
1

NCCloud: A Network-Coding-Based Storage
System in a Cloud-of-Clouds

Henry C. H. Chen, Yuchong Hu, Patrick P. C. Lee, and Yang Tang

Abstract—To provide fault tolerance for cloud storage, recent studies propose to stripe data across multiple cloud vendors. However, if

a cloud suffers from a permanent failure and loses all its data, we need to repair the lost data with the help of the other surviving clouds

to preserve data redundancy. We present a proxy-based storage system for fault-tolerant multiple-cloud storage called NCCloud, which

achieves cost-effective repair for a permanent single-cloud failure. NCCloud is built on top of a network-coding-based storage scheme

called the functional minimum-storage regenerating (FMSR) codes, which maintain the same fault tolerance and data redundancy as

in traditional erasure codes (e.g., RAID-6), but use less repair traffic and hence incur less monetary cost due to data transfer. One

key design feature of our FMSR codes is that we relax the encoding requirement of storage nodes during repair, while preserving

the benefits of network coding in repair. We implement a proof-of-concept prototype of NCCloud and deploy it atop both local and

commercial clouds. We validate that FMSR codes provide significant monetary cost savings in repair over RAID-6 codes, while having

comparable response time performance in normal cloud storage operations such as upload/download.

Index Terms—Regenerating codes, network coding, fault tolerance, recovery, implementation, experimentation

F

1 INTRODUCTION

Cloud storage provides an on-demand remote backup
solution. However, using a single cloud storage provider
raises concerns such as having a single point of failure
[7] and vendor lock-ins [1]. As suggested in [1], [7], [10],
[11], [61], a plausible solution is to stripe data across
different cloud providers. By exploiting the diversity of
multiple clouds, we can improve the fault-tolerance of
cloud storage.

While striping data with conventional erasure codes
performs well when some clouds experience short-term
transient failures or foreseeable permanent failures [1],
there are real-life cases showing that permanent failures
do occur and are not always foreseeable [12], [40], [48],
[58]. In view of this, this work focuses on unexpected per-
manent cloud failures. When a cloud fails permanently,
it is necessary to activate repair to maintain data redun-
dancy and fault tolerance. A repair operation retrieves
data from existing surviving clouds over the network
and reconstructs the lost data in a new cloud. Today’s
cloud storage providers charge users for outbound data
(see the pricing models in Section 6.1), so moving an
enormous amount of data across clouds can introduce
significant monetary costs. It is important to reduce the
repair traffic (i.e., the amount of data being transferred
over the network during repair), and hence the monetary

• H. Chen, Y. Hu, and P. Lee are with the Chinese University of Hong
Kong, Shatin, N.T., Hong Kong (emails: {chchen,pclee}@cse.cuhk.edu.hk,
yuchonghu@gmail.com)

• Y. Tang is now with Columbia University. His work was done when he was
with the Chinese University of Hong Kong (email: ty@cs.columbia.edu)

• An earlier 8-page conference version of this paper appeared in USENIX
FAST [27]. This article extends the prior work with more in-depth analysis
and evaluations on our proposed implementable design of functional
minimum storage regenerating (FMSR) codes.

cost due to data migration.
To minimize repair traffic, regenerating codes [16] have

been proposed for storing data redundantly in a dis-
tributed storage system (a collection of interconnected
storage nodes). Each node could refer to a simple storage
device, a storage site, or a cloud storage provider. Regen-
erating codes are built on the concept of network coding
[2], in the sense that nodes perform encoding operations
and send encoded data. During repair, each surviving
node encodes its stored data chunks and sends the
encoded chunks to a new node, which then regenerates
the lost data. It is shown that regenerating codes require
less repair traffic than traditional erasure codes with the
same fault tolerance level [16].

Regenerating codes have been extensively studied in
the theoretical context (e.g., [14], [16], [29], [34], [41], [50],
[51], [55]–[57]). However, the practical performance of
regenerating codes remains uncertain. One key challenge
for deploying regenerating codes in practice is that most
existing regenerating codes require storage nodes to be
equipped with computation capabilities for performing
encoding operations during repair. On the other hand,
to make regenerating codes portable to any cloud storage
service, it is desirable to assume only a thin-cloud inter-
face [60], where storage nodes only need to support the
standard read/write functionalities. This motivates us to
explore, from an applied perspective, how to practically
deploy regenerating codes in multiple-cloud storage, if
only the thin-cloud interface is assumed.

In this paper, we present the design and implementa-
tion of NCCloud, a proxy-based storage system designed
for providing fault-tolerant storage over multiple cloud
storage providers. NCCloud can interconnect different
clouds and transparently stripe data across the clouds.
On top of NCCloud, we propose the first implementable

2

design for the functional minimum-storage regenerating
(FMSR) codes1 [16], [28]. Our FMSR code implementa-
tion maintains double-fault tolerance and has the same
storage cost as in traditional erasure coding schemes
based on RAID-6 codes, but uses less repair traffic
when recovering a single-cloud failure. In particular,
we eliminate the need to perform encoding operations
within storage nodes during repair, while preserving the
benefits of network coding in reducing repair traffic. To
the best of our knowledge, this is one of the first studies
that puts regenerating codes in a working storage system and
evaluates regenerating codes in a practical setting.

One trade-off of FMSR codes is that they are non-
systematic, meaning that we store only encoded chunks
formed by the linear combination of the original data
chunks, and do not keep the original data chunks as
in systematic coding schemes. Nevertheless, we mainly
design FMSR codes for long-term archival applications,
in which (i) data backups are rarely read in practice,
and (ii) it is common to restore the whole file rather
than parts of the file should a lost file needs to be
recovered [14]2. There are many real-life examples in
which enterprises and organizations store an enormous
amount of archival data (even on the petabyte scale)
using cloud storage (e.g., see case studies in [4], [8],
[43], [59]). In August 2012, Amazon further introduced
Glacier [5], a cloud storage offering optimized for low-
cost data archiving and backup (with slow and costly
data retrieval) that is being adopted by cloud backup
solutions [3], [39]. We believe that FMSR codes provide
an alternative option for enterprises and organizations to
store data using multiple-cloud storage in a fault-tolerant
and cost-effective manner.

While this work is motivated by and established with
multiple-cloud storage in mind, we point out that FMSR
codes can also find applications in general distributed
storage systems where storage nodes are prone to fail-
ures and network transmission bandwidth is limited.
In this case, minimizing repair traffic is important for
reducing the overall repair time.

Our contributions are summarized as follows.

• We present a design of FMSR codes, assuming that
double-fault tolerance is used. We show that in
multiple-cloud storage, FMSR codes can save the
repair cost by 25% compared to RAID-6 codes when
four storage nodes are used, and up to 50% as the
number of storage nodes further increases. In the
meantime, FMSR codes maintain the same amount
of storage overhead as RAID-6 codes. Note that
FMSR codes can be deployed in a thin-cloud setting
as they do not require storage nodes to perform
encoding during repair, while still preserving the
benefits of network coding in reducing repair traf-

1. The correctness of our FMSR codes is formally proven in our
recent work [28].

2. The same argument applies for conventional compression tech-
niques, which reduce storage space at the expense of the decompres-
sion overhead when the original data is recovered.

fic. Thus, FMSR codes can be readily deployed in
today’s cloud storage services.

• We describe the implementation details of how a file
object can be stored via FMSR codes. In particular,
we propose a two-phase checking scheme, which
ensures that double-fault tolerance is maintained in
the current and next round of repair. By performing
two-phase checking, we ensure that double-fault
tolerance is maintained after iterative rounds of
repair of node failures. We conduct simulations to
validate the importance of two-phase checking.

• We conduct monetary cost analysis to show that
FMSR codes effectively reduce the cost of repair
when compared to traditional erasure codes, using
the price models of today’s cloud storage providers.

• We conduct extensive experiments on both local
cloud and commercial cloud settings. We show that
our FMSR code implementation only adds a small
encoding overhead, which can be easily masked by
the file transfer time over the Internet. Thus, our
work validates the practicality of FMSR codes via
NCCloud, and motivates further studies of realizing
regenerating codes in large-scale deployments.

The rest of the paper proceeds as follows. In Section 2,
we justify the practical importance of repair in multiple-
cloud storage. In Section 3, we motivate via examples
how FMSR codes reduce repair traffic. In Section 4, we
describe our implementable design of FMSR codes, and
analyze our proposed two-phase checking scheme for
iterative repairs. In Section 5, we present NCCloud, on
which FMSR codes are deployed. In Section 6, we evalu-
ate RAID-6 and FMSR codes using NCCloud under both
local and commercial cloud settings. Section 7 reviews
related work, and Section 8 concludes the paper.

2 IMPORTANCE OF REPAIR IN MULTIPLE-
CLOUD STORAGE

In this section, we discuss the importance of repair
in cloud storage, especially in disastrous cloud failures
that make stored data permanently unrecoverable. We
consider two types of failures: transient failure and
permanent failure.

