling the operating system of the server.

e Return merchandise authorization (RMA): It creates a repair
ticket that notifies hardware experts to fix the failure (e.g.,
by replacing the hardware component).

We point out that all the above repair actions are currently
supported in our cloud infrastructures. They are also commonly
used for self-healing in other production data centers [8], [15].

Repair actions have different repair costs. It is thus critical to
choose the right repair action with the minimum possible repair
cost. While we do not specify the absolute cost of each repair
action, we can compare different repair actions by their relative
costs. The above repair actions are listed in the ascending order
of the relative costs provided by operators.

It is infeasible to traverse and try each repair action to fix a
failure, as executing a wrong repair action adds extra overhead.
To understand the importance of choosing the right repair
action for each failure, we consider an example when a server
experiences a high CPU load. The server can actually restore
to normal by itself without further repair actions. If we reboot
the server (i.e., RB), the server can also restore to normal,
but this incurs extra overhead of migrating the services hosted
on the server to a different server and hence increases the
downtime of the server. Note that a higher-cost repair action
does not guarantee to repair a failure that can be repaired
by a lower-cost repair action. For example, RB cannot fix
software-environment-specific failures, which can be addressed
by ER. Furthermore, the first five repair actions (i.e., NOP,
MSR, ER, RB, and RI) can be executed automatically, while
the last repair action (i.e., RMA) requires human intervention
and should be avoided whenever possible.

Policy-based self-healing. Our cloud infrastructure has adopted
a policy-based self-healing solution. Our experts empirically
propose policies on the repair actions for different types of
failures (based on the levels of failure severity of the 165
attributes), and refine the policies based on experience. Each
policy triggers a specific repair action if the raw monitoring
logs match the predefined text patterns of the policies. For
example, one of the policies is to reboot the server when
the monitoring system shows the DiskHang attribute with the
severity error.

Our policy-based self-healing solution has been deployed
on all 5100 clusters before AIHS is launched. The monitoring
system collects a repair record of each triggered repair action.
Each repair record contains the following fields: (i) the server
ID, (ii) the raw monitoring logs, (iii) the triggered repair action,
and (iv) the repair result. The repair result is marked as either
successful if the repair action successfully recovers the server
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and the server works normally for more than 20 minutes, or
unsuccessful otherwise.

Our deployment experience is that policy-based self-healing
is ineffective, due to the huge number of attributes and different
severity levels of each attribute. Specifically, there are a total of
165° possible combinations of severity levels in the attributes
(recall that each of the 165 attributes has six possible levels
of failure severity). Our policies currently can only cover a
small fraction of failures for some combinations of severity
levels, but cannot cover any emerging failure that we have not
observed. It is infeasible to manually examine each failure and
specify the corresponding repair action, due to the extremely
large number of combinations of severity levels. If we later
have new sets of attributes in different deployment cases,
applying manual specification will be expensive. Even worse,
our cloud infrastructure includes many clusters with varying
configurations. This requires us to configure different policy sets
for different clusters even for the same failure. This motivates
us to explore machine-learning-based solutions to automate the
entire self-healing workflow.

III. AIHS DESIGN

In this section, we describe the complete workflow of AIHS, a
machine-learning-based self-healing system for cloud-scale data
centers. AIHS is designed as a general framework that supports
various machine learning models. It also applies machine
learning to different stages of the self-healing workflow.
Figure 1 shows the architecture of AIHS, which comprises three
components, namely Mapper, Predictor, and Controller. In the
following, we provide the details of each of the components.
We conclude with the deployment details of AIHS.

A. Mapper

Recall that our raw monitoring logs comprise various at-
tributes (Section II). However, the attributes are in unstructured
raw texts, while machine learning models require numerical
features for prediction. Thus, we design the Mapper that
transforms the raw monitoring logs into numerical features.
Once the monitoring system detects a failure, it pushes the
raw monitoring logs of the failed server to the Mapper, which
generates numerical features from the raw monitoring logs and
sends the numerical features to the Predictor and the Controller
for choosing repair actions.

The Mapper formulates the transformation as an embedding
problem in natural language processing, where the raw text

is processed by unsupervised learning models and converted
into numerical vectors. In our case, the Mapper treats each
attribute name as a single word, and converts the attributes into
feature vectors. It now supports three unsupervised embedding
methods, namely Term Frequency-Inverse Document Frequency
(TF-IDF) [16], Latent Dirichlet Allocation (LDA) [1], and
Bidirectional Encoder Representations from Transformers
(BERT) [5] (see Section IV-A for their comparisons).

We use LDA [1] as an example to show how the Mapper
works. LDA treats a raw monitoring log as a document. It uses
unsupervised machine learning to cluster attributes with similar
semantics into a configurable number of groups (called fopics).
It transforms the document into a topic vector, in which each
element is the probability of a topic occurring in the document.
The probability of each topic is calculated based on the failure
severity level of each attribute that is related to the topic.

