
Enabling Low-Redundancy Proactive Fault Tolerance for
Stream Machine Learning via Erasure Coding

Zhinan Cheng1, Lu Tang1, Qun Huang2, Patrick P. C. Lee1

1The Chinese University of Hong Kong 2 Peking University
{zncheng, ltang}@cse.cuhk.edu.hk, huangqun@pku.edu.cn, pclee@cse.cuhk.edu.hk

Abstract—Machine learning for continuous data streams, or
stream machine learning in short, is increasingly adopted in real-
time big data applications. Fault tolerance is a critical requirement
for stream machine learning applications in large-scale distributed
deployment. However, existing reactive fault tolerance mechanisms,
which trigger failure recovery upon the detection of failures,
inevitably incur high recovery overhead and compromise the
low-latency requirement of stream machine learning. We design
StreamLEC, a stream machine learning system that leverages
erasure coding to provide low-redundancy proactive fault toler-
ance for immediate failure recovery. StreamLEC supports general
stream machine learning applications, and incorporates different
techniques to mitigate erasure coding overhead. Evaluation on a
local cluster and Amazon EC2 shows that StreamLEC achieves
much higher throughput than both reactive fault tolerance and
replication-based proactive fault tolerance, with negligible failure
recovery overhead.

I. INTRODUCTION

Stream machine learning refers to the use of machine
learning (i.e., model training and prediction) for continuous
streams of data items, and can be viewed as a special use case
of stream processing. The demands for stream machine learning
are significant in various domains, such as online advertising
[24], real-time recommendation [8], anomaly detection [15],
and network security [27]. To handle massive amounts of data,
stream machine learning should be deployed in a distributed
manner as in current distributed stream processing systems [7],
[29], [38], [40], in which data streams are processed in parallel
across different tasks (called operators) that are executed by
multiple processes (called workers).

Failures are prevalent in distributed environments, as any
worker unexpectedly stops working and its operators lose
all their states (e.g., model parameters) and the items being
processed. Thus, fault tolerance is a critical requirement for
stream machine learning. Unlike offline batch processing on
a complete dataset (e.g., MapReduce [11]), providing fault
tolerance for stream machine learning, or stream processing
in general, must deal with the following unique aspects: (i)
the system needs to process numerous items that arrive as a
continuous data stream, so it is infeasible to track and replay all
dependent items for failure recovery; (ii) operators often keep
states in main memory for fast processing, but main memory
is volatile and subject to data loss in failures; and (iii) fast
failure recovery is critical for real-time responses.

Most current stream processing systems supporting stream
machine learning adopt reactive fault tolerance, by triggering
failure recovery upon the detection of failures at both operator

and worker levels. A common approach is to periodically issue
backups for both states (e.g., via full-state [7], [38], [40] or
partial-state [29] checkpointing) and items (e.g., via write-ahead
logging [41]). Such backups are persisted in external shared
storage (e.g., Hadoop Distributed File System (HDFS) [35])
that can be accessed by a different worker for failure recovery.
If a worker fails, a new worker can restore the latest backup
state of any operator of the failed worker and replay the items
since the latest backup state. However, issuing backups too
frequently not only incurs significant disk I/O that disturbs
normal performance [18], but also incurs a non-zero recovery
latency for retrieving backups from external storage.

Some stream processing systems (e.g., [20], [37]) adopt
replication, which provides proactive fault tolerance by is-
suing multiple replicas of each item to different workers
for concurrent execution. Replication allows trivial failure
recovery, as the processing of items remains uninterrupted
provided that at least one replica is successfully processed.
However, replication is prohibitively expensive, as it multiplies
the resource consumption by the number of replicas.

We explore erasure coding as a low-redundancy proac-
tive fault tolerance alternative for stream machine learning.
Erasure coding can tolerate the same number of failures
with significantly less redundancy overhead than replication
(see §II-B for details). It has been traditionally used to
provide fault tolerance in the areas of communication [34]
and distributed storage [14], [16]. Recent studies also explore
erasure coding for protecting data analytics against failures, by
incorporating erasure coding into caching [32], data shuffling
[22], [25], and coded computation [13], [21], [22], [39].
However, most studies (e.g., [13], [22], [25], [39]) only focus
on the theoretical performance guarantees with erasure coding.
While erasure coding has been empirically evaluated in data
analytics platforms (e.g., EC-cache [32] and ParM [21]), such
systems are not designed for stream machine learning (see §VI
for details). In particular, applying erasure coding to address
the unique fault tolerance aspects of stream machine learning
(as described above) remains unexplored.

Making erasure coding effective for stream machine learning
is non-trivial. First, practical erasure coding constructions
(e.g., Reed-Solomon codes [33]) mainly build on the linear
operations on data units. However, non-linear operations are
common in stream machine learning, implying that any erasure
coding solution for stream machine learning must support both
linear and non-linear operations for practical concerns. Second,

while the computational overhead of erasure coding is of less
concern in storage deployment compared to the more dominant
bandwidth and I/O constraints [16], the continuous real-time
nature of stream machine learning requires highly efficient
coding operations for low-latency responses.

We design StreamLEC, a stream machine learning system
with erasure coding to provide low-redundancy proactive
fault tolerance for immediate failure recovery, such that the
processing remains undisturbed even under failures. StreamLEC
aims for two primary goals: (i) generality, in which it supports
general stream machine learning applications comprising both
linear and non-linear operations, and (ii) coding efficiency,
in which it mitigates the computational and communication
costs in coding operations. To summarize, this paper makes
the following contributions.

• We design an extensible programming model and a streaming
workflow for StreamLEC, so as to integrate erasure coding
into general stream machine learning applications.

• We propose two techniques for StreamLEC to mitigate
erasure coding overhead: (i) incremental encoding, which
incrementally performs per-item encoding on-the-fly given
the streaming items; and (ii) hybrid coded computation,
which performs coded computation on linear components and
normal (uncoded) computation on the non-linear components
to mitigate the communication overhead.

• We prototype and evaluate StreamLEC on both a local cluster
and Amazon EC2. StreamLEC significantly outperforms both
reactive and replication-based fault tolerance approaches
(e.g., with throughput gains of 5.17× and 1.55× under
double-fault tolerance, respectively), with negligible failure
recovery overhead. Our Amazon EC2 experiments show
that StreamLEC scales with an increasing number of EC2
instances, while replication cannot scale well due to its high
redundancy.

The source code of our StreamLEC prototype is now avail-
able at http://adslab.cse.cuhk.edu.hk/software/streamlec.

II. BACKGROUND AND MOTIVATION

We justify the limitations of existing reactive fault tolerance
approaches in the context of stream machine learning (§II-A).
We also present the basics of erasure coding, which we use to
provide low-redundancy proactive fault tolerance (§II-B).

A. Limitations in Reactive Fault Tolerance

Existing stream processing systems mostly adopt reactive
fault tolerance (§I). We argue that failure recovery can incur
substantial performance overhead to stream machine learning.
To motivate, we evaluate the recovery overhead of two widely
deployed systems: Spark Streaming [40] and Flink [7].