Transient failure. A transient failure is expected to
be short-term, such that the “failed” cloud will return
to normal after some time and no outsourced data is
lost. Table 1 shows several real-life examples for the
occurrences of transient failures in today’s clouds, where
the durations of such failures range from several minutes
to several days. We highlight that even though Amazon
claims that its service is designed for providing 99.99%
availability [6], there are arising concerns about this
claim and the reliability of other cloud providers after
Amazon’s outage in April 2011 [12]. We thus expect that
transient failures are common, but they will eventually
be recovered. If we deploy multiple-cloud storage with
enough redundancy, then we can retrieve data from the
other surviving clouds during the failure period.

3

TABLE 1

Examples of transient failures in different cloud services.

Cloud service Failure reason Duration Date
Google Gmail Software bug [24] 4 days Feb 27-Mar 2,2011
Google Search Programming error [38] 40 mins Jan 31,2009

Amazon S3 Gossip protocol blowup [9] 6-8 hours July 20,2008
Microsoft Azure Malfunction in Windows Azure [36] 22 hours Mar 13-14,2008

Permanent failure. A permanent failure is long-term,
in the sense that the outsourced data on a failed cloud
will become permanently unavailable. Clearly, a per-
manent failure is more disastrous than a transient one.
Although we expect that a permanent failure is unlikely
to happen, there are several situations where permanent
cloud failures are still possible:

• Data center outages in disasters. AFCOM [48] found
that many data centers are ill-prepared for disasters.
For example, 50% of the respondents have no plans
to repair damages after a disaster. It was reported
[48] that the earthquake and tsunami in northeastern
Japan in March 11, 2011 knocked out several data
centers there.

• Data loss and corruption. There are real-life cases
where a cloud may accidentally lose data [12], [40],
[58]. In the case of Ma.gnolia [40], half a terabyte
of data, including its backups, are all lost and unre-
coverable.

• Malicious attacks. To provide security guarantees for
outsourced data, one solution is to have the client
application encrypt the data before putting the data
on the cloud. On the other hand, if the outsourced
data is corrupted (e.g., by virus or malware), then
even though the content of the data is encrypted and
remains confidential to outsiders, the data itself is
no longer useful. AFCOM [48] found that about 65
percent of data centers have no plan or procedure
to deal with cyber-criminals.

Unlike transient failures where the cloud is assumed to
be able to return to normal, permanent failures will make
the hosted data in the failed cloud no longer accessible,
so we must repair and reconstruct the lost data in a
different cloud or storage site in order to maintain the
required degree of fault tolerance. In our definition of
repair, we mean to retrieve data only from the other
surviving clouds, and reconstruct the data in a new
cloud or another storage site.

3 MOTIVATION OF FMSR CODES

We consider a distributed, multiple-cloud storage set-
ting from a client’s perspective, where data is striped
over multiple cloud providers. We propose a proxy-
based design [1], [30] that interconnects multiple cloud
repositories, as shown in Figure 1(a). The proxy serves as
an interface between client applications and the clouds.
If a cloud experiences a permanent failure, the proxy
activates the repair operation, as shown in Figure 1(b).

Cloud 2

Cloud 1

Cloud 3

Cloud 4

Cloud 2

Cloud 1

Cloud 3

Cloud 4

(a) Normal operation (b) Repair operation

Cloud 5

Proxy Proxy

Fig. 1. Proxy-based design for multiple-cloud storage: (a)

normal operation, and (b) repair operation when Cloud

node 1 fails. During repair, the proxy regenerates data for

the new cloud.

That is, the proxy reads the essential data pieces from
other surviving clouds, reconstructs new data pieces,
and writes these new pieces to a new cloud. Note that
this repair operation does not involve direct interactions
among the clouds.

We consider fault-tolerant storage based on a type of
maximum distance separable (MDS) codes. Given a file
object of size M , we divide it into equal-size native
chunks, which are linearly combined to form code chunks.
When an (n, k)-MDS code is used, the native/code
chunks are then distributed over n (larger than k) nodes,
each storing chunks of a total size M/k, such that the
original file object may be reconstructed from the chunks
contained in any k of the n nodes. Thus, it tolerates the
failures of any n − k nodes. We call this fault tolerance
feature the MDS property. The extra feature of FMSR
codes is that reconstructing the chunks stored in a failed
node can be achieved by downloading less data from the
surviving nodes than reconstructing the whole file.

This paper considers a multiple-cloud setting with two
levels of reliability: fault tolerance and recovery. First,
we assume that the multiple-cloud storage is double-
fault tolerant (e.g., as in conventional RAID-6 codes) and
provides data availability under the transient unavail-
ability of at most two clouds. That is, we set k = n− 2.
Thus, clients can always access their data as long as
no more than two clouds experience transient failures
(see examples in Table 1) or any possible connectivity
problems. We expect that such a fault tolerance level
suffices in practice. Second, we consider single-fault re-
covery in multiple-cloud storage, given that a permanent
cloud failure is less frequent but possible. Our primary
objective is to minimize the cost of storage repair (due to

4

the migration of data over the clouds) for a permanent
single-cloud failure. In this work, we focus on comparing
two codes: traditional RAID-6 codes and our FMSR
codes with double-fault tolerance3.

We define the repair traffic as the amount of outbound
data being downloaded from the other surviving clouds
during the single-cloud failure recovery. We seek to
minimize the repair traffic for cost-effective repair. Here,
we do not consider the inbound traffic (i.e., the data
being written to a cloud), as it is free of charge for many
cloud providers (see Table 3 in Section 6).

We now study the repair traffic involved in different
coding schemes via examples. Suppose that we store
a file of size M on four clouds, each viewed as a
logical storage node. Let us first consider conventional
RAID-6 codes, which are double-fault tolerant. Here, we
consider a RAID-6 code implementation based on the
Reed-Solomon code [52], as shown in Figure 2(a). We
divide the file into two native chunks (i.e., A and B) of
size M/2 each. We add two code chunks formed by the
linear combinations of the native chunks. Suppose now
that Node 1 is down. Then the proxy must download
the same number of chunks as the original file from
two other nodes (e.g., B and A + B from Nodes 2 and
3, respectively). It then reconstructs and stores the lost
chunk A on the new node. The total storage size is 2M ,
while the repair traffic is M .

Regenerating codes have been proposed to reduce the
repair traffic. One class of regenerating codes is called
the exact minimum-storage regenerating (EMSR) codes [57].
EMSR codes keep the same storage size as in RAID-
6 codes, while having the storage nodes send encoded
chunks to the proxy so as to reduce the repair traffic.
Figure 2(b) illustrates the double-fault tolerant imple-
mentation of EMSR codes. We divide a file into four
chunks, and allocate the native and code chunks as
shown in the figure. Suppose Node 1 is down. To repair
it, each surviving node sends the XOR summation of
the data chunks to the proxy, which then reconstructs
the lost chunks. We can see that in EMSR codes, the
storage size is 2M (same as RAID-6 codes), while the
repair traffic is 0.75M , which is 25% of saving (compared
with RAID-6 codes). EMSR codes leverage the notion
of network coding [2], as the nodes generate encoded
chunks during repair.

We now consider the double-fault tolerant implemen-
tation of FMSR codes as shown in Figure 2(c). We
divide the file into four native chunks, and construct
eight distinct code chunks P1, · · · , P8 formed by different
linear combinations of the native chunks. Each code
chunk has the same size M/4 as a native chunk. Any
two nodes can be used to recover the original four
native chunks. Suppose Node 1 is down. The proxy
collects one code chunk from each surviving node, so it

3. If we assume single-fault tolerance (i.e., k = n − 1) and single-
fault recovery, then by the theoretical results of [16], we can show
that traditional RAID-5 codes [45] have the same data redundancy
and same repair traffic as FMSR codes.

ANode 1

Proxy
BNode 2

A+BNode 3

A+2BNode 4

A
B

File of size M

B

A+B
A

New node

A

(a) RAID-6 codes

Node 1

Proxy
Node 2

Node 3

Node 4

File of size M

New node

A

B

C

D

D

A+C

2B+D

2A+C

B+D

A

C

C+D

A+2B+C+D

2A+B+C+D

B

A

B

A

B

(b) EMSR codes

Node 1

Proxy
Node 2

Node 3

Node 4

File of size M

New node

A

B

C

D

P1

P2

P3

P4

P7

P8

P5

P6

P3

P5

P7

P1’

P2’

P1’

P2’

(c) FMSR codes

Fig. 2. Examples of repair operations in different codes

with n = 4 and k = 2. All arithmetic operations are

performed over the Galois Field GF(28).

downloads three code chunks of size M/4 each. Then the
proxy regenerates two code chunks P ′

1 and P ′

2 formed by
different linear combinations of the three code chunks.
Note that P ′

1 and P ′

2 are still linear combinations of the
native chunks. The proxy then writes P ′

1 and P ′

2 to the
new node. In FMSR codes, the storage size is 2M (as in
RAID-6 codes), yet the repair traffic is 0.75M , which is
the same as in EMSR codes. A key property of our FMSR
codes is that nodes do not perform encoding during
repair.