B. Predictor

We design the Predictor to recommend one of the repair
actions (i.e., NOP, MSR, ER, RB, RI, and RMA) for each
detected failure. Specifically, it receives the numerical features
of a failure from the Mapper as input. It then predicts a repair
action, which is sent to the Controller as a recommendation.

The Predictor formulates a multi-class classification problem,
in which each class corresponds to a repair action. The Predictor
uses the triggered repair actions of historical successful repair
records as labels to train the multi-class classifier, so that it can
predict a repair action that fixes the similar types of failures
in the past. We design the Predictor as a general framework
to support various multi-class classification models, including:
(1) Logistic Regression (LR), (ii) Support Vector Machine
(SVM), (iii) Random Forest (RF), (iv) Gradient Based Decision
Tree (GBDT), and (v) Bayes Network (BN). We compare
different multi-class classifiers via trace-driven evaluation in
Section IV-A.

C. Controller

The Controller takes the numerical features of a failure
from the Mapper and the recommended repair action from the
Predictor as input, and determines the final repair action to
fix the failure. However, even if the Predictor achieves high
prediction accuracy, the recommended repair action is predicted
based on historical successful repair records for the past failures
and it remains uncertain how likely the recommended repair
action can actually fix the failure. To solve this issue, we design
the Controller to assess the recommended repair action on the
failure to see how likely the repair action can fix the failure.
The Controller then chooses the final repair action based on
the assessment.

To assess a repair action on a failure, the Controller employs
six trained binary classifiers, one for each of the six repair
actions (Section II). Here, the binary classifier for each repair
action is trained using the repair results of all the historical
repair records (both successful and unsuccessful) of the repair
action as labels.



Specifically, the Controller executes the assessment workflow
in three steps as follows:

e Step 1: It feeds the numerical features of the failure to the
corresponding classifier of the recommended repair action
made by the Predictor, and predicts the repair outcome
(i.e., successful or unsuccessful). If the repair outcome is
successful, the Controller directly triggers the recommended
repair action and quits.

« Step 2: If the repair outcome is predicted to be unsuccessful,
the Controller assesses other repair actions. It first assesses
the repair action that has the lowest repair cost (Section II).
If the repair outcome is predicted to be successful, the
Controller triggers the repair action and quits; otherwise,
it repeats the assessment on the next repair action with a
higher repair cost.

o Step 3: If the Controller finds no repair action that returns
a successful outcome, it calls the administrator to manually
diagnose the failure.

The Controller can effectively solve emerging failures. Our
experience is that the Predictor may not find the suitable repair
action for emerging failures if the supervised machine learning
models in the Predictor have not observed such failures before.
By learning both successful and unsuccessful repair records
of each repair action, the machine learning models in the
Controller can develop knowledge about what repair actions
can solve different kinds of failures. Thus, by assessing each
repair action, the Controller can find the repair actions that are
likely to fix emerging failures.

D. Production Deployment

AIHS is now deployed in our cloud infrastructure. We provide
the deployment details of AIHS as follows.

Model training and updates. We train the machine learning
models offline for AIHS before its deployment. For the Mapper,
we learn the necessary hyper-parameters of the unsupervised
learning models (e.g., the probability of each word belonging
to which topic in LDA) based on collected repair records in
the monitoring system. For the Predictor, we train its multi-
class classifier using successful repair records (Section III-B).
For the Controller, we train each binary classifier using both
successful and unsuccessful repair records (Section III-C).

Also, we periodically update the models of AIHS in deploy-
ment. The reason is that we can collect more repair records that
may improve the model accuracy of AIHS during deployment.
We now check whether the model accuracy can be improved
with the new repair records on a monthly basis. If the new
models show improved accuracies than the old ones, we update
the deployed AIHS with the updated models; otherwise, we
discard the repair records.

Deployment. We have deployed AIHS on 2,200 out of 5,100
clusters (Section II). We divide the 2,200 clusters into five
groups based on the services hosted by the clusters. Each
group runs an AIHS instance independently (i.e., we run five
AIHS instances in total), and each instance serves one type
of application. For each group, we run 10 virtual machines

(VMs) (with 4 vCPUs each) to respond to self-healing requests.
Once a VM receives a raw monitoring log from the monitoring
system, it launches a thread to sequentially run the Mapper,
the Predictor, and the Controller (all of which are given the
trained models) to determine the final repair action. Note that
there is no interaction among different repair actions. Thus,
AIHS can launch multiple threads in a VM to simultaneously
handle the failures of different servers.

In our deployment, we use the same machine learning models
and same model parameters for all AIHS instances and avoid
manual tuning on the fly. For the monthly model updates,
each instance only re-trains the models using its own collected
repair records (i.e., not using the repair records from other
instances). Finally, for most production failures (e.g., 98.8%;
see Experiment B.3), AIHS can address them automatically
without calling the manual repair action RMA. Overall, AIHS
can achieve fully automated repair without human intervention
for most failures.