Spark Streaming processes items in units of micro-batches,
where each micro-batch can be configured to include either
a fixed number of items or all items over fixed-length time
intervals. To provide fault tolerance, it issues periodic check-
pointing for operators’ states as Resilient Distributed Dataset
(RDDs), and saves processed items in write-ahead logs [41].

Both the state checkpoints and write-ahead logs are maintained
in external fault-tolerant storage (e.g., HDFS [35]). To recover
from a failed worker, Spark Streaming re-allocates the tasks of
the failed worker to other non-failed workers, each of which
reconstructs the lost state from the latest checkpoint and replays
the logged unprocessed items since the latest checkpoint.

Flink processes items based on different windowing seman-
tics of Google’s DataFlow model [7]; in particular, it supports
micro-batch processing by splitting a stream of items into non-
overlapping time windows (called tumbling windows), each
of which resembles a micro-batch. For fault tolerance, Flink
realizes state checkpointing by issuing snapshots for the states
of all operators at regular time intervals, while the items are
assumed to be stored in a persistent and replayable data source.
It recovers from a failed worker by reverting the states of all
operators from the latest snapshot and replays the unprocessed
items from the data source since the latest snapshot.

Frequent checkpointing incurs high I/O overhead and de-
grades the processing throughput [18] (see also Exp#1 in §V-B).
Here, we empirically show that the reactive fault tolerance
approaches of Spark Streaming and Flink also incur high
recovery overhead when recovering from failures. Recall that
Spark Streaming and Flink recover from failures by retrieving
the latest backup states of operators and the unprocessed items
from external storage. This incurs high recovery latency due
to the time needed to restart the processing and the substantial
disk I/O introduced by state and item retrievals.

To justify our claim, we evaluate the recovery latencies of
Spark Streaming (v2.5.4) and Flink (v1.7.2) under failures by
varying their micro-batch intervals and checkpointing intervals,
respectively. We conduct evaluation on a cluster of multiple
nodes (see §V-A for the cluster setup and datasets). We train
a logistic regression model on a data stream generated by the
KDD12 dataset. We choose HDFS (v2.6.5) as the external
storage system for backups (note that HDFS is also suggested
in the official documentations in Spark Streaming [2] and Flink
[1]). By default, we set both the micro-batch interval and the
checkpointing interval as 1 s. In the midst of stream processing,
we terminate a worker node (which mimics a node failure) to
trigger recovery operations.

Figure 1 shows the recovery latencies of both systems under
failures. For Spark Streaming (Figures 1(a) and 1(b)), the
recovery latency is above 13 s in all settings. We further break
down the latency into three parts: (i) detection time (i.e., the
time to detect a failure), (ii) restart time (i.e., the time to
restart failed tasks), and (iii) restore time (i.e., the time to
restore the states and unprocessed data items). We find that the
high recovery latency is mainly attributed to the high restore
time, as Spark Streaming writes streaming items to HDFS and
reads them back after restarting the failed tasks. For Flink
(Figures 1(c) and 1(d)), the recovery latency is larger than 42 s
in all settings. The breakdown of the recovery latency shows
that the high recovery overhead is due to the high restart time.
The reason is that when a worker fails, Flink needs to stop
and restart the processing of all operators to roll back to a
consistent condition.

90% 90% 90% 90%

0

5

10

15

20

0.5 1 1.5 2
Micro-batch interval (s)

R
ec

ov
er

y
 l

at
en

cy
 (

s) detection restart restore

88% 88% 90% 87%

0

5

10

15

20

1 2 3 4
Checkpointing interval (s)

R
ec

ov
er

y
 l

at
en

cy
 (

s) detection restart restore

(a) SS: micro-batch interval (b) SS: checkpointing interval

96% 91% 89% 85%

0

20

40

60

0.5 1 1.5 2
Window interval (s)

R
ec

ov
er

y
 l

at
en

cy
 (

s) detection restart restore

91% 90% 88% 88%

0

20

40

60

1 2 3 4
Checkpointing interval (s)

R
ec

ov
er

y
 l

at
en

cy
 (

s) detection restart restore

(c) Flink: window interval (d) Flink: checkpointing interval

Figure 1: Recovery latencies in Spark Streaming (SS) and Flink for
varying micro-batch intervals and checkpointing intervals.

B. Erasure Coding

Basics. We elaborate the concept of erasure coding in detail. In
this work, we construct the erasure code based on the classical
Reed-Solomon (RS) codes [33], which have been widely used in
production storage systems [14], [16] and are suitable for stream
machine learning due to their optimal redundancy and low
encoding/decoding time overhead [30]. RS codes are associated
with two configurable integer parameters k and r. In the context
of stream machine learning, the units for encoding/decoding
in RS codes are streaming items. Specifically, for every k
uncoded fixed-size streaming items (called the data items), RS
codes encode them into r coded redundant items (called the
parity items) of the same size, such that any k out of the k+ r
data/parity items can reconstruct (or decode) the original k
data items. This implies that RS codes provide fault tolerance
against the failures of any r items. The collection of the k+ r
data/parity items is called a stripe. The stream machine learning
typically processes multiple stripes of items in a data stream,
in which the stripes are independently encoded/decoded.

Mathematically, each parity item in RS codes can be
computed as a linear combination of the k data items with
the encoding coefficients being powers of two. A key property
of RS codes is that the redundancy overhead (i.e., k+r

r ×
the original data size) is provably minimum for tolerating
any r failed items among any erasure code construction (i.e.,
redundancy-optimal); note that replication incurs a redundancy
of (r+1)× to tolerate r failures. Figure 2 depicts an example
of an RS code with k = 2 and r = 2, in which the redundancy
overhead is 2×. In contrast, the redundancy overhead of
replication for tolerating r = 2 failures is 3×.
RS codes in stream machine learning. RS codes are
traditionally designed for operating in finite field arithmetic
[33], as also in storage systems [14], [16]. However, the values
operated by stream machine learning are often composed of
real numbers [21], [22]. To apply RS codes in stream machine
learning, we perform encoding/decoding operations directly on

Encode

X
1

+ X
2

Decode

(any two)

X
1

X
2

X
1

+ 2X
2

X
1

X
2

X
1

X
2

Figure 2: The RS code with k = 2 and r = 2, where X1 and X2 are
data items, and X1 +X2 and X1 +2X2 are parity items.

real numbers based on linear algebra. Specifically, each data
item is composed of a vector of scalar values, so each parity
item is also computed as a vector of scalar values, in which
each scalar value is a linear combination of the corresponding
scalar values of k data items at the same vector position. The
vector of values of the k data items can then be reconstructed
by solving a system of k independent linear equations, obtained
from any k out of k+ r available data/parity items.
Coded computation. Recent studies [13], [21], [22], [39]
explore coded computation as a special case of applying erasure
coding for fault tolerance in distributed computation. Coded
computation applies to linear operations, such that the operation
outputs of the k data items can be reconstructed from any k
out of the k+r operation outputs of the data/parity items. Take
Figure 2 as an example. Let f (.) be a linear function, such
that f (aX +b) = a f (X)+b for some item X and scalars a and
b. Then the outputs of f (X1) and f (X2) can be reconstructed
from any two of the outputs f (X1), f (X2), f (X1 +X2), and
f (X1 + 2X2). However, coded computation cannot directly
support non-linear operations, which are commonly found in
stream machine learning algorithms. Nevertheless, we explore
coded computation as an optimization technique to reduce the
communication overhead (§III-D).