To generalize double-fault tolerant FMSR codes for n
storage nodes, we divide a file of size M into 2(n − 2)
native chunks, and use them to generate 2n code chunks.
Then each node will store two code chunks of size M

2(n−2)

each. Thus, the total storage size is Mn
n−2 . To repair a failed

node, we download one chunk from each of the other
n−1 nodes, so the repair traffic is M(n−1)

2(n−2) . In contrast, for

RAID-6 codes, the total storage size is also Mn
n−2 , while

the repair traffic is M . When n is large, FMSR codes can
save the repair traffic by close to 50%.

Note that FMSR codes are non-systematic, as they keep
only code chunks but not native chunks. To access a
single chunk of a file, we need to download and decode

5

the entire file for that particular chunk. This is opposed
to systematic codes (as in traditional RAID storage),
in which native chunks are kept. Nevertheless, FMSR
codes are acceptable for long-term archival applications,
where the read frequency is typically low. Also, to restore
backups, it is natural to retrieve the entire file rather than
a particular chunk [14].

This paper considers the baseline RAID-6 implemen-
tation using Reed-Solomon codes. Its repair method
involves reconstructing the whole file first, and is ap-
plicable for all erasure codes in general. Recent studies
[35], [62], [63] show that data reads can be minimized
specifically for XOR-based erasure codes. For example,
in RAID-6, data reads can be reduced by 25% compared
to reconstructing the whole file [62], [63]. Although such
approaches achieve less saving than FMSR codes, which
can save up to 50% of repair traffic, their use of efficient
XOR operations can be of practical interest.

4 FMSR CODE IMPLEMENTATION

We now present the details for implementing FMSR
codes in multiple-cloud storage. We specify three op-
erations for FMSR codes on a particular file object: (1)
file upload; (2) file download; (3) repair. Each cloud
repository is viewed as a logical storage node. Our
implementation assumes a thin-cloud interface [60], such
that the storage nodes (i.e., cloud repositories) only need
to support basic read/write operations. Thus, we expect
that our FMSR code implementation is compatible with
today’s cloud storage services.

One property of FMSR codes is that we do not require
lost chunks to be exactly reconstructed, but instead in
each repair, we regenerate code chunks that are not
necessarily identical to those originally stored in the
failed node, as long as the MDS property holds. We
propose a two-phase checking scheme, which ensures that
the code chunks on all nodes always satisfy the MDS
property, and hence data availability, even after iterative
repairs. In this section, we analyze the importance of the
two-phase checking scheme.

4.1 Basic operations

4.1.1 File Upload

To upload a file F , we first divide it into k(n− k) equal-
size native chunks, denoted by (Fi)i=1,2,···,k(n−k). We
then encode these k(n − k) native chunks into n(n − k)
code chunks, denoted by (Pi)i=1,2,···,n(n−k). Each Pi is
formed by a linear combination of the k(n − k) native
chunks. Specifically, we let EM = [αi,j] be an n(n− k)×
k(n−k) encoding matrix for some coefficients αi,j (where
i = 1, . . . , n(n− k) and j = 1, . . . , k(n− k)) in the Galois
field GF(28). We call a row vector of EM an encoding
coefficient vector (ECV), which contains k(n−k) elements.
We let ECVi denote the ith row vector of EM. We com-
pute each Pi by the product of ECVi and all the native

chunks F1, F2, · · · , Fk(n−k), i.e., Pi =
∑k(n−k)

j=1 αi,jFj for

i = 1, 2, · · · , n(n− k), where all arithmetic operations are
performed over GF(28). The code chunks are then evenly
stored in the n storage nodes, each having (n−k) chunks.
Also, we store the whole EM in a metadata object that is
then replicated to all storage nodes (see Section 5). There
are many ways of constructing EM, as long as it passes
our two-phase checking (see Section 4.1.3). Note that the
implementation details of the arithmetic operations in
Galois Fields are extensively discussed in [25].

4.1.2 File Download

To download a file, we first download the corresponding
metadata object that contains the ECVs. Then we select
any k of the n storage nodes, and download the k(n−k)
code chunks from the k nodes. The ECVs of the k(n−k)
code chunks can form a k(n−k)×k(n−k) square matrix.
If the MDS property is maintained, then by definition,
the inverse of the square matrix must exist. Thus, we
multiply the inverse of the square matrix with the code
chunks and obtain the original k(n − k) native chunks.
The idea is that we treat FMSR codes as standard Reed-
Solomon codes, and our technique of creating an inverse
matrix to decode the original data has been described in
the tutorial [46].

4.1.3 Iterative Repairs

We now consider the repair of FMSR codes for a file F for
a permanent single-node failure. Given that FMSR codes
regenerates different chunks in each repair, one challenge
is to ensure that the MDS property still holds even after
iterative repairs. This is in contrast to regenerating the
exact lost chunks as in RAID-6, which guarantees the
invariance of the stored chunks. Here, we propose a
two-phase checking heuristic as follows. Suppose that the
(r− 1)th repair is successful, and we now consider how
to operate the rth repair for a single permanent node
failure (where r ≥ 1). We first check if the new set of
chunks in all storage nodes satisfies the MDS property
after the rth repair. In addition, we also check if another
new set of chunks in all storage nodes still satisfies the
MDS property after the (r + 1)th repair, should another
single permanent node failure occur (we call this the
repair MDS (rMDS) property). We now describe the rth

repair as follows.
Step 1: Download the encoding matrix from a surviving

node. Recall that the encoding matrix EM specifies the
ECVs for constructing all code chunks via linear combi-
nations of native chunks. We use these ECVs for our later
two-phase checking. Since we embed EM in a metadata
object that is replicated, we can simply download the
metadata object from one of the surviving nodes.

Step 2: Select one ECV from each of the n − 1 surviving
nodes. Each ECV in EM corresponds to a code chunk. We
pick one ECV from each of the n − 1 surviving nodes.
We call these ECVs to be ECVi1 , ECVi2 , · · ·, ECVin−1

.
Step 3: Generate a repair matrix. We construct an (n−k)×

(n−1) repair matrix RM = [γi,j], where each element γi,j
(where i = 1, . . . , n− k and j = 1, . . . , n− 1) is randomly

6

selected in GF(28). Note that the idea of generating a
random matrix for reliable storage is consistent with that
in [49].

Step 4: Compute the ECVs for the new code chunks and
reproduce a new encoding matrix. We multiply RM with
the ECVs selected in Step 2 to construct n−k new ECVs,
denoted by ECV′

i =
∑n−1

j=1 γi,jECVij for i = 1, 2, · · · , n−k.
Then we reproduce a new encoding matrix, denoted by
EM

′, which is formed by substituting the ECVs of EM

of the failed node with the corresponding new ECVs.

Step 5: Given EM
′, check if both the MDS and rMDS

properties are satisfied. Intuitively, we verify the MDS
property by enumerating all

(

n
k

)

subsets of k nodes to see
if each of their corresponding encoding matrices forms
a full rank. For the rMDS property, we check that for
any possible node failure (one out of n nodes), we can
collect one out of n−k chunks from each of the other n−1
surviving nodes and reconstruct the chunks in the new
node, such that the MDS property is maintained. The
number of checks performed for the rMDS property is at
most n(n− k)n−1

(

n
k

)

. If n is small, then the enumeration
complexities for both MDS and rMDS properties are
manageable. If either one phase fails, then we return to
Step 2 and repeat. We emphasize that Steps 1 to 5 only
deal with the ECVs, so their overhead does not depend
on the chunk size.

Step 6: Download the actual chunk data and regenerate new
chunk data. If the two-phase checking in Step 5 succeeds,
then we proceed to download the n − 1 chunks that
correspond to the selected ECVs in Step 2 from the
n− 1 surviving storage nodes to NCCloud. Also, using
the new ECVs computed in Step 4, we regenerate new
chunks and upload them from NCCloud to a new node.

Remark: We can reduce the complexity of two-phase
checking with the proposed FMSR code construction in
our recent work [28]. The proposed construction specifies
the ECVs to be selected in Step 2 deterministically, and
tests their correctness (i.e., satisfying both MDS and
rMDS properties) by checking against a set of inequal-
ities in Step 5. This reduces the complexity of each
iteration as well as the number of iterations (i.e., number
of times that Steps 2-5 are repeated) in generating a valid
EM

′. Our current implementation of NCCloud includes
the proposed construction. We refer readers to [28] for
details of the proposed construction.

4.2 Analysis

We now argue that checking the rMDS property in
each repair is necessary in order to maintain the MDS
property after iterative repairs. We show via a counter-
example that if a repair checks only the MDS property
but without checking the rMDS property, then the MDS
property will be lost in the next repair. We also show
by simulations that our two-phase checking can sustain
many iterations of repairs in more general cases.

A

B

Node 1

C

D

Node 2

A+C

B+D

Node 3

A+D

B+C+D

Node 4

A

B

C

D

Original file

P1

P2

P3

P4

P5

P6

P7

P8

Proxy

X

Y

Z

Node 4

P7'

P8'

P7'

P8'

Fig. 3. Counter-example: code chunks that satisfy the

MDS property but not the rMDS property.