IV. EVALUATION

We conduct both trace-driven and production experiments to
validate the effectiveness of AIHS. We summarize our major
findings on AIHS.

o LDA achieves the highest accuracy in the Mapper, while
GBDT achieves the highest accuracy in most cases in the
Predictor and the Controller.

o AIHS outperforms state-of-the-art self-healing approaches
[8], [19].

« AIHS achieves high production accuracy. It successfully fixes
92.4% of 33.7 million production failures over seven months.
It also reduces 51% of unavailable time of each failed server
on average compared to policy-based self-healing.

o AIHS effectively repairs emerging failures that cannot be
solved by policy-based self-healing.

o AIHS maintains high accuracy through monthly model
updates. Each AIHS instance also maintains high accuracy
through the retraining of models using the repair records
collected by the instance itself.

A. Analysis of Machine Learning Models

We compare different machine learning models in different
components of AIHS via trace-driven experiments.

Traces. We have collected traces of repair records during
the deployment of our policy-based self-healing solution
(Section II) from June 2019 to October 2019. Our policy-based
self-healing solution was deployed on all 5,100 clusters, from
which we collected the traces. Our traces include 4.25 million
repair records, whose fields are defined in Section II. The
traces show that a total of 270K servers suffer from failures
during the trace period, and about 5.7% of these failed servers
have unsuccessful repair records. For the failed servers with
unsuccessful repair records, we observe that a single server
can report up to 3,072 records during the period. The main
reason is that some failures keep occurring in a server when the
policy-based solution cannot repair these failures. On the other
hand, 42.9% of failed servers only report a single failure during



NOP MSR ER RB RI RMA Predictor Controller
Successful 2021K | 185K | 04K | 1.3K 13K 22K Prec. | Recall | Fl-score Prec. | Recall | Fl-score
Unsuccessful 1501K | 520K | 1.3K | 03K 1.2K 1.6K TF-IDF 0.97 0.92 0.94 0.54 0.92 0.59
[ Total || 3522K | 705K | 17K [ 1.6K | 132K | 3.8K | LDA 097 | 097 0.97 087 | 094 0.90
BERT 0.96 0.95 0.96 0.70 0.66 0.59

TABLE I: Number of samples of each repair action in the trace.

the period and most of them (98.9%) can be successfully fixed
in time.

Table I shows the number of samples of each repair action
in our collected traces. Among the 4.25 million repair records,
there are 2.22 million successful repair records and 2.03 million
unsuccessful repair records. For different repair actions, we
observe sample imbalance in the trace. For example, among
all successful repair records, about 99% of them trigger NOP
or MSR, while only less than 1% of repair records choose
the remaining four repair actions (i.e., ER, RB, RI, or RMA).
Considering both successful and unsuccessful repair records,
there are also more than 99% of repair records choosing NOP
or MSR. Finally, we observe that our policy-based self-healing
approach triggers NOP for more than 83% of failures in the
repair records. One main reason is that our policy-based self-
healing approach triggers NOP if it cannot find any policy for
the failure.

Recall that our monitoring system monitors different cat-
egories of attributes (Section II). We observe that hardware
attributes and environment attributes occur in a large fraction of
repair records. Specifically, 57.8% and 21.3% of repair records
include hardware and environment attributes, respectively. Also,
35.8% of repair records report errors (i.e., error or critical
or fatal) in only one attribute, while the remaining repair
records have multiple attributes reporting errors. In particular, a
repair record can have up to nine attributes reporting errors in
the monitoring logs. This also indicates that some failures may
trigger multiple attributes to report errors. Thus, it is important
to understand the correlation between different attributes.

We finally verify that the same failure can be fixed by
multiple repair actions. We focus on the successful repair
records that only report the Ping attribute with value error
and show what repair actions are adopted in these records.
We observe that three repair actions can lead to successful
repair. Among all records, 67.5% of records adopt MSR, 29.5%
of records adopt NOP, and 3% of records adopt RB. This
demonstrates that the same failure can be fixed by multiple
repair actions. It is important to find the proper repair action
with the minimum cost for a failure.

Methodology. We sort the repair records by time. We use the
first 80% of repair records over time as the training set, while
we use the remaining 20% as the testing set. Note that such a
proportion of training-testing data is also used in prior work
on failure prediction [2]. We consider the following metrics:

e Precision: It is the fraction of correctly predicted successful
repair records over all (successful or unsuccessful) repair
records that are predicted as successful repair records.

e Recall: 1t is the fraction of correctly predicted successful
repair records over all successful repair records.

. . 2xprecisionXrecall
o Fl-score: Tt is precision+recall *

TABLE II: Experiment A.1 (Comparison of unsupervised learning
models in the Mapper).

[ [ Precision | Recall | Fl-score |

LR 0.93 0.84 0.87
SVM 0.95 0.94 0.94
GBDT 0.97 0.97 0.97
RF 0.94 0.91 0.92
BN 0.83 0.74 0.75

TABLE III: Experiment A.2 (Comparison of multi-class classifiers
in the Predictor).