III. StreamLEC DESIGN

We present StreamLEC, an erasure-coding-based stream ma-
chine learning system that provides low-redundancy proactive
fault tolerance for immediate failure recovery. StreamLEC
aims for (i) generality for various stream machine learning
applications that comprise both linear and non-linear opera-
tions, and (ii) coding efficiency with limited communication
and computational overhead incurred to normal processing.
In this section, we present the architecture of StreamLEC
(§III-A). We design an extensible programming model for
general stream machine learning applications (§III-B), and a
streaming workflow that performs incremental encoding on
continuous streaming items and supports both linear and non-
linear operations (§III-C). We further design hybrid coded
computation (§III-D) to mitigate erasure coding overhead.

A. Architectural Overview

Types of workers. StreamLEC’s architecture (Figure 3)
comprises different types of workers, each of which is a long-
running process deployed in a physical node. StreamLEC
is composed of three stages of workers, namely sources,
processors, and sinks:

Processor

State
Processor

State
Source

… …

Sink

Feedback
ACK

k + r processors

Figure 3: StreamLEC architecture. Each source encodes and emits
items to downstream processors, each of which processes the items,
updates its state, and emits output items to downstream sinks.

• Each source encodes and distributes a stream of data items to
multiple processors. It encodes every group of k data items
into r parity items using RS codes (§II-B) and forms a stripe.
It distributes the k+ r data/parity items of each stripe across
k+ r processors.

• Each processor receives data or parity items from one or
multiple sources. It executes user-defined operators on each
received data item. It also keeps an in-memory operator state
(e.g., model parameters) for tracking the processing results.
It emits outputs to one or multiple sinks.

• Each sink aggregates the outputs from any k out of k+ r
processors and reconstructs the processing results of the
k data items. The aggregated results may be later stored
in persistent storage. To support iterative processing (e.g.,
model training), a sink can send a feedback to each of the
processors for updating the in-memory states.

Deployment of workers. We deploy each source, processor,
and sink as a distinct worker process associated with a unique
identifier. We pair up each source (with identifier sourceID)
and sink (with identifier sinkID) for the encoding and decoding
of each stripe, respectively. Note that if the source and the
sink are colocated in the same server, the topology follows
the parameter server paradigm for general distributed machine
learning applications [10].
Micro-batches. StreamLEC processes items in units of micro-
batches as in Spark Streaming [40] (§II-A) and other stream
processing systems [38]. The micro-batch setting allows
StreamLEC to readily support model training, which often
requires synchronization among processors due to the iterative-
convergent feature of machine learning [6]. Specifically, each
micro-batch typically comprises multiple groups of k data items
and hence forms different stripes of k+ r data/parity items.
Without loss of generality, we assume that the micro-batch size
is a multiple of k. After a source emits all data/parity items for
a micro-batch, it waits for an acknowledgment (ACK) from the
sink, which returns the ACK after reconstructing all processing
results for the micro-batch.
Item representation. Each item is represented as a key-value
pair. A key corresponds to a unique identifier for an item.
We associate each item’s key with four fields: (i) the source
identifier sourceID, (ii) the sink identifier sinkID, (iii) the stripe
identifier stripeID, which identifies the stripe to which the item
belongs, and (iv) the stripe index sIndex, which specifies the
index of an item in a stripe (from 0 to k+ r− 1). All k+ r
data/parity items of the same stripe have the same stripeID.
Without loss of generality, we assume that each of the k data

items has the sIndex from 0 to k−1, and each of the r parity
items has the sIndex from k to k+ r− 1. Each item’s value
is a vector of multiple numerical values (called attributes).
StreamLEC performs encoding/decoding operations on the
values of items (i.e., the vectors of attributes) (§II-B).
State recovery. StreamLEC recovers the in-memory state of a
failed processor from the feedback of the sink. After restarting
a failed processor, the processor restores its state using the
feedback of the sink at the end of processing a micro-batch.
Note that the sink can always provide the latest state (e.g.,
the newest model parameters) for the failed processor, as it
continues the processing with the results from other non-failed
processors.
Design assumptions. Each source provides persistent and
replayable storage for the items as in Flink [7] (§II-A). If any
source or sink fails, or if there exist more than r processor
failures (i.e., beyond the protection of erasure coding), we
can repair the failed workers and resume the processing of
the current micro-batch using the persisted data items. Thus,
our current analysis assumes that each source and sink is
reliable and there are at most r processor failures. Under
this assumption, StreamLEC provides proactive fault tolerance
via erasure coding without accessing the persistent storage in
general cases.

B. Programming Model

We design a programming model for StreamLEC to support
general stream machine learning applications based on different
programming interfaces, as shown in Listing 1.
StreamLEC manages a number of objects of different data

types: (i) a data/parity item (of type Item), (ii) a processing
result of a processor (of type Result), (iii) a feedback from
a sink (of type Feedback), and (iv) an ACK from a sink (of
type ACK). All objects inherit from the base data type Message,
which defines a message to be exchanged among the workers.

StreamLEC defines two communication interfaces to con-
struct the message workflow among the workers: (i) Emit,
which allows a worker to emit a message to another worker
identified by the workerID; and (ii) Recv, which allows a
worker to receive a message from another worker.

StreamLEC further defines a set of user-defined inter-
faces, which are extensible and allow programmers to add
implementation details for specific machine learning appli-
cations. We summarize the user-defined interfaces as fol-
lows: (i) Encode and Decode, which realize encoding and
decoding operations for an erasure code, respectively; (ii)
ProcessData, ProcessFeedback, and ProcessACK, which
process the input data item, feedback, and ACK, respectively;
(iii) ProcessLinear and ProcessNonLinear, which process
the linear and non-linear operations for hybrid coded com-
putation, respectively; and (iv) Aggregate and Recompute,
which are called by a sink to commit a processing result
and recompute the processing result of a decoded data item,
respectively. The following subsections elaborate the use of
the user-defined interfaces in detail.

/***** Communication interfaces *****/
void Emit(int workerID, Message& msg);
Message Recv(int workerID);

/***** User-defined interfaces *****/
/* Called by a source */
void Encode(int sIndex, Item& data, vector<Item> parity);
void ProcessACK(ACK& ack);

/* Called by a processor */
Result ProcessData(Item& data);
Feedback ProcessFeedback(Feedback& feedback);
Result ProcessLinear(Item& item);
Result ProcessNonLinear(Result& linear, Item& data);

/* Called by a sink */
void Decode(vector<Item> received, vector<Item> decoded);
void Aggregate(Result& result);
Result Recompute(Item& item);

Listing 1: Programming interfaces of StreamLEC.