4.2.1 A Counter-Example

We consider a counter-example shown in Figure 3 to
illustrate the importance of the rMDS property. We use
the same notation as described in Figure 2(c) with n = 4
and k = 2. Suppose that the code chunks P1, . . . , P8 are
linearly combined from native chunks A, B, C, and D
as shown in Figure 3, and such linear combinations are
in fact the same as in the shortened EVENODD code in
[62]. It is easy to verify that the code chunks P1, . . . , P8

satisfy the MDS property, i.e., the four chunks from any
two nodes can be used to reconstruct the native chunks
A, B, C and D. However, we do not check if they satisfy
the rMDS property (actually they do not, as we shall see
later).

Next, consider that Node 4 fails. Based on FMSR
codes, the repair selects one chunk from each of Nodes 1,
2, and 3 (denote them by chunks X , Y , and Z) and
use them to regenerate the new code chunks P ′

7 and
P ′

8, which will be stored in a new node (which we
still denote by Node 4). There are 23 = 8 possible
selections of {X,Y, Z}. Let us consider one possible
selection {P1, P3, P5}. Then the new code chunks become

P ′

7 = γ1,1P1 + γ1,2P3 + γ1,3P5,

P ′

8 = γ2,2P1 + γ2,2P3 + γ2,3P5,

where γi,j (i = 1, . . . , n − k and j = 1, . . . , n − 1) are
some random coefficients used to generate the new code
chunks. Then we have

P ′

7 = (γ1,1 + γ1,3)A+ (γ1,2 + γ1,3)C,

P ′

8 = (γ2,1 + γ2,3)A+ (γ2,2 + γ2,3)C.

Since P1 = A and P2 = B, we cannot reconstruct the
native chunk D from P1, P2, P

′

7, P
′

8. The MDS property
is lost because the chunks of Nodes 1 and 4 cannot be
used to reconstruct the native chunks. Thus, the repair
fails with this selection of chunks.

We can apply similar reasoning to other possible selec-
tions of chunks. Table 2 lists all eight possible selections
of chunks, along with the set of chunks (and nodes) that
cannot be used to rebuild the original file. This shows
that none of the selections succeeds in maintaining the

7

TABLE 2

Eight possible selections of chunks from surviving nodes

for generating P ′

7 and P ′

8, along with the corresponding

set of chunks that will fail to reconstruct the file.

X,Y, Z Set of chunks that cannot rebuild the file

P1, P3, P5 P1, P2, P
′

7
, P ′

8
(Nodes 1 and 4)

P2, P3, P5 P1, P2, P
′

7
, P ′

8
(Nodes 1 and 4)

P1, P4, P5 P3, P4, P
′

7
, P ′

8
(Nodes 2 and 4)

P2, P4, P5 P5, P6, P
′

7
, P ′

8
(Nodes 3 and 4)

P1, P3, P6 P5, P6, P
′

7
, P ′

8
(Nodes 3 and 4)

P2, P3, P6 P3, P4, P
′

7
, P ′

8
(Nodes 2 and 4)

P1, P4, P6 P1, P2, P
′

7
, P ′

8
(Nodes 1 and 4)

P2, P4, P6 P1, P2, P
′

7
, P ′

8
(Nodes 1 and 4)

MDS property after the repair. This counter-example
shows how checking the MDS property only but not the
rMDS property can lead to a failed repair.

4.2.2 Simulations

We conduct simulations to justify that checking the
rMDS property can make iterative repairs sustainable.
We also evaluate via simulations the overhead of our
two-phase checking (Steps 2 to 5 of repair). Our simula-
tions are carried out on a 2.4GHz CPU core.

First, we consider multiple rounds of node repairs for
different values of n, and argue that in addition to check-
ing the MDS property, checking the rMDS property is
essential for iterative repairs. Specifically, in each round,
we randomly pick a node to fail, and then repair the
failed node. We say a repair is bad if the loop of Steps 2 to
5 in our two-phase checking is repeated over a threshold
number of times but no suitable encoding matrix has yet
been obtained. In our simulations, we vary the threshold
of the number of loops for determining a bad repair. We
carry out a maximum of 500 rounds of repair, and stop
once we encounter a bad repair. We do not include the
construction of [28] in this part of simulations to study
the effects of the baseline MDS and rMDS checks.

Figure 4 shows the number of rounds of repair that
can be sustained when the rMDS property is checked
or is not checked. It shows that checking the rMDS
property enables us to sustain more rounds of repair
before seeing a bad repair. For example, suppose that
we set the threshold to be 20 loops. Then we can sustain
500 rounds of repair for different values of n (number of
nodes) by checking the rMDS property, but we encounter
a bad repair quickly (e.g., in 3 rounds of repair for
n = 10) if we do not check the rMDS property.

Next we evaluate via simulations the time overhead of
the two-phase checking, with the proposed FMSR code
construction [28] that reduces the complexity. In each
round of repair, we randomly pick a node to fail and
carry out the repair operation. We carry out the two-
phase checking (i.e., Steps 2 to 5), and measure the time
required to generate an encoding matrix that satisfies
both the MDS and rMDS properties.

Figure 5 plots the cumulative time of two-phase check-
ing for 50 rounds of repair (in log scale) for n = 4 to

 0

 100

 200

 300

 400

 500

 4 5 6 7 8 9 10

R
o

u
n

d
s
 o

f
re

p
a

ir
 s

u
s
ta

in
e

d

n

with rMDS without rMDS

(a) Threshold for bad repair = 5 loops

 0

 100

 200

 300

 400

 500

 4 5 6 7 8 9 10

R
o

u
n

d
s
 o

f
re

p
a

ir
 s

u
s
ta

in
e

d

n

with rMDS without rMDS

(b) Threshold for bad repair = 10 loops

 0

 100

 200

 300

 400

 500

 4 5 6 7 8 9 10

R
o

u
n

d
s
 o

f
re

p
a

ir
 s

u
s
ta

in
e

d

n

with rMDS without rMDS

(c) Threshold for bad repair = 15 loops

 0

 100

 200

 300

 400

 500

 4 5 6 7 8 9 10

R
o

u
n

d
s
 o

f
re

p
a

ir
 s

u
s
ta

in
e

d

n

with rMDS without rMDS

(d) Threshold for bad repair = 20 loops

Fig. 4. Number of rounds of repair sustainable without

seeing a bad repair.

n = 16. The checking spends negligible time compared
to the actual repairs of even a 1MB file (see Section 6.2.2).
For example, when n = 10, it takes only 0.02s to carry
out 50 consecutive repairs (around 0.0004s per repair);
even when n = 16, it takes only 0.1s to carry out 50
consecutive repairs (around 0.002s per repair). Note that
the range of n we consider follows the stripe sizes used
in many practical storage systems [47]. To further reduce
the overhead, we can pre-compute the new encoding
coefficients for any possible node failure offline while
the system is running normally, and keep the results to
prepare for the next repair.

4.2.3 Reliability Analysis

Following prior studies that evaluate the reliability of
various erasure codes and replication (e.g., [20], [31],

8

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40 45 50

C
u

m
u

la
ti
v
e

 t
im

e
 (

s
e

c
o

n
d

s
)

Round

n=16
n=14
n=12
n=10
n=8
n=6
n=4

Fig. 5. The cumulative time required by the checking

phase (plotted in log scale) in 50 consecutive rounds of

repair from n = 4 to n = 16.

0 1 2

nλ (n-1)λ

3

(n-2)λ

µ1

µ2

Fig. 6. Markov model for double-fault tolerant codes.

[53]), we compare the reliability of FMSR codes and
traditional RAID-6 codes with respect to different failure
rates using the mean-time-to-data-loss (MTTDL) metric,
defined as the expected time elapsed until the original
data becomes unrecoverable. While MTTDL is ineffective
to quantify the real reliability [26], it remains a widely
adopted reliability metric in the storage community and
we use it only for the comparative study of different
coding schemes with different repair performance.

MTTDL is solved via the Markov model. Figure 6
shows the Markov model for double-fault tolerant codes
(i.e., k = n − 2), in which state i (where i = 0, 1, 2, 3)
denotes the number of failed nodes in a storage system.
State 3 means that there are more than two failed nodes
and the data is permanently lost. We compute MTTDL
as the expected time to move from state 0 (i.e., all nodes
are normal) to state 3.

