
1

Enabling Concurrent Failure Recovery for
Regenerating-Coding-Based Storage Systems:
From Theory to Practice (Supplementary File)

Runhui Li, Jian Lin and Patrick P. C. Lee

✦

1 PROOFS

We present the proofs of the theoretical results in Sec-
tion 3.3 of the main file.

1.1 Proof of Theorem 1

We can formally build our proof based on the analysis of
the information flow graph as in [1]. Here, we only show
the main idea. Let d be the number of surviving nodes
from which the relayer downloads data for recovery. Let
β be the amount of data downloaded (per stripe) from
each of the d surviving nodes to recover t failed nodes.
We assume that the reconstructed data will be stored
on t new nodes, which contain a total of dβ units of
information.

We first consider t < k. Due to the MDS property, we
can restore the original data from any k out of n nodes,
each storing M

k
units of data. For example, we can select

a set of any k− t̂ originally surviving nodes (denoted by
set X) and a set of any t̂ new nodes (denoted by set Y)
for some t̂ ≤ t. The total amount of useful information
must be at least M in order for the original data to
be restorable. However, Y contains (k − t̂)β units of
information derived from X . By excluding the redundant
information, we require:

M

k
(k − t̂) + (dβ − (k − t̂)β) ≥ M, for any t̂ ≤ t.

The left side is minimum when t̂ = t. Thus, the recovery
bandwidth (i.e., dβ) must be at least M×d×t

k(d−k+t) . To mini-
mize the recovery bandwidth with respect to d, we set
d = n− t and the result follows.

When t ≥ k, any k out of the t new nodes must
be able to restore the original data due to the MDS
property. Thus, the t new nodes must contain M units
of useful information, which can be reconstructed by
downloading data from any k surviving nodes as in
erasure codes. The recovery bandwidth is M .

• R. Li, J. Lin and P. Lee are with the Chinese University of Hong Kong,
Shatin, N.T., Hong Kong (emails: {rhli, jlin, pclee}@cse.cuhk.edu.hk)

1.2 Proof of Theorem 2

Since MSR codes achieve the lower bound of recovery
bandwidth for single failure recovery, the amount of data
downloaded from each surviving node is M

k(n−k) [1] (see
Equation (1) of the main file).

Consider t < k. CORE in essence performs t single
failure recoveries based on MSR codes, and in each
recovery we actually download M

k(n−k) units of data from
each of the n− t surviving nodes. If the failure pattern is
good, then we can recover the virtual packets and hence
the lost data. The lower bound is achieved for t < k. For
t ≥ k, we can simply download M units of data from
any k surviving nodes and any failure pattern can be
recovered. The result follows.

2 COMPARISONS WITH BASELINE MINIMUM

STORAGE REGENERATING (MSR) CODES

Baseline MSR code constructions (e.g., [3], [4]) can re-
cover a single failure by downloading encoded packets
from less than n − 1 surviving nodes at the expense
of higher recovery bandwidth. They can also recover
concurrent failures by recovering each failure individu-
ally. In the following, we argue that CORE still provides
benefits over the baseline MSR codes.

For the baseline MSR code constructions, let d (where
k ≤ d ≤ n−1) be the number of surviving nodes that are
connected for single failure recovery. We can express the
minimum recovery bandwidth (denoted by γMSR) as a
function of d as follows [1]:

γMSR =
Md

k(d+ 1− k)
. (1)

To recover from t failures (where t ≥ 1), MSR codes
can connect to d ≤ n − t surviving nodes and recover
each failure individually. Since γMSR decreases with
increasing d, we set d = n − t to minimize the recovery
bandwidth. Note that the total recovery bandwidth of
recovering each failure individually may be higher than
M . In this case, MSR codes can resort to conventional
recovery to recover all t failures, so the recovery band-
width is upper-bounded by M . Thus, the minimum

2

recovery bandwidth of the baseline MSR codes for t-
failure recovery (denoted by γMSR(t)) can be expressed
as:

γMSR(t) = min

(

M(n− t)t

k(n− t+ 1− k)
,M

)

. (2)

We now compare CORE with the baseline MSR codes.
Similar to Section 3.4 of the main file, we compare the
bandwidth ratio, which we now define as the ratio of
recovery bandwidth of CORE to the minimum recovery
bandwidth of the baseline MSR codes. We vary (n, k)
and the number t of failed nodes to be recovered. We
also consider two cases of CORE: (i) recovering a good
failure pattern and (ii) recovering a bad failure pattern.

Figure 1(a) shows the bandwidth ratios for good fail-
ure patterns. For t = 1, both CORE and the baseline MSR
codes perform recovery in the same way, so they have
the same recovery bandwidth; for t = k, both CORE and
the baseline MSR codes are the same as conventional
recovery, and hence have the same recovery bandwidth
as well. For 1 < t < k, CORE achieves bandwidth
savings over the baseline MSR codes, for example, by
10-17%, 20-25%, and 11-30% for t = 2, t = 3 and
t = 4, respectively. The reasons are two-fold. First, CORE
operates based on the MSR codes with d = n− 1, while
the baseline MSR codes operate with d = n− t. A larger
d implies lower recovery bandwidth (see Equation 1).
Second, instead of recovering each failure individually,
CORE recovers all failures concurrently, thereby avoid-
ing redundant downloads.