C. Streaming Workflow

We describe the streaming workflow of StreamLEC, includ-
ing: (i) the encoding workflow executed by a source, (ii) the
processing workflow executed by a processor, and (iii) the
decoding workflow executed by a sink.
Encoding workflow. Recall that StreamLEC processes items
on a per-micro-batch basis. However, encoding an entire micro-
batch can incur substantial computational overhead and hence
high processing latency. To achieve low-latency encoding,
StreamLEC performs incremental encoding, which computes
a parity item on a per-data-item basis. Our insight is that each
parity item is a linear combination of k data items (§II-B), in
which addition operations are associative. Specifically, consider
a parity item Y = a0X0 + a1X1 + a2X2, where k = 3, X0, X1,
and X2 are the data items generated in order by the source,
and a0, a1, and a2 are the corresponding encoding coefficients.
When X0 is available, the source first updates the parity item
as Y ′ = a0X0; when X1 is available, the source updates the
parity item as Y ′′ = Y ′+ a1X1; finally, when X2 is available,
the source computes the final parity item Y =Y ′′+a2X2. After
the source updates the parity item with a data item, it can send
the data item to one of the processors. Thus, it pipelines the
encoding operations and the transmissions of data items.

Algorithm 1 shows the encoding workflow of a source. The
source defines a counter Count for the stripeID and sIndex
assignments and a set of r parity items {Y0,Y1, · · ·Yr−1} for
encoding operations (both variables are initialized from zeros).
For each data item X , the source first specifies its stripeID
and sIndex using Count, which is incremented by one after
the assignments (Lines 1-3). It specifies X’s key and emits X
to a processor (Lines 4-5). While X is in-transit, the source
calls the user-defined Encode function and updates the parity
items on the per-data-item basis (Line 6). If the r parity items
are ready (i.e., all k data items of a stripe are encoded), the
source sends them to the remaining r processors (Lines 7-13).
Finally, if the source has processed a micro-batch, it waits for
an ACK from the sink and processes the ACK accordingly
via the user-defined ProcessACK interface (e.g., preparing for
processing the next micro-batch) (Lines 14-17).

Algorithm 1 Encoding workflow of a source
Variable: Counter Count (initialized from zero)
Variable: Parity items Y0,Y1, · · · ,Yr−1 (initialized from zero)
Input: data item X
1: stripeID ← bCount/kc
2: sIndex ← Count mod k
3: Count++
4: Add {sourceID, sinkID, stripeID, sIndex} to X’s key
5: Emit(pid[sIndex], X) . Emit X to worker pid[sIndex]
6: Encode(sIndex, X , {Y0,Y1, · · · ,Yr−1})
7: if sIndex = k−1 then . k data items are encoded
8: for i = 0 to r−1 do
9: Add {sourceID, sinkID, stripeID, k+ i} to Yi’s key

. k+ i is the stripe index of Yi
10: Emit(pid[k+i], Yi) . Emit Yi to worker pid[k+i]
11: end for
12: Reset {Y0,Y1, · · · ,Yr−1} to zero
13: end if
14: if X is the last item of a micro-batch then
15: A ← Recv(sinkID) . A is the received ACK from a sink
16: ProcessACK(A)
17: end if

Algorithm 2 Processing workflow of a processor
Input: item X (which is either a data item or a parity item)
1: Identify the sinkID from X’s key
2: if X is a data item then
3: R← ProcessData(X) . R is the returned result
4: Emit(sinkID, 〈R,X〉) . Emit 〈R,X〉 to worker sinkID
5: else . X is a parity item
6: Emit(sinkID, X) . Emit X to worker sinkID
7: end if
8: if X is from the last stripe of a micro-batch then
9: F ← Recv(sinkID) . F is the received feedback from a sink

10: ProcessFeedback(F)
11: end if

Processing workflow. Each processor may receive a data or
parity item from a source. If the processor receives a data item,
it generates the processing result on the data item. In addition
to emitting the processing result to a sink, the processor also
attaches the input data item into the emitted outputs. If the
processor receives a parity item, it directly emits the parity
item to the sink. Thus, the sink now receives not only the
processing result, but also the data/parity items of each stripe
for reconstructing any unavailable data items.

The benefits of the processing workflow are two-fold. First,
it allows immediate failure recovery, as the sink can recover
any lost data items as long as it receives at least k data/parity
items of a stripe. Second, it is applicable to general stream
machine learning applications composed of both linear and
non-linear operations. On the other hand, as each processor now
attaches a data item in its emitted outputs, the communication
overhead increases. In §III-D, we show how we can mitigate
the overhead via hybrid coded computation.

Algorithm 2 shows the general workflow of a processor.
Upon receiving an item X from a source, the processor first
identifies the worker ID (denoted by sinkID) of the sink to
which the output is emitted (Line 1). If X is a data item,
the processor calls the user-defined interface ProcessData

on item X to produce the processing result (denoted by R),
and emits both R and X to the sink (Lines 2-4); otherwise,

Algorithm 3 Decoding workflow of a sink
Input: Received message M from a processor
1: if M = 〈R,X〉 then . M has result R and data item X
2: Buffer the data item X
3: Aggregate(R)
4: else if M = 〈X〉 then . M has a parity item X
5: Buffer the parity item from M
6: end if
7: if k items are received for a stripe then
8: if some data items are unavailable then
9: b ← set of k received items of the stripe

10: d ← set of decoded data items
11: Decode(b, d)
12: for each decoded data item X ′ ∈ d do
13: R ← Recompute(X ′)
14: Aggregate(R)
15: end for
16: end if
17: end if
18: if all results are aggregated for a micro-batch then
19: for each upstream processor with worker ID pid do
20: Emit(pid, F) . F is a feedback sent to each processor
21: end for
22: Emit(sourceID, A) . A is an ACK sent to a source
23: end if

if X is a parity item, the processor directly emits X to the
sink (Lines 5-6). Finally, if X is from the last stripe of a
micro-batch, it implies that the processor receives the last item
of the micro-batch. In this case, the processor waits for the
feedback F from the sink. It then processes F via the user-
defined interface ProcessFeedback (e.g., updates the internal
in-memory state) (Lines 8-11). Note that the time to wait for
F is negligible even under failures, due to the proactive fault
tolerance of StreamLEC.
Decoding workflow. Algorithm 3 shows the decoding workflow
of a sink. Given the input message from a processor, the
sink buffers the received data/parity item, and commits the
processing result (if a data item is received) via the user-defined
Aggregate function (Lines 1-6). If the sink receives k items of
a stripe, it checks whether some data items remain unavailable;
if so, it decodes the unavailable data items via the user-defined
Decode function and re-processes the decoded data item via
the user-defined Recompute function (Lines 7-17). Note that
the sink performs a decoding operation only when some data
items of a stripe are unavailable, so the decoding overhead
over the entire streaming workflow is generally limited. Finally,
after a sink has aggregated all results of a micro-batch, it sends
a feedback to each upstream processor and sends an ACK to
the source (Lines 18-23).
Discussion. In the processing workflow, we require the source
to send the parity items to the sink through the processors,
even though the processors do not perform any computation
on the parity items. The reasons are three-fold. First, it reduces
the synchronization complexity between the source and sink.
Second, it enables us to flexibly control the emitting time of a
parity item to avoid the situation where the parity items always
arrive before the normal results and trigger the re-computation
procedure at the sink. Finally, it provides viable opportunities
for applying coded computation in processors to mitigate the
communication overhead of workers (§III-D).