We make assumptions in our analysis. For simplicity,
we assume that node failures and repairs are indepen-
dent events that follow an exponential distribution. The
assumption is imperfect in general [54], but it makes our
analysis tractable and has been used in prior studies [20],
[31], [53]. Let λ be the node failure rate (i.e., 1/λ is the
expected time to failure of a node). Thus, the transition
rate from state i to state i+1 is (n− i)λ, where i = 0, 1, 2.
Also, let µ1 and µ2 be the repair rates for single-node
and double-node failures, respectively. We assume that
the network transfer between the surviving nodes and
the proxy is the major bottleneck (see Section 3 for our
formulation) and determines the resulting repair rates.
Let S be the size of the data stored in each node (i.e.,
the total amount of original data stored is (n− 2)S) and
B be the network capacity between the surviving nodes
and the proxy. Now, consider the repair of a single-node
failure. As shown in Section 3, for FMSR codes, the repair

traffic is (n−1)S
2 and hence µ1 = 2B

(n−1)S ; for traditional

RAID-6 codes, the repair traffic is (n − 2)S and hence
µ1 = B

(n−2)S . For the repair of a double-node failure, both

 100

 1000

 10000

 100000

 1e+06

 0 0.2 0.4 0.6 0.8 1

M
T

T
D

L
 (

y
e
a
rs

)

Node failure rate (per year)

(a) MTTDL vs. node failure rate
 (network transfer rate = 1Gbps)

FMSR
RAID-6

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

M
T

T
D

L
 (

y
e
a
rs

)

Network transfer rate (Gbps)

(b) MTTDL vs. network transfer rate
 (node failure rate = 0.5 per year)

FMSR
RAID-6

Fig. 7. MTTDLs of FMSR codes and RAID-6 codes

(plotted in log scale) when n = 10 and k = 8.

FMSR codes and traditional RAID-6 codes resort to the
conventional approach and reconstruct the lost data by
downloading the amount of original data (i.e., (n− 2)S)
from the remaining k = n−2 surviving nodes. Both have
µ2 = B

(n−2)S .
We now evaluate the MTTDLs of FMSR codes and

traditional RAID-6 codes for some specific parameters.
Suppose that we fix n = 10, k = 8, and S = 1TB.
Figure 7(a) shows the MTTDLs for different values of λ
from 0.1 to 1 (in units per year) when B = 1Gbps, while
Figure 7(b) shows the MTTDLs for different values of B
from 0.1 to 1 (in units of Gbps) when λ = 0.5 per year.
Under our settings, the MTTDL of FMSR codes is 50%
to 80% longer than traditional RAID-6 codes due to a
higher repair rate for a single-node failure. For example,
with λ = 0.5 per year and B = 1Gbps, the MTTDL of
FMSR codes is 76% longer.

4.3 Discussions

We now point out several open issues of the existing
design of FMSR codes, and we pose them as future work.

Generalization of FMSR codes. We currently consider
only an FMSR code implementation with double-fault
tolerance (i.e., k = n − 2). Its correctness is also proven
in our recent work [28]. While double-fault tolerance is
the default setting of today’s enterprise storage systems
(e.g., 3-way replication in GFS [22]), it is unclear how to
generalize FMSR codes for different (n, k) values. In ad-
dition, while single-node failures are the most common
failure patterns in practical cloud storage systems [31],
it is interesting to study how to generalize FMSR codes
to support efficient repairs of concurrent node failures.

Study of different reliability metrics. In Section 4.2.3,
we compare the reliability of FMSR codes and conven-
tional RAID-6 codes for different failure rates using the
MTTDL metric. An open issue is to model the failure
rate of a cloud repository. In future work, we also plan to
conduct further reliability analysis using more effective
metrics [26].

Degraded reads. When reading the original data in
failure mode, we perform degraded reads, in which we
reconstruct the lost data of a failed node from the data
available on the other surviving nodes. In FMSR codes,
we always download the same amount of original data

9

by connecting to any k nodes (see Section 4.1.2); while in
traditional RAID-6 codes, the original amount of data is
retrieved to recover the lost data. Thus, FMSR codes and
traditional RAID-6 codes retrieve the same amount of
data in degraded reads, while FMSR codes have higher
computational overhead in decoding (see Section 6.2.1).
Recent studies [31], [35], [53] improve the degraded read
performance for erasure-coded data. On the other hand,
we do not consider degraded reads in this work since
FMSR codes are designed for long-term archives that are
rarely read.

5 NCCLOUD DESIGN AND IMPLEMENTATION

We implement NCCloud as a proxy that bridges user
applications and multiple clouds. Its design is built on
three layers. The file system layer presents NCCloud as a
mounted drive, which can thus be easily interfaced with
general user applications. The coding layer deals with the
encoding and decoding functions. The storage layer deals
with read/write requests with different clouds.

Each file is associated with a metadata object, which is
replicated at each repository. The metadata object holds
the file details and the coding information (e.g., encoding
coefficients for FMSR codes).

NCCloud is mainly implemented in Python, while
the coding schemes are implemented in C for better
efficiency. The file system layer is built on FUSE [21].
The coding layer implements both RAID-6 and FMSR
codes. Our RAID-6 code implementation is based on the
Reed-Solomon code [52] (as shown in Figure 2(a)) for
baseline evaluation. We use zfec [65] to implement the
RAID-6 codes, and we utilize the optimizations made in
zfec to implement FMSR codes for fair comparison.

Recall that FMSR codes generate multiple chunks to
be stored on the same repository. To save the request
cost overhead (see Table 3), multiple chunks destined
for the same repository are aggregated before upload.
Thus, FMSR codes keep only one (aggregated) chunk
per file object on each cloud, as in RAID-6 codes. To
retrieve a specific chunk, we calculate its offset within
the combined chunk and issue a range GET request.

We make NCCloud deployable in one or multiple
machines. In the latter case, we use ZooKeeper [32] to
implement a distributed file-based shared lock to avoid
simultaneous updates on the same file. We conduct pre-
liminary evaluations in a LAN environment and observe
that the overhead due to ZooKeeper is minimal. Here,
we focus on deploying NCCloud on a single machine,
and we mount NCCloud as a local file system.

6 EVALUATION

We use our NCCloud prototype to evaluate RAID-6
codes (based on Reed-Solomon codes) and FMSR codes
in multiple-cloud storage. In particular, we focus on the
setting k = n − 2 for different values of n, and hence
allow data retrieval with at most two cloud failures.

TABLE 3

Monthly price plans (in US dollars) for Amazon S3 (US

Standard), Rackspace Cloud Files and Windows Azure

Storage (North America and Europe), as of May, 2013.

S3 RS Azure
Storage (per GB) $0.095 $0.10 $0.095
Data transfer in (per GB) free free free
Data transfer out (per GB) $0.12 $0.12 $0.12
PUT,POST (per 10K requests) $0.05 free $0.001
GET (per 10K requests) $0.004 free $0.001

The goal of our experiments is to explore the practical-
ity of using FMSR codes in multiple-cloud storage. Our
evaluation consists of two parts. We first compare the
monetary costs of using RAID-6 and FMSR codes based
on the price plans of today’s cloud providers. We also
empirically evaluate the response time performance of
our NCCloud prototype atop a local cloud and also a
commercial cloud provider.

Summary of evaluation results. We summarize our
findings here. Our emphasis is on the monetary cost
advantage of FMSR codes over RAID-6 codes, while
still maintaining acceptable response time performance.
In terms of monetary costs, we show that in normal
operations, both RAID-6 and FMSR codes incur similar
storage costs, while in the repair operation, FMSR codes
save a significant amount of transfer costs over RAID-
6 codes. In terms of response time, we demonstrate that
both FMSR and RAID-6 codes have comparable response
time performance (within 5%) when deployed on a
commercial cloud (Azure). The resulting response time
is mainly determined by the transmission performance
of the Internet.

6.1 Cost Analysis

6.1.1 Repair Cost Saving

We first analyze the saving of monetary costs in repair in
practice. Table 3 shows the monthly price plans for three
major providers as of May 2013. We take the cost from
the first chargeable usage tier (i.e., storage usage within
1TB/month; data transferred out more than 1GB/month
but less than 10TB/month).

From the analysis in Section 3, we can save 25-50% of
the download traffic during storage repair. The storage
size and the number of chunks being generated per file
object are the same in both RAID-6 and FMSR codes
(assuming that we aggregate chunks in FMSR codes as
described in Section 5). However, in the analysis, we
have ignored two practical considerations: the size of
metadata (Section 5) and the number of requests issued
during repair. We now argue that they are negligible and
that the simplified calculations based only on file size
suffice for real-life applications.

Metadata size: Our implementation currently keeps
the metadata size of FMSR codes within 160 bytes when
n = 4 and k = 2, regardless of the file size. For a large
n, say when n = 12 and k = 10, the metadata size

10

TABLE 4

Tiered monthly price plans (in US dollars) for both

Amazon S3 (US Standard) and Windows Azure Storage

(North America and Europe), as of May 2013.

Storage (per GB) Data transfer out (per GB)
$0.095 (First 1TB/month) $0.12 (First 10TB/month)
$0.08 (Next 49TB/month) $0.09 (Next 40TB/month)
$0.07 (Next 450TB/month) $0.07 (Next 100TB/month)
$0.065 (Next 500TB/month) $0.05 (Over 150TB/month)
$0.06 (Next 4000TB/month)

is still within 900 bytes. NCCloud aims at long-term
backups (see Section 3), and can be integrated with other
backup applications. Existing backup applications (e.g.,
[19], [60]) typically aggregate small files into a larger
data chunk in order to save the processing overhead.
For example, the default setting for Cumulus [60] creates
chunks of around 4MB each. Thus, the metadata size
overhead can be made negligible. Since both RAID-6
and FMSR codes store the same amount of file data,
they incur very similar storage costs in normal usage
(assuming that the metadata costs are negligible).