Figure 1(b) shows the bandwidth ratios for bad failure
patterns. We see that CORE has higher recovery band-
width than the baseline MSR codes in the cases when t

is small. For example, for t = 2, the recovery bandwidth
of CORE is 13-28% higher than that of the baseline MSR
codes. The reason is that in order to recover a bad t-
failure pattern, CORE actually downloads data as in
(t+1)-failure recovery. Nevertheless, CORE still achieves
bandwidth savings for most cases, say by 3%-18% over
the baseline MSR codes for t = 4. Considering that
only less than 1.6% of failure patterns are bad failure
patterns (see Section 3.2 of the main paper), CORE shows
significant bandwidth savings over the baseline MSR
codes in general.

It is worth noting that when constructing the base-
line MSR codes, we must fix d in advance. However,
the “best” value of d is difficult to determine, since it
depends on the number t of failed nodes and t is a
variable in practice. To elaborate, suppose that we fix
d = n − t∗ for some constant t∗. If t < t∗, the recovery
bandwidth is sub-optimal as we can further reduce the
recovery bandwidth by setting d = n − t; if t > t∗,
we perform conventional recovery, which is again sub-
optimal. On the other hand, CORE operates on the MSR
codes with d = n−1, and supports the optimal recovery
for a general number of failures in most cases (i.e., for
good failure patterns).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6 7 8 9 10

B
a

n
d

w
id

th
 r

a
ti
o

t

(12,6)
(16,8)

(20,10)

(a) Good failure patterns

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 3 4 5 6 7 8 9

B
a

n
d

w
id

th
 r

a
ti
o

t

(12,6)
(16,8)

(20,10)

(b) Bad failure patterns

Fig. 1. Ratio of recovery bandwidth of CORE to that of

the baseline MSR codes.

3 COMPARISONS OF IMMEDIATE RECOVERY

AND LAZY RECOVERY

CORE allows a storage system to defer the immediate re-
covery of a single failure, but instead recover concurrent
failures in batch. We now show that CORE reduces the
recovery bandwidth of immediate recovery in general. 1

Suppose that t failures show up one by one. In im-
mediate recovery, we recover each (single) failure using
MSR codes with d = n−1, which achieves the minimum
recovery bandwidth for single failure recovery. Thus, the
total recovery bandwidth of immediate recovery for t

failures (denoted by γimmediate) is:

γimmediate = t×
M(n− 1)

k(n− k)
. (3)

We now compare the recovery bandwidth of CORE
with that of immediate recovery. We now define the
bandwidth ratio as the ratio of the recovery bandwidth
of CORE to that of immediate recovery. We vary (n, k)
and the number t of failed nodes to be recovered. We
again consider two cases of CORE: (i) recovering a good
failure pattern and (ii) recovering a bad failure pattern.

Figure 2(a) shows the bandwidth ratios for good fail-
ure patterns. In all cases, CORE achieves bandwidth
savings over immediate recovery, and the bandwidth

1. The authors of [2] show that cooperative MSR codes achieve the
same recovery bandwidth in both immediate and deferred recoveries,
but their definition of “recovery bandwidth” differs from ours as the
former also accounts for the amount of data transferred among new
nodes.

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 3 4 5 6 7 8 9 10

B
a

n
d

w
id

th
 r

a
ti
o

t

(12,6)
(16,8)

(20,10)

(a) Good failure patterns

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 3 4 5 6 7 8 9

B
a

n
d

w
id

th
 r

a
ti
o

t

(12,6)
(16,8)

(20,10)

(b) Bad failure patterns

Fig. 2. Ratio of recovery bandwidth of CORE to that of

immediate recovery.

ratios drop (i.e., the savings increase) as t increases. For
example, for (20,10), CORE achieves bandwidth savings
by 5.3-47.4% for 2 ≤ t ≤ 10.

Figure 2(b) shows the bandwidth ratios for bad fail-
ure patterns. For small t, CORE has higher recovery
bandwidth (by up to 34.2%) than immediate recovery,
mainly because the recovery of a t-node bad failure
pattern is done by a (t+ 1)-failure recovery. For large t,
CORE achieves bandwidth savings (by up to 41.5%) over
immediate recovery. Given that bad failure patterns only
account for a small fraction of all failure patterns, CORE
achieves bandwidth savings over immediate recovery in
general.

REFERENCES

[1] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network Coding for Distributed Storage Systems. IEEE
Trans. on Information Theory, 56(9):4539–4551, Sep 2010.

[2] A. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing Multiple
Failures with Coordinated and Adaptive Regenerating Codes. In
Proc. of NetCod, Jun 2011.

[3] K. Rashmi, N. Shah, and P. Kumar. Optimal Exact-Regenerating
Codes for Distributed Storage at the MSR and MBR Points via a
Product-Matrix Construction. IEEE Trans. on Information Theory,
57(8):5227–5239, Aug 2011.

[4] C. Suh and K. Ramchandran. Exact-Repair MDS Code Construc-
tion using Interference Alignment. IEEE Trans. on Information
Theory, 57(3):1425–1442, Mar 2011.