Experiment A.1 (Comparison of learning models for the
Mapper). We compare the unsupervised learning models in
the Mapper (i.e., TF-IDF [16], LDA [1], and BERT [5])
(Section III-A), by studying how they affect the prediction
accuracies in the Predictor and the Controller. Specifically, we
fix GBDT (also used in [19]) as the multi-class classifier in
the Predictor and the binary classifier for each repair action in
the Controller. For each GBDT classifier, we set the number
of trees as 2,000. Note that we observe similar results for the
classifiers other than GBDT.

We train each learning model on the training set as follows.
For TF-IDF, we use the training set to compute the IDF value
for each word, which is later used to compute the TF-IDF
value for each repair record. For LDA, we use Gibbs Sampling
[6] to sample the topic distribution based on the training set.
We set the two parameters o and 8 of the Dirichlet distribution
in LDA as 0.1 and 0.01, respectively. We fix the number of
topics as 10 and the number of sampling iterations as 1,024.
For BERT, we configure the number of transformers as 10
and each transformer has five layers of neural networks. The
above parameters provide good convergence in our preliminary
evaluation.

Table II shows the results; in the interest of space, we only
report the average of the six classifiers in the Controller. For the
Predictor, all TF-IDF, LDA, and BERT achieve high prediction
accuracies, with Fl-scores 0.94, 0.97, and 0.96, respectively.
For the Controller, LDA significantly outperforms both TF-
IDF and BERT, mainly because LDA can better interpret the
correlation among the attributes and allows the Controller to
avoid under-fitting (see our trace analysis in Section IV-A). TF-
IDF has a low precision as it does not interpret the correlations
among the attributes, while BERT has both low precision and
recall as it causes under-fitting in the classification models of
the Controller. In summary, LDA is the most suitable model
for the Mapper and provides high prediction accuracies in both
the Predictor and the Controller.

Experiment A.2 (Comparison of multi-class classifiers in
the Predictor). We compare different multi-class classifiers
in the Predictor. We use LDA in the Mapper and set the
same parameters for LDA as in Experiment A.l. For each



NOP MSR ER RB RI RMA
Pre. | Rec. | F1. Pre. | Rec. | FI1. Pre. | Rec. | F1. Pre. | Rec. | FI1. Pre. | Rec. | F1. Pre. | Rec. | FI1.
LR 099 | 096 | 0.98 || 0.99 | 0.93 | 0.96 [| 0.02 | 0.23 | 0.04 || 0.44 | 0.36 | 0.40 || 0.77 | 0.70 | 0.73 |[ 0.51 | 0.42 | 0.46
SVM 1.00 | 0.96 | 098 [[ 0.97 | 0.93 | 0.95 [| 0.03 | 0.37 | 0.05 || 0.37 | 0.62 | 0.46 || 0.79 | 0.83 | 0.81 || 0.61 | 0.47 | 0.53
GBDT || 099 | 0.98 | 0.98 || 1.00 | 0.93 | 0.96 || 0.83 | 0.98 | 0.90 || 0.68 | 0.93 | 0.79 || 0.95 | 0.91 | 0.93 || 0.75 | 0.90 | 0.82
RF 096 | 098 | 0.97 || 1.00 | 0.93 | 0.96 || 0.86 | 0.98 | 0.92 || 0.74 | 0.73 | 0.74 || 0.94 | 0.94 | 0.94 [[ 0.71 | 0.92 | 0.80
BN 0.78 | 095 | 0.86 || 0.94 | 0.90 | 0.92 || 0.86 | 0.88 | 0.87 || 0.56 | 0.91 | 0.70 || 0.90 | 0.97 | 0.93 [[ 0.53 | 1.00 | 0.69
TABLE IV: Experiment A.3 (Comparison of classifiers in the Controller).
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Fig. 2: Experiment A.4 (Training time of models in different components of AIHS).

classifier, we tune its learning rate and the number of iterations
to make it convergent on the training set. Recall that we use
the successful repair records for training a multi-class classifier
(Section III-B). In our evaluation, we use the classifiers to
predict a repair action for each successful repair record in the
testing set and compare the predicted result with the original
repair action in the repair record as the ground truth.

Table III shows the results for different classifiers. GBDT
achieves the highest precision, recall, and F1-score in all cases.
The result is also consistent with [19]. One major reason is
that GBDT can better solve the sample imbalance problem of
our collected traces (Section IV-A).

Experiment A.3 (Comparison of binary classifiers in the
Controller). We compare different binary classifiers in the
Controller. We again use LDA in the Mapper as in Experi-
ment A.1. For each repair action, we train the corresponding
binary classifier using all the related repair records. We evaluate
the prediction accuracy of each binary classifier on the testing
set. Here, we predict whether a repair action in a repair record
can successfully fix the failure, while we use the repair result
of the repair record as the ground truth.