Number of requests: From Table 3, some cloud
providers charge for requests. RAID-6 and FMSR codes
differ in the number of requests when retrieving data
during repair. Suppose that we store a file object of size
4MB with n = 4 and k = 2. During repair, RAID-6 and
FMSR codes retrieve two and three chunks, respectively
(see Figure 2). The cost overhead due to the GET requests
for RAID-6 codes is at most 0.171%, and that for FMSR
codes is at most 0.341%, a mere 0.17% increase.

6.1.2 Case Study

We now explore the implications of our cost analysis
using an enterprise use case. Our study builds on the
case of Backupify, a cloud backup solution provider
founded in 2008 and reported to store multiple terabytes
to petabytes of backups on Amazon S3 and Glacier [3].
To simplify our analysis, let us assume that Backupify
currently stores 1PB worth of backups in the cloud. Also,
the data is stored over 10 cloud repositories with n = 10
and k = 8, giving a redundancy overhead of 25%. As we
argue above, both RAID-6 and FMSR codes incur similar
storage and data transfer costs, while FMSR codes incur
less repair cost than RAID-6 codes. In particular, the
percentage of cost saving of FMSR codes is 1 − n−1

2(n−2)

(see Section 3), or equivalently, 43.75%. In the following,
we consider two cost models.

Regular-cost storage model. When storing terabytes
of data, cloud storage providers typically use a tiered
pricing scheme that offers lower rates for higher usage.
Table 4 shows a simplified tiered pricing scheme used
by both Amazon S3 (US Standard) and Windows Azure
(defaults for North America and Europe). We will use
this tiered scheme for our cost calculation.

In our case, we have 1.25PB of data stored, and will
be paying $86,851 monthly storage cost for both RAID-6
and FMSR codes. If a cloud repository fails permanently

and we run the repair operation, then RAID-6 codes will
download 1PB of data, while FMSR codes will download
only 0.5625PB of data. Thus, the corresponding repair
cost for RAID-6 codes is $56,832, while that for FMSR
codes is $33,894, with a saving of $22,938.

Low-cost storage model. We point out that the repair
cost can significantly exceed the monthly storage cost
if an alternative low-cost storage model is used. Take
Amazon Glacier [5] for example. It charges a flat rate
of $0.01 per GB of stored data, which is much cheaper
than S3, while using the same data transfer pricing as
S3 (see Table 4). The downside of using Glacier over S3
is that the restore operation takes much longer time and
is more expensive. Glacier also charges a restore fee of
$0.01 per GB when restoring more than 5% of stored data
per month.

Under this cost model, the monthly storage cost drops
to only $13,107 for both RAID-6 and FMSR codes. How-
ever, the repair cost for RAID-6 codes is $66,662, while
that for FMSR codes is $39,137, with a saving of $27,525.

Although we cannot pinpoint the failure rate of a
cloud storage repository to accurately gauge the annual
saving brought by the reduction in repair cost, we note
that varying degrees of permanent data loss do occur
in cloud storage in the last few years since its popular
adoption by the masses (e.g., [12], [40], [58], [64]). If
we estimate that full repairs have to be made every
two years on average, this would translate to an annual
saving of over $10,000 for our case.

To conclude, we can see that although cloud failures
are rare, the monetary benefits brought by FMSR codes
in unexpected repair events can be significant. Another
practical consideration that is not shown here is data ac-
cumulation. Our case study assumes a constant amount
of data stored, but in reality, the amount of data may
grow with time, such as when customers generate new
data daily or when there are more customers using the
cloud storage service. Such data accumulation leads to
a larger archive size as time goes by, and will make our
monetary advantage in repair cost more prominent.

6.2 Response Time Analysis

We deploy our NCCloud prototype in real environments.
We evaluate the response time performance of three
basic operations, namely file upload, file download, and
repair, in two scenarios. The first part analyzes in detail
the time taken by different NCCloud operations. It is
done on a local cloud storage testbed in order to lessen
the effects of network fluctuations. The second part eval-
uates how NCCloud actually performs in a commercial
cloud environment. All results are averaged over 40
runs. We assume that repair coefficients are generated
offline (see Section 4.2.2), so the time taken by two-phase
checking is not accounted for in the repair operation.
Nevertheless, we believe that this has limited impact on
our results since the checks takes up little time compared
to the overall repair operation, as shown in Section 4.2.2.

11

 0

 10

 20

 30

 40

 50

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
FMSR

(a) File upload

 0
 2
 4
 6
 8

 10
 12

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
FMSR

(b) File download

 0
 5

 10
 15
 20
 25
 30
 35

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6 (code chunk repair)
RAID-6 (native chunk repair)

FMSR

(c) Repair

Fig. 8. Response times of NCCloud operations when n =
4 and k = 2.

6.2.1 On a Local Cloud

The experiments on local cloud are carried out on an
object-based storage platform based on OpenStack Swift
1.4.2 [42]. NCCloud is mounted on a machine with an
Intel Xeon E5620 2.4GHz CPU and 16GB RAM. The
machine is connected to an OpenStack Swift platform
attached to a number of storage servers, each with Intel
Core i5-2400 and 8GB RAM. We create (n+1) containers
on Swift, so each container resembles a cloud repository
(one of them is a spare node used in repair). We carry out
two experiments on the local cloud. The first experiment
compares RAID-6 and FMSR codes when n = 4 and
k = 2 with varying file sizes. The second experiment
compares RAID-6 and FMSR codes under different val-
ues for n and k with a fixed file size.

In the first experiment, we test the response times of
the file upload, file download, and repair operations of
NCCloud with n = 4 and k = 2. We use eight randomly
generated files from 1MB to 500MB as the data set. We
set the path of a chosen repository to a non-existent
location to simulate a node failure in repair. Note that
there are two types of repair for RAID-6, depending
on whether the failed node contains a native chunk or
a code chunk. Figure 8 plots the response times of all
three operations (with 95% confidence intervals plotted)
versus the file size.

In the second experiment, we fix the file size at 500MB
and test the response times of the three operations again
under four different sets of configurations for n and k:
n = 4, k = 2; n = 6, k = 4; n = 8, k = 6; and n = 10,
k = 8. Figure 9 shows the response time results, each
broken down into several key constituents.

Figures 8 and 9 show that RAID-6 codes have less
response time than FMSR codes in file upload and

download, regardless of n and k. With the help of
Figure 9, we pinpoint the overhead of FMSR codes
over RAID-6. Due to having the same MDS property,
RAID-6 and FMSR codes exhibit similar data transfer
time during upload/download. However, FMSR codes
display a noticeable encoding/decoding overhead over
RAID-6 codes. For example in the case of n = 4 and
k = 2, when uploading a 500MB file, RAID-6 codes
take 1.53s to encode while FMSR codes take 5.48s; when
downloading a 500MB file, no decoding is needed in the
case of RAID-6 codes as the native chunks are available,
but FMSR codes take 2.71s to decode. The differences
increase with n and k.

On the other hand, FMSR codes have slightly less
response time in repair. The main advantage of FMSR
codes is that FMSR codes download less data during
repair. For example, in repairing a 500MB file with n = 4
and k = 2, FMSR codes spend 4.02s in download, while
the native-chunk repair of RAID-6 codes spends 5.04s.

Although RAID-6 codes generally have less response
time than FMSR codes in a local cloud environment, we
expect that the encoding/decoding overhead of FMSR
codes can be easily masked by network fluctuations over
the Internet, as will be shown next.

6.2.2 On a Commercial Cloud

The following experiment is carried out on a machine
with an Intel Xeon E5530 2.4GHz CPU and 16GB RAM.
The machine is running 64-bit Ubuntu 9.10. We focus
on the setting n = 4 and k = 2, and repeat the three
operations in Section 6.2.1 on four randomly generated
files from 1MB to 10MB atop Windows Azure Storage
[13]. On Azure, we create (n+1) = 5 containers to mimic
different cloud repositories. The same operation for both
RAID-6 and FMSR codes are run interleaved to lessen
the effect of network fluctuation on the comparison due
to different times of the day. It is important to note that
although we have used only Azure in this experiment,
the actual usage of NCCloud should stripe data over
different providers and locations for better availability
guarantees.

Figure 10 shows the results for different file sizes with
95% confidence intervals plotted. From the figure, we do
not see distinct response time differences between RAID-
6 and FMSR codes in all operations. Furthermore, on the
same machine, FMSR codes take around 0.150s to encode
and 0.064s to decode a 10MB file (not shown in the
figures). These constitute roughly 3% of the total upload
and download times (4.962s and 2.240s respectively).
Given that the 95% confidence intervals for the upload
and download times are 0.550s and 0.438s respectively,
network fluctuation plays a bigger role in determining
the response time. Overall, we demonstrate that FMSR
codes do not have significant performance overhead
over our baseline RAID-6 code implementation.