By incorporating erasure coding into the streaming work-
flow, StreamLEC provides proactive fault tolerance with low
redundancy and fast failure recovery. Compared to replication,
StreamLEC can tolerate the same number of failures with
significantly less redundancy overhead. Also, StreamLEC
prevents expensive disk I/O of accessing the states and items
in the streaming workflow, thereby improving the failure
recovery performance over reactive fault tolerance. In the
following subsection, we introduce hybrid coded computation
to mitigate the communication overhead of erasure coding to
make StreamLEC more efficient.

D. Hybrid Coded Computation

Instead of always attaching a data item in a processor’s
emitted outputs (§III-C), StreamLEC can incorporate coded
computation [22] into linear operations, such that each proces-
sor sends only its processing result on a data/parity item to
a sink without attaching the data item, while the processing
results of k data items can still be reconstructed from any k
out of the k+ r processing results of data/parity items (§II-B).
A challenge is that stream machine learning applications may
comprise both linear and non-linear operations, making the
direct use of coded computation infeasible. Thus, StreamLEC
adopts hybrid coded computation, which performs coded
computation on linear operations, while keeping the normal
computation for non-linear operations as in §III-C.
Algorithm details. Suppose that a stream machine learning
application can be decomposed into the linear and non-linear
components, such that the linear component runs before the
non-linear component and both components can be realized by
programmers; the assumption is well satisfied by state-of-the-
art machine learning algorithms, such as logistic regression
and neural networks [5]. Under this assumption, Algorithm 4
shows the pseudo-code of hybrid coded computation performed
by a processor, by extending the processing workflow in
Algorithm 2. It builds on two user-defined interfaces, namely
ProcessLinear and ProcessNonLinear, which correspond
to the linear and non-linear operations, respectively. After
identifying the sinkID from X’s key (Line 1), the processor first
computes the result RL of linear operations via ProcessLinear
(Line 2). If X is a data item, it further computes the result
RN of non-linear operations via ProcessNonLinear using the
inputs of both RL and X (Lines 3-5). It then emits both RL and
RN (Line 6). Finally, at the end of processing a micro-batch,
the processor waits for the feedback from the sink (Lines 7-10),
as in the original processing workflow (Algorithm 2).

When a failure happens, a sink now decodes the k linear
results from any k out of k+ r processors via coded computa-
tion, and recomputes the unavailable non-linear results from the
decoded linear results. We extend Algorithm 3 for the decoding
workflow for hybrid coded computation by substituting the
result R and the data/parity item X with RN and RL, respectively.

Note that Algorithm 4 is a generalized version of the pro-
cessing workflow in §III-C. It reduces to Algorithm 2 (detailed
in §III-C) if ProcessLinear returns the input item X and
ProcessNonLinear returns the same result as ProcessData.

Algorithm 4 Hybrid coded computation
Input: item X (which is either a data item or a parity item)
1: Identify the sinkID from X’s key
2: RL← ProcessLinear(X) . RL is linear result
3: if X is a data item then
4: RN ← ProcessNonLinear(RL, X) . RN is non-linear result
5: end if
6: Emit(sinkID, 〈RN ,RL〉) . RN is empty if X is a parity item
7: if X is from the last stripe of a micro-batch then
8: F ← Recv(sinkID) . F is the received feedback from a sink
9: ProcessFeedback(F)

10: end if

Variable: Vector model
1: function PROCESSLINEAR(Item X)
2: Extract value V from X . V is a vector of attributes
3: Compute the dot product RL ← V · model
4: return RL
5: end function
6: function PROCESSNONLINEAR(Result RL, Item X)
7: Compute prediction RN ← 1.0/(1.0+ exp(−R))
8: return RN
9: end function

Figure 4: Logistic regression prediction with hybrid coded computa-
tion.

StreamLEC currently requires users to reason about the linear
and non-linear components in their computations. Our future
work is to extend StreamLEC to support automated splitting
of user computations.

Figure 4 shows an example of the hybrid coded computation
for logistic regression prediction. We implement the linear
operator of logistic regression prediction in ProcessLinear,
which computes the dot product of the input item’s value
and the vector of model parameters (i.e., model). We also
implement the non-linear operator of logistic regression in
ProcessNonLinear, which computes the final prediction
result using the dot product as input. This example also shows
how the non-linear operator can build on the results of the
linear operator to simplify the implementation.

Hybrid coded computation now emits the results of linear and
non-linear operations (i.e., RL and RN , respectively) instead of
attaching a data item. It thus reduces the communication traffic
to the sink as RL and RN often represent scalar values (e.g.,
Figure 4), while a data item comprises a vector of attributes.
In the extreme case where an application comprises purely
linear operations, each processor only sends the result RL of
linear operations to a sink, without including the result RN of
non-linear operations. This further reduces the communication
traffic to the sink.

IV. IMPLEMENTATION

We have implemented a prototype of StreamLEC in C++
on Linux, with around 19,000 lines of code.
Worker communication. Our prototype uses the ZeroMQ
messaging library [3] for worker communication. Each worker
contains a main thread for computation, as well as two
communication threads for managing the TCP connections
with the upstream and downstream workers based on ZeroMQ.
The threads within each worker exchange data via lock-free ring

buffers [23]. Each source or sink also supports non-blocking
communication to bypass any failed processor.
SIMD optimization. Recall that each item’s value comprises a
vector of attributes. Instead of performing encoding/decoding
operations on attributes individually, we leverage Single Instruc-
tion Multiple Data (SIMD) instructions to parallelize the en-
coding/decoding operations. Specifically, each of the attributes
in an item’s value is a 64-bit floating-point number. We use the
AVX2 256-bit instruction set to perform encoding/decoding
operations on every four 64-bit attributes in parallel. The SIMD
optimization further mitigates the computational overhead due
to erasure coding.

V. EVALUATION

We evaluate StreamLEC on both a local cluster (§V-B)
and Amazon EC2 (§V-C). Our major findings on StreamLEC
include: (i) it achieves much higher throughput than both
reactive fault tolerance and replication; (ii) it incurs negligible
recovery overhead; (iii) it mitigates the computation and
communication costs of erasure coding; and (iv) it achieves
scalable performance on Amazon EC2.