Table IV shows the results for different binary classifiers on
each repair action. Both GBDT and RF generally achieve the
highest accuracy. Nevertheless, for the sake of simplicity and
ease of maintenance, we tend to choose a single model for all
repair actions. We find that GBDT performs the best for most
repair actions. Thus, we also choose GBDT for the Controller
in our deployment.

Experiment A.4 (Training time). We study the training times
of different machine learning models for each component of
AIHS. We train all models in a single machine equipped with an
Intel Xeon 2.6 GHz 32-core E5-2650 CPU, 256 GB RAM, and
an NVIDIA Tesla P4 GPU. Note that the dataset is loaded into
memory before all experiments. We train all the models without
using the GPU except for the BERT model. For machine
learning models in the Mapper, Predictor, and Controller, we set
the parameters of each model the same as in Experiments A.1,
A2, and A.3, respectively.

Figure 2 shows the training times of machine learning models
in different components of AIHS. We observe that the models

in the Mapper take up to 10 hours for training, while the
models in the Predictor and Controller only take less than one
hour for training. For the models we choose for our business,
LDA takes 6.65 hours, while GBDT takes less than 3 minutes
for training. Note that training is done offline, so the overhead
of the model training for AIHS is not a burden in our case.

B. Analysis of AIHS in Deployment

We now evaluate the accuracy of AIHS in deployment using
both trace-driven and production experiments.

Methodology. We consider the following metrics for evaluating
the accuracy of AIHS. All metrics vary from zero to one; the
higher is better.

o HitRate: It is the fraction of successful repair records that
are correctly predicted by AIHS (i.e., AIHS predicts the
same repair action as indicated in the repair record) over all
successful repair records.

o ReverseRate: 1t is the fraction of unsuccessful repair records
that are predicted differently by AIHS (i.e., AIHS predicts a
different repair action as indicated in the repair record) over
all unsuccessful repair records. Note that the ReverseRate
only indicates how likely AIHS can avoid a wrong repair
action, while it cannot guarantee the predicted repair action
can successfully fix the failure.

e OverallRate: It combines HitRate and ReverseRate, i.e.,
2x HitRatex ReverseRate
HitRate+ReverseRate *

e SuccessRate: It is the fraction of production failures that

are successfully fixed over all production failures that are
handled. Note that for a failure that cannot be fixed but
continues reporting the same monitoring logs, we count it
as one failure.

By default, we adopt LDA in the Mapper and GBDT in
both the Predictor and Controller. We set the parameters for
LDA and GBDT as described in Section IV-A.

Experiment B.1 (Micro-benchmarking). We first benchmark
different components of AIHS. As running micro-benchmarking
in production data centers can affect our services, we instead
simulate the online decisions of AIHS using the testing set in
Section IV-A. We consider the following settings.
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Fig. 3: Experiment B.1 (Micro-benchmarking).

o AIHS: 1t is the whole system with all components.

o NoController: It disables the Controller and directly uses the
recommended repair actions from the Predictor.

e NoPredictor: It disables the Predictor, meaning that the
Controller directly assesses each repair action based on its
repair cost to choose a repair action.

e NoMapper: It disables the Mapper, in which the raw
monitoring log is directly transformed into a vector with 165
elements. Each element corresponds to an attribute, and has
value one if the attribute shows a failure severity of error,
critical, or fatal, or has value zero otherwise.

o OnlyPredictor: It processes the raw monitor log as NoMapper
and only uses the Predictor to find a repair action.

e OnlyController: Tt processes the raw monitor log as NoMap-
per and only uses the Controller to choose a repair action.

Figure 3 shows the results. We first observe that the Mapper
and Predictor are important for a high HitRate. Once we
disable one or both of them, the HitRate drops to lower than
50%. Disabling the Controller can also improve the HitRate,
mainly because some unsuccessful repair records are similar
to successful repair records and the Controller inevitably drops
the HitRate when trying to avoid them. On the other hand, the
Controller is important for the ReverseRate. The ReverseRate
drops to 38% once we disable the Controller. In summary,
AIHS achieves high HitRate, ReverseRate, and OverallRate
by combining all components to learn both successful and
unsuccessful repair records.

Experiment B.2 (Comparison with state-of-the-art solu-
tions). We compare AIHS with two state-of-the-art self-healing
solutions [8], [19]:

e Most Recent Used (MRU) [8], in which the most recent
successful repair action that fixes the same types of failures
are adopted.

o Ticket-based [19], in which the repair action is predicted by
GBDT based on the successful historical repair records for
the same types of failures. It also uses TF-IDF to transform
raw monitoring logs into numerical features.