12

 0

 10

 20

 30

 40

 50

F
M

S
R

R
A

ID
-6

F
M

S
R

R
A

ID
-6

F
M

S
R

R
6
 (n

a
tiv

e
)

R
6
 (c

o
d
e
)

T
im

e
 t
a
k
e
n
 (

s
e
c
o
n
d
s
)

Upload Download Repair

n=4, k=2

Encoding

F
M

S
R

R
A

ID
-6

F
M

S
R

R
A

ID
-6

F
M

S
R

R
6
 (n

a
tiv

e
)

R
6
 (c

o
d
e
)

Upload Download Repair

n=6, k=4

Decoding

F
M

S
R

R
A

ID
-6

F
M

S
R

R
A

ID
-6

F
M

S
R

R
6
 (n

a
tiv

e
)

R
6
 (c

o
d
e
)

Upload Download Repair

n=8, k=6

Upload

F
M

S
R

R
A

ID
-6

F
M

S
R

R
A

ID
-6

F
M

S
R

R
6
 (n

a
tiv

e
)

R
6
 (c

o
d
e
)

Upload Download Repair

n=10, k=8

Others
Download

Fig. 9. Breakdown of the response time.

 0
 1
 2
 3
 4
 5
 6

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
FMSR

(a) File upload

 0
 0.5

 1
 1.5

 2
 2.5

 3

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
FMSR

(b) File download

 0
 1
 2
 3
 4
 5
 6
 7

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6 (code chunk repair)
RAID-6 (native chunk repair)

FMSR

(c) Repair

Fig. 10. Response times of NCCloud on Azure.

7 RELATED WORK

We review the related work in multiple-cloud storage
and failure recovery.

Multiple-cloud storage. There are several systems
proposed for multiple-cloud storage. HAIL [11] provides
integrity and availability guarantees for stored data.
RACS [1] uses erasure coding to mitigate vendor lock-
ins when switching cloud vendors. It retrieves data from
the cloud that is about to fail and moves the data to the
new cloud. Unlike RACS, NCCloud excludes the failed
cloud in repair. Vukolić [61] advocates using multiple
independent clouds to provide Byzantine fault tolerance.
DEPSKY [10] addresses Byzantine fault tolerance by
combining encryption and erasure coding for stored
data. All the above systems are built on erasure codes
to provide fault tolerance, while NCCloud takes one
step further and considers regenerating codes with an
emphasis on both fault tolerance and storage repair.

Minimizing I/Os. Several studies propose efficient
single-node failure recovery schemes that minimize the
amount of data read (or I/Os) for XOR-based erasure
codes. For example, authors of [62], [63] propose opti-
mal recovery for specific RAID-6 codes and reduce the

amount of data read by up to around 25% (compared to
conventional repair that downloads the amount of orig-
inal data) for any number of nodes. Note that our FMSR
codes can achieve 25% saving when the number of nodes
is four, and up to 50% saving if the number of nodes
increases. Authors of [35] propose an enumeration-based
approach to search for an optimal recovery solution for
arbitrary XOR-based erasure codes. Efficient recovery
is recently addressed in commercial cloud storage sys-
tems. For example, new constructions of non-MDS era-
sure codes designed for efficient recovery are proposed
for Azure [31] and Facebook [53]. The codes used in
[31], [53] trade storage overhead for performance, and
are mainly designed for data-intensive computing. Our
work targets the cloud backup applications.

Minimizing repair traffic. Regenerating codes [16]
stem from the concept of network coding [2] and mini-
mize the repair traffic among storage nodes. They exploit
the optimal trade-off between storage cost and repair
traffic, and there are two optimal points. One optimal
point refers to the minimum storage regenerating (MSR)
codes, which minimize the repair bandwidth subject
to the condition that each node stores the minimum
amount of data as in Reed-Solomon codes. Another op-
timal point is the minimum bandwidth regenerating (MBR)
codes, which allow each node to store more data to
further minimize the repair bandwidth. The construction
of MBR codes is found in [51], while that of MSR codes
based on interference alignment is found in [50], [57]. In
this work, we focus on the MSR codes.

On top of regenerating codes, several studies (e.g.,
[29], [34], [55], [56]) address cooperative recovery for
multiple failures. Their idea is to have new nodes ex-
change reconstructed data to minimize the overall re-
pair traffic. Our work focuses on single-failure recovery,
which accounts for the majority of failures in cloud stor-
age systems [31]. Some studies (e.g., [14], [41]) address
the security issues for regenerating-coded data, while the
security aspect of FMSR codes is addressed in our prior
work [15]. We refer readers to the survey paper [17] for
the state-of-the-art research in regenerating codes.

Existing MSR codes (e.g., [50], [57]) require nodes to
perform encoding operations during repair. Our FMSR
code implementation eliminates the encoding require-
ment of nodes, while maintaining the recovery perfor-

13

mance of MSR codes. The trade-off is that the codes are
non-systematic (see Section 3).

Empirical studies on regenerating codes. Existing
studies on regenerating codes mainly focus on theoret-
ical analysis. Several studies (e.g., [18], [23], [37]) em-
pirically evaluate random linear codes for peer-to-peer
storage. Authors of [44] propose simple regenerating
codes to minimize the number of surviving nodes to
contact during recovery with a trade-off of incurring
a higher storage cost, and evaluate the codes on a
cloud storage simulator. Authors of [33] evaluate the
encoding/decoding performance of regenerating codes.
Existing studies do not implement a storage system and
evaluate the actual read/write performance with regen-
erating codes as in our work. NCFS [30] implements
regenerating codes, but does not consider MSR codes
that are based on linear combinations. Here, we consider
the FMSR code implementation, and perform empirical
experiments in multiple-cloud storage.

Follow-up studies on FMSR codes. We have some
follow-up studies after the conference version [27]. We
extend NCCloud to support integrity checking of FMSR-
coded data against Byzantine attacks [15]. We also theo-
retically prove that our two-phase checking can preserve
the MDS property of the stored data after iterative
repairs [28]. In this work, we focus on the practical
deployment of regenerating codes. We propose an im-
plementable design of regenerating codes and conduct
empirical studies in practical cloud storage environment.

8 CONCLUSIONS

We present NCCloud, a proxy-based, multiple-cloud
storage system that practically addresses the reliability
of today’s cloud backup storage. NCCloud not only
provides fault tolerance in storage, but also allows
cost-effective repair when a cloud permanently fails.
NCCloud implements a practical version of the func-
tional minimum storage regenerating (FMSR) codes,
which regenerates new parity chunks during repair
subject to the required degree of data redundancy.
Our FMSR code implementation eliminates the en-
coding requirement of storage nodes (or cloud) dur-
ing repair, while ensuring that the new set of stored
chunks after each round of repair preserves the re-
quired fault tolerance. Our NCCloud prototype shows
the effectiveness of FMSR codes in the cloud backup
usage, in terms of monetary costs and response
times. The source code of NCCloud is available at
http://ansrlab.cse.cuhk.edu.hk/software/nccloud.

ACKNOWLEDGMENTS

This work is supported by grants from the University
Grants Committee of Hong Kong (AoE/E-02/08 and
ECS CUHK419212) and seed grants from the CUHK
MoE-Microsoft Key Laboratory of Human-centric Com-
puting and Interface Technologies.

REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: A
Case for Cloud Storage Diversity. In Proc. of ACM SoCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network
Information Flow. IEEE Trans. on Information Theory, 46(4):1204–
1216, Jul 2000.

[3] Amazon. AWS Case Study: Backupify. http://aws.amazon.com/
solutions/case-studies/backupify/.

[4] Amazon. Case Studies. https://aws.amazon.com/solutions/case-
studies/#backup.

[5] Amazon Glacier. http://aws.amazon.com/glacier/.
[6] Amazon S3. http://aws.amazon.com/s3.
[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-

winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia.
A View of Cloud Computing. Communications of the ACM,
53(4):50–58, 2010.

[8] Asigra. Case Studies. http://www.asigra.com/product/case-
studies/.

[9] AWS Service Health Dashboard. Amazon s3 availability event:
July 20, 2008. http://status.aws.amazon.com/s3-20080720.html.

[10] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa.
DEPSKY: Dependable and Secure Storage in a Cloud-of-Clouds.
In Proc. of ACM EuroSys, 2011.

[11] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A High-Availability
and Integrity Layer for Cloud Storage. In Proc. of ACM CCS, 2009.

[12] Business Insider. Amazon’s Cloud Crash Disaster Permanently
Destroyed Many Customers’ Data. http://www.businessinsider.
com/amazon-lost-data-2011-4/, Apr 2011.

[13] B. Calder et al. Windows Azure Storage: A Highly Available
Cloud Storage Service with Strong Consistency. In Proc. of ACM
SOSP, 2011.

[14] B. Chen, R. Curtmola, G. Ateniese, and R. Burns. Remote
Data Checking for Network Coding-Based Distributed Storage
Systems. In Proc. of ACM CCSW, 2010.