A. Methodology

Datasets. We consider two real-world datasets, namely (i)
KDD12 [28] and (ii) HIGGS [4]. The KDD12 dataset contains
items from KDD Cup 2012 and models click-through rate
prediction in production. Each item has 11 attributes. The
HIGGS dataset contains items for classification in high-energy
physics experiments. Each item has 24 attributes. For each of
the datasets, we select the first 10 M items for evaluation.
Algorithms. We consider four stream machine learning algo-
rithms: (i) linear regression, (ii) logistic regression, (iii) support
vector machine (SVM), and (iv) K-means. We adapt their
implementations in MLlib [26] into our prototype. Take logistic
regression as an example. Each processor computes the gradient
for each received item via stochastic gradient descent [6]. It
then sends the gradient result to a sink. The sink aggregates the
gradient results of a micro-batch from its upstream processors
and updates the model parameters by minimizing the logistic
loss function with L2-regularization. It also feedbacks the
model parameters to its upstream processors. Other algorithms
have similar workflows. All algorithms involve non-linear
operations in the processors and sinks.
Schemes. We compare StreamLEC’s erasure coding with
reactive fault tolerance and replication. For fair comparisons,
we implement all schemes under the StreamLEC prototype
and allocate them with the same resources in our evaluation.
For reactive fault tolerance and replication, we also assume
that the sources and sinks are reliable and focus on the fault
tolerance for the processors.

For reactive fault tolerance (denoted by Reactive), we re-
implement Spark Streaming’s approach [40] (§II-A). Each
processor checkpoints any received item and its state to HDFS
(v2.6.5) [35]. If a processor fails, we restore the state and
reprocess the lost items from HDFS in a new processor.

For replication, we partition all processors into multiple
groups of w processors, where w denotes the number of replicas
being configured (assuming that the total number of processors
is divisible by w). For each data item, a source randomly
selects a group of processors, and issues w replicas to the w
processors in the group. We consider replication with w = 2
for single-fault tolerance and w = 3 for double-fault tolerance
(denoted by Rep-2x and Rep-3x, respectively).

For StreamLEC, we evaluate different erasure coding con-
figurations by varying k and r (denoted by EC(k,r)). EC(k,r)
distributes data/parity items to k+ r processors and tolerates r
processor failures; r = 0 implies no fault tolerance.
Default setting. For each dataset, we set the micro-batch size
as 100 K items (i.e., 100 micro-batches in total). Note that
StreamLEC’s performance remains similar for different micro-
batch sizes. To exclude the I/O overhead on performance, we
load all datasets into memory prior to all experiments. We
plot the average results over 10 runs, including the error bars
showing the 95% confidence interval based on the student’s
t-distribution.

B. Local Cluster Experiments

Our local cluster comprises eight machines, equipped with
an Intel Core i5-7500 3.40 GHz quad-core CPU, 32 GB RAM,
and a TOSHIBA DT01ACA100 7200 RPM 1 TB SATA disk.
All machines run Ubuntu 16.04 LTS and are connected via a
10 Gb/s Ethernet switch. We deploy one source, six processors,
and one sink in distinct machines. For StreamLEC, we consider
EC(6,0) (no fault tolerance), EC(5,1) (single-fault tolerance),
and EC(4,2) (double-fault tolerance).
Exp#1 (Throughput in normal mode). Figure 5 shows
the throughput of different algorithms and fault tolerance
schemes in normal mode (i.e., no failure). We observe a
similar performance pattern in all cases. Reactive has the
lowest throughput, as it incurs heavy I/Os for issuing state
and item backups to HDFS. Compared to the no-redundancy
case (i.e., EC(6,0)), replication incurs higher throughput drops
than erasure coding due to its higher redundancy. Considering
the average over the eight cases in Figure 5, for single-
fault tolerance, EC(5,1) achieves 6.07× and 1.23× throughput
compared to Reactive and Rep-2x, respectively; for double-
fault tolerance, EC(4,2) achieves 5.17× and 1.55× throughput
compared to Reactive and Rep-3x, respectively.
Exp#2 (Failure recovery). We study the performance impact
of both single-fault and double-fault recovery cases. We stop
one or two of the processors in the midst of processing a micro-
batch, and restart the failed processors in the same machines.
We measure the processing latencies of the two micro-batches
right before and after failure recovery. We focus on logistic
regression on KDD12.

Figure 6(a) shows the latencies of EC(5,1), Rep-2x, and
Reactive in single-fault recovery, while Figure 6(b) shows
the latencies of EC(4,2), Rep-3x, and Reactive in double-
fault recovery. Both StreamLEC (i.e., EC(5,1) and EC(4,2))
and replication (i.e., Rep-2x and Rep-3x) have negligible
latency differences before and after failure recovery. However,

0.
80

2.
40

1.
63

3.
43

2.
77

2.
52

0

1

2

3

4

5

Reactive
Rep-2x

Rep-3x
EC(6,0)

EC(5,1)
EC(4,2)Th

ou
gh

pu
t (

M
 it

em
s/s

)

0.
31

2.
09

1.
41

2.
96

2.
43

2.
07

0

1

2

3

4

5

Reactive
Rep-2x

Rep-3x
EC(6,0)

EC5,1)
EC(4,2)Th

ou
gh

pu
t (

M
 it

em
s/s

)

(a) Linear regression, KDD12 (b) Linear regression, HIGGS

0.
61

2.
13

1.
60

3.
22

2.
81

2.
50

0

1

2

3

4

5

Reactive
Rep-2x

Rep-3x
EC(6,0)

EC(5,1)
EC(4,2)Th

ou
gh

pu
t (

M
 it

em
s/s

)

0.
33

1.
98

1.
41

2.
96

2.
44

1.
75

0

1

2

3

4

5

Reactive
Rep-2x

Rep-3x
EC(6,0)

EC(5,1)
EC(4,2)Th

ou
gh

pu
t (

M
 it

em
s/s

)

(c) Logistic regression, KDD12 (d) Logistic regression, HIGGS

0.
66

2.
42

1.
59

3.
50

2.
80

2.
59

0

1

2

3

4

5

Reactive
Rep-2x

Rep-3x
EC(6,0)

EC(5,1)
EC(4,2)Th

ou
gh

pu
t (

M
 it

em
s/s

)

0.
47

2.
08

1.
41

3.
23

2.
42

2.
11

0

1

2

3

4

5

Reactive
Rep-2x

Rep-3x
EC(6,0)

EC(5,1)
EC(4,2)Th

ou
gh

pu
t (

M
 it

em
s/s

)

(e) SVM, KDD12 (f) SVM, HIGGS
0.

57

2.
31

1.
44

3.
36

3.
01

2.
56

0

1

2

3

4

5

Reactive
Rep-2x

Rep-3x
EC(6,0)

EC(5,1)
EC(4,2)Th

ou
gh

pu
t (

M
 it

em
s/s

)

0.
26

2.
00

1.
40

3.
11

2.
70

2.
37

0

1

2

3

4

5

Reactive
Rep-2x

Rep-3x
EC(6,0)

EC(5,1)
EC(4,2)Th

ou
gh

pu
t (

M
 it

em
s/s

)
(g) K-means, KDD12 (h) K-means, HIGGS

Figure 5: Exp#1: Throughput on normal mode.

0.
98

7

0.
11

1

0.
04

0

0.
03

9

0.
03

6

0.
03

5

0.0

0.5

1.0

1.5

2.0

Reactive Rep-2x EC(5,1)

La
te

nc
y

(s
)

Before failure
After failure 1.