Since the source codes of both solutions are not public, we
implement the two solutions based on their descriptions in the
paper for comparison. For MRU, we trace the repair records
of the last 30 days and choose a repair action based on the
successful repair record that has the most similar monitoring
logs with the current failure. For Ticket-based, we compute
the TF-IDF value as described in Section IV-A and train the
GBDT the same as in the Predictor of AIHS. To avoid affecting
our services in production data centers, we again simulate the
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Fig. 4: Experiment B.2 (Comparisons with state-of-the-art ap-
proaches).

online decisions of different approaches using the testing set
in Section IV-A.

Figure 4 shows the results. We observe that all approaches
achieve a similar HitRate. For example, MRU, Ticket-based,
and AIHS achieve a HitRate of 87%, 90%, and 89%, respec-
tively. However, both MRU and Ticket-based achieve a very
low ReverseRate (i.e., less than 45% in both cases), mainly
because they only predict the repair action without assessing
how likely a repair action can fix the failures. In contrast,
AIHS not only predicts a repair action for the failure, but also
assesses how likely the repair action can fix the failure. Thus,
AIHS achieves a ReverseRate of up to 98%, resulting in an
OverallRate of 93%.

Experiment B.3 (Production accuracy). We now study the
effectiveness of AIHS on our 2,200 production clusters. Due
to stability concerns and business requirements, we currently
limit the permission of AIHS to execute only a subset of repair
actions, although we finally target to allow AIHS to execute
all repair actions. Until now, AIHS is only allowed to execute
three types of repair actions, namely NOP, MSR, and RB. The
2,200 clusters now run both AIHS and a policy-based solution.
If AIHS recommends other unavailable repair actions (i.e., ER,
RI, and RMA), the raw monitoring logs are passed to the
policy-based solution for finding a repair action; we call this
approach AIHS-negative. Note that the policy-based solution
under AIHS-negative may still recommend NOP, MSR, or RB
for fixing these failures. Nevertheless, the three actions for
AIHS cover the majority of failures. Among all 33.7 million
production failures produced by the 2,200 clusters in our AIHS
deployment, 98.8% of failures can be handled by AIHS and
only 1.2% of failures are handled by AIHS-negative.

Figure 5(a) shows the average SuccessRate of AIHS during
its seven-month deployment, compared to the average Success-
Rate of the policy-based solution (called the Baseline). The
Baseline reports the average SuccessRate on the remaining
2,900 clusters that purely adopt our policy-based self-healing
approach without AIHS. We observe that the Baseline only
fixes 65.3% of failures, as our policies cannot cover emerging
failures. In contrast, among the failures that can be handled by
AIHS, 93.5% of them can be fixed. In other words, AIHS
itself successfully fixes 92.4% of production failures (i.e.,
98.8%%93.5%) during its deployment. For the remaining
failures handled by AIHS-negative, 10.2% of them can be
further fixed. Combining AIHS and AIHS-negative together
(called the Overall), we can solve 92.5% of production failures
(i.e., 98.8%%93.5%+1.2% % 10.2%).
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Fig. 5: Experiment B.3 (Production accuracy).

Figure 5(b) further compares the monthly SuccessRate of
AIHS with that of the Baseline. We observe that the SuccessRate
of policy-based self-healing slightly increases in later months of
deployment. The reason is that our experts propose new policies
that help handle some of the new failures occurring in earlier
months. On the other hand, the SuccessRate of AIHS shows
a slight drop in some months, mainly because we gradually
increase the number of clusters to deploy AIHS during that
period. Nevertheless, AIHS significantly outperforms the policy-
based solution at all times.

We also evaluate how AIHS reduces the unavailable time of
a failed server (i.e., the duration that the failed server cannot
serve the hosted service) compared to Baseline. We focus on a
specific instance. For the six months before the clusters of the
instance launch AIHS (i.e., Baseline), we observe 1,853 failed
servers (note that a server may fail multiple times) and the
unavailable time of each failed server is 20.1 hours on average.
While for the first six months after the clusters launch AIHS
(i.e., Overall), we observe 1,547 failed servers and the average
unavailable time of each failed server is only 9.8 hours. The
results indicate that AIHS can reduce 51% of unavailable time
of each failed server (i.e., (20.1-9.8)/20.1=51%) by triggering
a more accurate repair action for each failure compared to
Baseline.

Finally, we also observe that Baseline takes less than 1 ms to
determine a repair action for a failure, while AIHS needs 7 ms
on average. Nevertheless, the response time is still negligible
in production.

Experiment B.4 (Case study). We study how AIHS outper-
forms the policy-based solution via a case study. We focus on
a specific type of failure, the Ping failure, i.e., when the Ping
attribute reports failures. We compare the average SuccessRate
of the Ping failure of AIHS with that of the policy-based
self-healing during the seven-month deployment.