[15] H. C. H. Chen and P. P. C. Lee. Enabling Data Integrity Protection
in Regenerating-Coding-Based Cloud Storage. In Proc. of IEEE
SRDS, 2012.

[16] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ram-
chandran. Network Coding for Distributed Storage Systems. IEEE
Trans. on Information Theory, 56(9):4539–4551, Sep 2010.

[17] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A Survey
on Network Codes for Distributed Storage. Proc. of the IEEE,
99(3):476–489, Mar 2011.

[18] A. Duminuco and E. Biersack. A Practical Study of Regenerating
Codes for Peer-to-Peer Backup Systems. In Proc. of IEEE ICDCS,
2009.

[19] B. Escoto and K. Loafman. Duplicity. http://duplicity.nongnu.
org/.

[20] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in Globally
Distributed Storage Systems. In Proc. of USENIX OSDI, 2010.

[21] FUSE. http://fuse.sourceforge.net/.
[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File

System. In Proc. of ACM SOSP, 2003.
[23] C. Gkantsidis and P. Rodriguez. Network coding for large scale

content distribution. In Proc. of INFOCOM, 2005.
[24] GmailBlog. Gmail back soon for everyone. http://gmailblog.

blogspot.com/2011/02/gmail-back-soon-for-everyone.html.
[25] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz. Optimizing

Galois Field Arithmetic for Diverse Processor Architectures and
Applications. In Proc. of IEEE MASCOTS, 2008.

[26] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean time to mean-
ingless: MTTDL, Markov models, and storage system reliability.
In Proc. of USENIX HotStorage, 2010.

[27] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang. NCCloud:
Applying Network Coding for the Storage Repair in a Cloud-
of-Clouds. In Proc. of FAST, 2012.

[28] Y. Hu, P. P. C. Lee, and K. W. Shum. Analysis and Construction
of Functional Regenerating Codes with Uncoded Repair for Dis-
tributed Storage Systems. In Proc. of IEEE INFOCOM, Apr 2013.

[29] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative recovery
of distributed storage systems from multiple losses with network
coding. IEEE JSAC, 28(2):268–276, Feb 2010.

[30] Y. Hu, C.-M. Yu, Y.-K. Li, P. P. C. Lee, and J. C. S. Lui. NCFS:
On the Practicality and Extensibility of a Network-Coding-Based
Distributed File System. In Proc. of NetCod, 2011.

14

[31] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure Coding in Windows Azure Storage. In
Proc. of USENIX ATC, 2012.

[32] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-
Free Coordination for Internet-Scale Systems. In Proc. of USENIX
ATC, 2010.

[33] S. Jiekak, A.-M. Kermarrec, N. L. Scouarnec, G. Straub, and A. Van
Kempen. Regenerating Codes: A System Perspective. CoRR,
abs/1204.5028, 2012.

[34] A. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing Multiple
Failures with Coordinated and Adaptive Regenerating Codes. In
Proc. of NetCod, Jun 2011.

[35] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethink-
ing Erasure Codes for Cloud File Systems: Minimizing I/O for
Recovery and Degraded Reads. In Proc. of USENIX FAST, 2012.

[36] N. Kolakowski. Microsoft’s cloud azure service suffers
outage. http://www.eweekeurope.co.uk/news/news-solutions-
applications/microsofts-cloud-azure-service-suffers-outage-395.

[37] M. Martaló, M. Picone, M. Amoretti, G. Ferrari, and R. Raheli.
Randomized Network Coding in Distributed Storage Systems
with Layered Overlay. In Information Theory and Application
Workshop, 2011.

[38] M. Mayer. This site may harm yoyur computer on every search
results. http://googleblog.blogspot.com/2009/01/this-site-may-
harm-your-computer-on.html.

[39] MSPmentor. CloudBerry Labs Unveils Support for Low-
Cost Amazon Glacier. http://mspmentor.net/managed-services/
cloudberry-labs-unveils-support-low-cost-amazon-glacier/, Jan
2013.

[40] E. Naone. Are We Safeguarding Social Data? http://www.
technologyreview.com/blog/editors/22924/, Feb 2009.

[41] F. Oggier and A. Datta. Byzantine Fault Tolerance of Regenerating
Codes. In Proc. of P2P, 2011.

[42] OpenStack Object Storage. http://www.openstack.org/projects/
storage/.

[43] Panzura. US Department of Justice Case Study. http://panzura.
com/us-department-of-justice-case-study/.

[44] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, and J. Li. Simple
Regenerating Codes: Network Coding for Cloud Storage. In Proc.
of IEEE INFOCOM, Mar 2012.

[45] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (raid). In Proc. of ACM SIGMOD, 1988.

[46] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-like Systems. Software - Practice & Experience,
27(9):995–1012, Sep 1997.

[47] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn.
A Performance Evaluation and Examination of Open-Source Era-
sure Coding Libraries For Storage. In Proc. of USENIX FAST, 2009.

[48] C. Preimesberger. Many data centers unprepared for
disasters: Industry group. http://www.eweek.com/c/a/IT-
Management/Many-Data-Centers-Unprepared-for-Disasters-
Industry-Group-772367/, Mar 2011.

[49] M. O. Rabin. Efficient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance. Journal of the ACM, 36(2):335–348,
Apr 1989.

[50] K. Rashmi, N. Shah, and P. Kumar. Optimal Exact-Regenerating
Codes for Distributed Storage at the MSR and MBR Points via a
Product-Matrix Construction. IEEE Trans. on Information Theory,
57(8):5227–5239, Aug 2011.

[51] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran.
Explicit Construction of Optimal Exact Regenerating Codes for
Distributed Storage. In Proc. of Allerton Conference, 2009.

[52] I. Reed and G. Solomon. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, 1960.

[53] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel
Erasure Codes for Big Data. Proc. of VLDB Endowment, 2013.

[54] B. Schroeder and G. A. Gibson. Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You? In Proc. of
USENIX FAST, Feb 2007.

[55] K. Shum. Cooperative Regenerating Codes for Distributed Stor-
age Systems. In Proc. of IEEE Int. Conf. on Communications (ICC),
Jun 2011.

[56] K. Shum and Y. Hu. Exact Minimum-Repair-Bandwidth Coop-
erative Regenerating Codes for Distributed Storage Systems. In
Proc. of IEEE Int. Symp. on Information Theory (ISIT), Jul 2011.

[57] C. Suh and K. Ramchandran. Exact-Repair MDS Code Construc-
tion using Interference Alignment. IEEE Trans. on Information
Theory, 57(3):1425–1442, Mar 2011.

[58] TechCrunch. Online Backup Company Carbonite
Loses Customers’ Data, Blames And Sues Suppliers.
http://techcrunch.com/2009/03/23/online-backup-company-
carbonite-loses-customers-data-blames-and-sues-suppliers/,
Mar 2009.

[59] TechTarget. Cloud case studies: Data storage pros offer first-
hand experiences. http://searchcloudstorage.techtarget.com/
feature/Cloud-case-studies-Data-storage-pros-offer-first-hand-
experiences/.

[60] M. Vrable, S. Savage, and G. Voelker. Cumulus: Filesystem backup
to the cloud. In Proc. of USENIX FAST, 2009.

[61] M. Vukolić. The Byzantine Empire in the Intercloud. ACM
SIGACT News, 41:105–111, Sep 2010.

[62] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes
in Distributed Storage Systems. In IEEE GLOBECOM Workshops,
2010.

[63] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid Ap-
proach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, 2011.

[64] ZDNet. AWS cloud accidentally deletes customer data.
http://www.zdnet.com/aws-cloud-accidentally-deletes-
customer-data-3040093665/, Aug 2011.

[65] zfec. http://pypi.python.org/pypi/zfec.

Henry C. H. Chen received his B.Eng. in Com-
puter Engineering and M.Phil. in Computer Sci-
ence and Engineering from the Chinese Univer-
sity of Hong Kong in 2010 and 2012 respectively.
He is now a research assistant at the Chinese
University of Hong Kong. His research interests
are in security and applied cryptography.

Yuchong Hu received the B.S. degree in Com-
puter Science and Technology from the School
for the Gifted Young, University of Science &
Technology of China, Anhui, China, in 2005. He
received the Ph.D. degree in Computer Science
and Technology from the School of Computer
Science, University of Science & Technology of
China, in 2010. He was a postdoctoral fellow
at the Institute of Network Coding, the Chinese
University of Hong Kong. His research interests
include network coding and distributed storage.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now an assistant professor of the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests are in cloud storage, dis-

tributed systems and networks, and security/resilience.

Yang Tang received the B.Eng. degree in Com-
puter Science and Technology from Tsinghua
University in 2009 and the M.Phil. degree in
Computer Science and Engineering from the
Chinese University of Hong Kong in 2011.
He is currently working toward the Ph.D. de-
gree in Computer Science at Columbia Uni-
versity. His research interests are in reliabil-
ity/security of software systems and program
analysis/verification.