54
4

0.
10

7

0.
05

6

0.
05

4

0.
04

1

0.
03

9

0.0

0.5

1.0

1.5

2.0

Reactive Rep-3x EC(4,2)

La
te

nc
y

(s
)

Before failure
After failure

(a) Single failure (b) Two failures
Figure 6: Exp#2: Failure recovery.

the processing latency of Reactive incurs 8.9× and 14×
increases after single-fault recovery and double-fault recovery,
respectively. We break down the recovery latency of Reactive
and observe that the latency is mainly contributed by the
processor restarting and data/state restoring (e.g., 27.4% and
61.8% in a single failure, respectively).
Exp#3 (Incremental encoding). We study incremental encod-
ing in StreamLEC. For comparison, we consider a baseline
that disables incremental encoding and forces StreamLEC to
perform encoding until all data items of a micro-batch are

3.
25

2.
78

2.
15

3.
25

2.
50

1.
85

0

2

4

6

EC(5,1) EC(4,2)

Th
ro

ug
hp

ut
 (M

 it
em

s/s
) No incremental encoding

Incremental encoding
No fault tolerance

0.
03

2

0.
03

7

0.
04

7

0.
03

2

0.
04

00.
05

5

0.00

0.04

0.08

0.12

EC(5,1) EC(4,2)

La
te

nc
y

(s
)

No incremental encoding
Incremental encoding
No fault tolerance

(a) Throughput in normal mode (b) Processing latency

Figure 7: Exp#3: Incremental encoding.

1.
32

1.
17

1.
05 1.

30
1.

11
0.

97 1.
02

1.
02

0.
88

0

1

2

3

10 20 30
Number of models

Th
ro

ug
hp

ut
 (M

 it
em

s/s
)

No hybrid
Hybrid

No fault tolerance

1.
32

0.
90

0.
80

1.
30

0.
90

0.
74 1.

02
0.

82
0.

57

0

1

2

3

10 20 30
Number of models

Th
ro

ug
hp

ut
 (M

 it
em

s/s
)

No hybrid
Hybrid

No fault tolerance

(a) EC(5,1) (b) EC(4,2)
Figure 8: Exp#4: Hybrid coded computation.

available. We focus on logistic regression on KDD12.
Figure 7 shows the results. Compared to no fault tolerance,

enabling incremental encoding reduces the throughput drops
of EC(5,1) and EC(4,2) from 33.9% to 14.5% and from 43.4%
to 23.1% (Figure 7(a)), respectively, since it allows a source to
emit items and perform encoding in parallel. It also reduces the
processing latency of each micro-batch by 22.8% and 27.5%
in EC(5,1) and EC(4,2), respectively (Figure 7(b)).
Exp#4 (Hybrid coded computation). We study hybrid
coded computation. We focus on logistic regression prediction
(Figure 4) on a synthetic dataset, in which each data item has
100 attributes. Note that we generate a synthetic dataset via
the make_classification function in the sklearn toolkit
[36]. Here, we consider a scenario where the communication
from all processors to the sink is the bottleneck, and vary the
number of logistic regression models used for prediction. For
each model, each processor outputs a linear result instead of
attaching the input item under hybrid coded computation.

Figure 8 shows the results. Hybrid coded computation
shows an increasing throughput gain as the number of models
increases, for example, from 1.13× for 10 models to 1.44×
for 30 models in EC(4,2). The reason is that hybrid coded
computation reduces the processor-to-sink communication
overhead, which becomes more significant as the number of
models increases.

C. Amazon EC2 Experiments

We evaluate StreamLEC on Amazon EC2. We deploy up
to 25 EC2 instances of type m5.2xlarge in the us-west-1a

zone. Each instance has eight vCPUs and 32 GB RAM. All
instances are connected via a 10 Gb/s network.
Exp#5 (Scalability on Amazon EC2). We study StreamLEC’s
scalability in two aspects: (i) varying the number of source/sink
pairs from one to five and fixing k = 13 and r = 2; and (ii)
varying k from 4 to 13, while fixing r = 2 and four source/sink
pairs. We compare StreamLEC with Rep-3x and focus on

1.
84

0.
98

3.
40

1.
74

5.
54

2.
89

6.
52

3.
99

8.
67

5.
03

0

3

6

9

12

1 2 3 4 5
Number of sources/sinks

Th
ro

ug
hp

ut
 (M

 it
em

s/s
) Rep-3x EC(13,2)

5.
18

3.
90

5.
73

3.
83

6.
14

3.
81

6.
68

3.
80

0

3

6

9

12

6 9 12 15
Number of processorsTh

ro
ug

hp
ut

 (M
 it

em
s/s

) Rep-3x EC(k,2)

(a) Varying # of sources/sinks (b) Varying # of processors
Figure 9: Exp#5: Scalability on Amazon EC2.

logistic regression on KDD12. For both cases, each worker runs
in a distinct EC2 instance. Figure 9 shows the throughput results
in normal mode. Both StreamLEC and Rep-3x scale linearly
with the number of source/sink pairs (Figure 9(a)), while
StreamLEC achieves an average throughput gain of 1.82×
over Rep-3x. However, Rep-3x cannot scale its throughput
even if the number of processors increases (Figure 9(b)), since
its high redundancy incurs high communication overhead in
the source/sink pairs. In contrast, StreamLEC’s throughput
increases with the number of processors.

VI. RELATED WORK

Erasure coding in data analytics. Some studies exploit erasure
coding to improve data analytics performance. Coded data
shuffling [22] and coded MapReduce [25] broadcast coded data
to multiple compute nodes, each of which then decodes its own
required data for processing. This reduces the communication
cost compared to uncoded broadcast. EC-cache [32] caches
coded data in memory to achieve low-latency and load-balanced
data analytics.

Coded computation can be traced back to algorithm-based
fault tolerance (ABFT) [17], which uses erasure coding
for tolerating hardware faults in matrix operations. Several
theoretical studies analyze how coded computation addresses
failures in linear computation and matrix multiplication [12],
[13], [22], [39]. Lee et al. [22] formally prove the performance
speedups of coded computation over uncoded computation.
Such analysis is also applied for high-dimensional vectors [13]
and heterogeneous clusters [39]. Some studies [12], [39] also
propose new erasure codes for coded computation.

ParM [21] implements coded computation in prediction
serving systems and supports non-linear operations. It uses
machine learning to train the proper erasure codes that minimize
the errors of prediction outputs obtained from decoding. Note
that ParM is designed for machine learning inference and
cannot support stream-based model training, while StreamLEC
targets both training and inference of stream machine learning
and particularly mitigates erasure coding overhead.
Fault tolerance in stream processing. Current stream pro-
cessing systems [7], [31], [40] achieve fault tolerance via
state checkpointing and upstream backup [19]. To mitigate
backup overhead, AF-Stream [18] issues backups only when
the errors upon failures exceed pre-defined thresholds, and is
shown to preserve the model convergence of stream machine
learning [9]. Drizzle [38] decouples the time intervals for

normal processing and fault tolerance coordination to reduce
the overhead of fault-tolerance maintenance. Samza [29] issues
partial-state checkpointing to reduce the overhead of full-state
checkpointing. All the above approaches are based on reactive
fault tolerance and incur non-negligible recovery delays.