Table V shows the results. We observe that AIHS fixes 94.2%
of Ping failures while the policy-based self-healing only fixes
54.8% of Ping failures over seven months. To examine the
reason, we decompose the proportion of repair actions that each
approach takes to fix the Ping failures (here we only focus
on NOP, MSR, and RB). We observe that the policy-based
self-healing triggers NOP in most of the cases, e.g., in 92.4%
of Ping failures. The reasons are two-fold: (i) our experts
tend to believe that some Ping failures can be automatically
self-recovered, so some rules map the failures to NOP; (ii)
our policy-based self-healing approach always triggers NOP if
there is no policy matching the emerging failures. Nevertheless,

Proportion of each repair action
SuccessRate NOP | MSR | RE
Policy-based 0.548 0.924 | 0.067 0.009
AIHS 0.942 0.643 | 0.345 0.012

TABLE V: Experiment B.4 (Case Study): SuccessRate of the Ping
failure and proportion of repair actions for the Ping failure
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Fig. 6: Experiment B.5 (Effectiveness of monthly model update).

for the latter cases, NOP generally cannot fix the failures and
results in a low SuccessRate of policy-based self-healing. In
contrast, AIHS shows that about 35% of Ping failures should
be handled by taking effective repair actions such as MSR or
RB. As a consequence, AIHS can effectively fix up to 94.7%
of Ping failure.

We further trace the three-stage workflow of AIHS to
understand how it works on emerging failures. We observe
that the Predictor also recommends NOP to the Controller for
most emerging failures in our case. However, the assessment
results of NOP in the Controller indicate that NOP cannot fix
most emerging failures. As a result, the Controller upgrades
the repair action to MSR or RB, which can effectively repair
these emerging failures related to the Ping failure. In summary,
our case study shows that AIHS can effectively solve emerging
failures that are not covered by our expert policies.

Experiment B.5 (Effectiveness of monthly model updates).
We study how monthly model updates (§III-D) improve the
accuracy of AIHS. We focus on a specific AIHS instance, and
compare the accuracy when we enable or disable monthly
model updates in the instance.

Figure 6 shows the results. We first compare the F1-score of
the Predictor in AIHS (Figure 6(a)). We observe that monthly
model updates can effectively maintain a high Fl-score of
the Predictor by allowing the Predictor to learn the successful
repair records of the emerging failures in the last month and
accurately predict repair actions for these failures. On the other
hand, if we disable monthly model updates, the F1-score of
the Predictor drops dramatically. For example, the Fl-score of
the Predictor drops from 0.93 in the first month to 0.35 in the
fifth month due to emerging failures.

We further compare the OverallRate of AIHS during the
seven-month deployment (Figure 6(b)). We observe that
disabling monthly model updates reduces the OverallRate of
AIHS by 23% on average. In contrast, enabling monthly model
updates allows AIHS to maintain a high OverallRate in all
months. In summary, AIHS effectively mitigates the impact of
emerging failures and maintains high prediction accuracy via
monthly model updates.

Finally, we note that the time to deploy an updated model



Instance ] ' ' OverallRatg . .
Trained with repair records | Trained with repair records
from own instance from all instances
A 0.971 0.835
B 0.978 0.949
C 0912 0.776
D 0.985 0.881
E 0.946 0.846

TABLE VI: Experiment B.6 (AIHS instance accuracy): OverallRate of
each instance when re-training models using repair records collected
from a single instance and all instances.

in our production takes about 5 minutes. The old model can
still serve self-healing requests while a new model is being
deployed. Thus, the model update operation has a limited
impact on production.

Experiment B.6 (AIHS instance accuracy). Our current
deployment treats each AIHS instance independently, such that
the model training of each instance is independent of the other
instances. We justify this deployment strategy by studying
how the repair records collected from different AIHS instances
affect the accuracy of each AIHS instance. We focus on all
five AIHS instances (denoted by A, B, C, D, and E) that are
currently deployed for our business (Section III-D). For each
AIHS instance, we compare the OverallRate of the following
two cases: (i) the models of the instance are re-trained only
using the repair records collected from the instance itself; (ii)
the models are re-trained using the repair records aggregated
from all five deployed instances.

Table VI shows the results. We observe that each instance
achieves a higher OverallRate when only using the repair
records collected from itself to re-train the models. Aggregating
repair records from all five instances to re-train the models
actually reduces the OverallRate of each instance (e.g., by 0.1
on average), since the repair records collected from different
AIHS have different statistical properties.

V. LESSONS LEARNED

In this section, we summarize the insights and lessons that
we learned from the design and deployment of AIHS.

Designing AIHS as a general framework. The earlier version
of AIHS is designed with specific machine learning models as in
existing studies [8], [19]. However, we find that such a design is
unfriendly when we need to compare different models for self-
healing, especially when we compare different combinations of
machine learning algorithms in the self-healing pipeline. Thus,
we turn to design AIHS as a general framework to support
different machine learning algorithms in each component. Such
a design allows us to find the appropriate machine learning
models for self-healing for different deployment environments
in our business.

Machine learning model selection. In our business, we choose
LDA for the Mapper, as LDA can better interpret the correlation
among different attributes (§IV-A). For other cases, such as
when there is no correlation between different attributes, our
experience is that TF-IDF works better in the Mapper. Finally,
for BERT, we find that it is suitable for the cases with a large

training set, so as to avoid over-fitting the models. On the other
hand, for the Predictor and Controller, we find that almost all
machine learning models achieve high accuracy. For example,
SVM, GBDT, and RF all have an Fl-score larger than 0.9
in the Predictor. Our business finally uses GBDT in both the
Predictor and the Controller, as GBDT better fits our dataset
that shows sample imbalance (§1V-A). GBDT also shows high
accuracy in other studies [18], [19].

Incremental deployment of AIHS. We deploy multiple AIHS
instances in our business, in which each instance serves one
type of application. Our goal is to gradually deploy AIHS in
our production data centers, such that only when existing AIHS
instances work as expected, we launch new instances for new
groups of applications. One observation is that the accuracy of
each AIHS instance can only be improved using the new repair
records collected from the instance itself, while aggregating
the repair records from all AIHS instances cannot improve the
accuracy. The main reason is that the statistical properties of
the repair records collected from the instances are different,
due to the use of different applications (Experiment B.6). Thus,
we keep multiple AIHS instances in our business, and conduct
monthly model updates for each instance to maintain high
accuracy (Experiment B.5).

Scalability and fault tolerance. We argue that AIHS also
achieves scalability and fault tolerance. In our current scale,
we use 10 VMs for each AIHS instance, where the self-healing
requests are distributed to different VMs via a load-balancer.
Thus, we can simply increase the number of VMs when the
scale of the data centers increases. Also, if any VMs crash,
the load-balancer can redirect the requests to other VMs for
fault tolerance.

VI. RELATED WORK

Failure detection and diagnosis. Prior studies explore failure
detection and diagnosis in distributed systems [9], [11], [13],
[17], [22], [23], [25], [26]. Gunter et al. [9] treat failure
detection as a network anomaly detection problem, by storing
logs in a summary data structure and using anomaly detection
to find the failures. Xu et al. [26] combine log parsing with
text mining to extract features from logs using principal
component analysis. Falcon [17] enables fast detection by
coordinating spy modules to monitor different system layers.
CloudDiag [22] applies statistical techniques to pinpoint
the errors for cloud performance diagnosis. Panorama [13]
enhances system observability based on the interactions across
system components. The above systems mainly focus on
detecting and diagnosing failures in distributed systems, but
do not address how to pick the proper repair actions to fix
failures as in AIHS.

Machine learning for improving the reliability of data
centers. Machine learning has recently been widely used
to improve the reliability of data centers, such as in disk
management and network management. For example, some
studies explore machine learning to predict hard disk failures
in data centers based on disk logs [2], [10], [21]. Some studies



use machine learning to predict network anomalies or classify
network faults in Internet-based services [20], cellular networks
[24], and cable broadband networks [12]. The above studies
focus on applying machine learning to predict the presence of
failures, while AIHS uses machine learning to predict repair
actions for the detected failures.

Self-healing in data centers. Some studies propose new
self-healing approaches for data centers in the literature.
SymbioticSphere [3] applies biological principles to improve
the adaptability and survivability of server farms. Dai et al.
[4] propose a hybrid diagnosis tool to characterize different
failure symptoms. Xue et al. [27] propose a prediction model
to predict performance tickets and use the results to guide the
self-healing of performance issues in data centers. RADAR [7]
includes a self-repairing component to monitor alert events of
CPU and memory and fixes errors based on some predefined
repair actions. However, all these approaches are only evaluated
in simulated environments, but not deployed in production.

Both Microsoft [8], [15] and Facebook [18], [19] provide
automated healing services for their production data centers.
Microsoft Autopilot [15] initially provides automated repair
services by choosing repair actions to fix the server failures
based on simple heuristics. It is later extended with the logistic
regression model to predict if a repair action is likely to fix
a server failure [8]. Facebook FBAR and its extensions [18],
[19] consider different automated repair actions without human
intervention to fix a failure. If the failure cannot be solved
by any automated repair action, a repair ticket is created for
human experts to further investigate the failure. To help experts
debug the undiagnosed failure in a ticket, FBAR employs
machine learning to predict the repair actions for a ticket by
learning the similarity of various repair tickets [19]. AIHS
provides a general framework that applies various machine
learning models in different stages of a self-healing pipeline. In
addition to predicting repair actions as in Microsoft AutoPilot
and Facebook FBAR, AIHS also assesses how likely a repair
action fixes a failure (Section III-C).

VII. CONCLUSION

This paper presents AIHS, a machine-learning-based auto-
mated intelligent healing system for cloud-scale data centers.
AIHS provides a general framework to support various machine
learning models for self-healing. We conduct both trace-driven
experiments and production experiments to validate the effec-
tiveness of AIHS. Our evaluation shows that AIHS outperforms
state-of-the-art self-healing solutions and successfully fixes
92.4% of production failures of 600 K production servers over
seven months. Our AIHS prototype is now open-sourced.
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