Some stream processing systems (e.g., Borealis [20] and
PPA [37]) use replication for proactive fault tolerance, yet
replication multiplies the resource usage and is non-scalable
(§V-C). In contrast, StreamLEC leverages erasure coding to
achieve low-redundancy proactive fault tolerance.

VII. CONCLUSION

Erasure coding is traditionally used in communication and
storage. We make a case of applying erasure coding into
stream machine learning via StreamLEC, so as to provide
low-redundancy proactive fault tolerance and allow immediate
failure recovery. StreamLEC supports general stream machine
learning algorithms and achieves efficient coding. Experiments
demonstrate that StreamLEC achieves high throughput in
normal mode and incurs negligible failure recovery overhead.
Acknowledgments. This work was support in part by Key-Area
Research and Development Program of Guangdong Province
2020B0101390001, Research Grants Council of Hong Kong
(AoE/P-404/18), Joint Funds of the National Natural Science
Foundation of China (U20A20179), and National Natural
Science Foundation of China (61802365). The corresponding
author is Lu Tang (ltang@cse.cuhk.edu.hk).

REFERENCES

[1] Apache flink documentation - state & fault tolerance. https://ci.apache.
org/projects/flink/flink-docs-release-1.7/dev/stream/state/.

[2] Spark Streaming Programming Guide. https://spark.apache.org/docs/2.4.
5/streaming-programming-guide.html.

[3] ZeroMQ. http://zeromq.org.
[4] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in

high-energy physics with deep learning. Nature Communications, 5:4308,
2014.

[5] G. Bebis and M. Georgiopoulos. Feed-forward neural networks. IEEE
Potentials, 13(4), 1994.

[6] L. Bottou. Online algorithms and stochastic approximations. In Online
Learning and Neural Networks. 1998.

[7] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and
K. Tzoumas. Apache FlinkTM: Stream and batch processing in a single
engine. IEEE Data Engineering Bulletin, 38(4), 2015.

[8] S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-Johnson,
and T. S. Huang. Streaming Recommender Systems. In Proc. of ACM
WWW, 2017.

[9] Z. Cheng, Q. Huang, and P. P. C. Lee. On the performance and
convergence of distributed stream processing via approximate fault
tolerance. The VLDB Journal, 28(5):821–846, Oct 2019.

[10] W. Dai, A. Kumar, J. Wei, Q. Ho, G. A. Gibson, and E. P. Xing. High-
performance distributed ml at scale through parameter server consistency
models. In Proc. of AAAI, 2015.

[11] J. Dean and S. Ghemawat. Mapreduce: Simplified data procesing on
large clusters. In Proc. of USENIX OSDI, 2004.

[12] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover. A unified coded
deep neural network training strategy based on generalized polydot codes.
In Proc. of IEEE ISIT, 2018.

[13] S. Dutta, V. Cadambe, and P. Grover. Short-dot: Computing large linear
transforms distributedly using coded short dot products. In Proc. of
NeurIPS, 2016.

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In Proc. of USENIX OSDI, 2010.

[15] S. Guha, N. Mishra, G. Roy, and O. Schrijvers. Robust random cut
forest based anomaly detection on streams. In Proc. of ICML, 2016.

[16] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure coding in Windows Azure Storage. In Proc. of
USENIX ATC, 2012.

[17] K.-H. Huang and A. Jacob. Algorithm-based fault tolerance for matrix
operations. IEEE Trans. on Computers, 100(6), 1984.

[18] Q. Huang and P. P. C. Lee. Toward high-performance distributed
stream processing via approximate fault tolerance. Proc. of the VLDB
Endowment, 10(3), 2016.

[19] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,
and S. Zdonik. High-availability algorithms for distributed stream
processing. In Proc. of IEEE ICDE, 2005.

[20] J.-H. Hwang, S. Cha, U. Cetintemel, and S. Zdonik. Borealis-r: A
replication-transparent stream processing system for wide-area monitoring
applications. In Proc. of ACM SIGMOD, 2008.

[21] J. Kosaian, K. Rashmi, and S. Venkataraman. Parity models: A general
framework for coding-based resilience in ml inference. In Proc. of ACM
SOSP, 2019.

[22] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran.
Speeding up distributed machine learning using codes. IEEE Trans. on
Information Theory, 64(3), 2018.

[23] P. P. C. Lee, T. Bu, and G. Chandranmenon. A lock-free, cache-
efficient multi-core synchronization mechanism for line-rate network
traffic monitoring. In Proc. of IEEE IPDPS, 2010.

[24] C. Li, Y. Lu, Q. Mei, D. Wang, and S. Pandey. Click-through prediction
for advertising in twitter timeline. In Proc. of ACM SIGKDD, 2015.

[25] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr. Coded mapreduce. In
Proc. of IEEE Allerton, 2015.

[26] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, et al. Mllib: Machine learning
in apache spark. Journal of Machine Learning Research, 17(1), 2016.

[27] P. Mulinka and P. Casas. Stream-based machine learning for network
security and anomaly detection. In Proc. of Big Data Analytics and
Machine Learning for Data Communication Networks, 2018.

[28] Y. Niu, Y. Wang, G. Sun, A. Yue, B. Dalessandro, C. Perlich, and
B. Hamner. The tencent dataset and kdd-cup’12, 2012.

[29] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell. Samza: Stateful scalable stream processing
at linkedin. Proc. of the VLDB Endowment, 10(12), 2017.

[30] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A library
in c/c++ facilitating erasure coding for storage applications-version 1.2.
University of Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[31] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang. Timestream: Reliable stream computation in the cloud. In
Proc. of ACM EuroSys, 2013.

[32] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran.
Ec-cache: Load-balanced, low-latency cluster caching with online erasure
coding. In Proc. of USENIX OSDI, 2016.

[33] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of Society for Industrial and Applied Mathematics, 8(2), 1960.

[34] T. Richardson and R. Urbanke. Modern coding theory. Cambridge
university press, 2008.

[35] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Proc. of IEEE MSST, 2010.

[36] Sklearn datasets. https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.make classification.html.

[37] L. Su and Y. Zhou. Passive and partially active fault tolerance for
massively parallel stream processing engines. IEEE Trans. on Knowledge
and Data Engineering, 31(1), 2019.

[38] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica. Drizzle: Fast and adaptable
stream processing at scale. In Proc. of ACM SOSP, 2017.

[39] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A.
Avestimehr. Lagrange coded computing: Optimal design for resiliency,
security, and privacy. In Proc. AISTAT, 2019.

[40] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams:
Fault-tolerant streaming computation at scale. In Proc. of ACM SOSP,
2013.

[41] Zero Data Loss in Spark Streaming. http://databricks.com/blog/2015/
01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-
streaming.html.

