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Enabling Secure and Space-Efficient Metadata
Management in Encrypted Deduplication

Jingwei Li, Suyu Huang, Yanjing Ren, Zuoru Yang, Patrick P. C. Lee, Xiaosong Zhang, and Yao Hao

Abstract—Encrypted deduplication combines encryption and deduplication in a seamless way to provide confidentiality guarantees for
the physical data in deduplicated storage, yet it incurs substantial metadata storage overhead due to the additional storage of keys. We
present a new encrypted deduplication storage system called Metadedup, which suppresses metadata storage by also applying
deduplication to metadata. Its idea builds on indirection, which adds another level of metadata chunks that record metadata information.
We find that metadata chunks are highly redundant in real-world workloads and hence can be effectively deduplicated. We further extend
Metadedup to incorporate multiple servers via a distributed key management approach, so as to provide both fault-tolerant storage and
security gaurantees. We extensively evaluate Metadedup from performance and storage efficiency perspectives. We show that
Metadedup achieves high throughput in writing and restoring files, and saves the metadata storage by up to 93.94% for real-world backup
workloads.

Index Terms—Encrypted deduplication, metadata management, cloud storage
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1 INTRODUCTION

Chunk-based deduplication is widely used in modern primary
[31] and backup [26], [39], [42] storage systems to achieve
high storage savings. It stores only a single physical copy of
duplicate chunks, while referencing all duplicate chunks to
the physical copy by small-size references. Prior studies show
that deduplication can effectively reduce the storage space
of primary storage by 50% [31] and that of backup storage
by up to 98% [39]. This motivates the wide deployment of
deduplication in various commercial cloud storage services
(e.g., Dropbox, Google Drive, Bitcasa, Mozy, and Memopal)
to reduce substantial storage costs [18].

To provide confidentiality guarantees, encrypted deduplica-
tion [7], [8] adds an encryption layer to deduplication, such
that each chunk, before being written to deduplicated storage,
is deterministically encrypted via symmetric-key encryption
by a key derived from the chunk content (e.g., the key is
set to be the cryptographic hash of chunk content [14]). This
ensures that duplicate chunks have identical content even
after encryption, and hence we can still apply deduplication
to the encrypted chunks for storage savings. Many studies
(e.g., [5], [7], [25], [33], [36]) have designed various encrypted
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deduplication schemes to efficiently manage outsourced data
in cloud storage.

In addition to storing non-duplicate data, a deduplicated
storage system needs to keep deduplication metadata. There
are two types of deduplication metadata. To check if identical
chunks exist, the system maintains a fingerprint index that
tracks the fingerprints of all chunks that have already been
stored. Also, to allow a file to be reconstructed, the system
maintains a file recipe that holds the mappings from the
chunks in the file to the references of the corresponding
physical copies.

Deduplication metadata is notoriously known to incur
high storage overhead [11], [21], [30], especially for the highly
redundant workloads (e.g., backups) as the metadata storage
overhead becomes more dominant. In this work, we argue
that encrypted deduplication incurs even higher metadata
storage overhead, as it additionally keeps key metadata, such
as the key recipes that track the chunk-to-key mappings to
allow the decryption of individual files. Since the key recipes
contain sensitive key information, they need to be managed
separately from file recipes, encrypted by the master keys of
file owners, and individually stored for different file owners.
Such high metadata storage overhead can negate the storage
effectiveness of encrypted deduplication in real deployment.

Contributions. To address the storage overhead of both
deduplication metadata and key metadata, we design and
implement Metadedup, a new encrypted deduplication
system that effectively suppresses metadata storage. Our
contributions are summarized as follows.

• Metadedup builds on the idea of indirection. Instead of
directly storing all deduplication and key metadata in
both file and key recipes (both of which dominate the
metadata storage overhead), we group the metadata in
the form of metadata chunks that are stored in encrypted
deduplication storage. Thus, both file and key recipes
now store references to metadata chunks, which now
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contain references to data chunks (i.e., the chunks of file
data). If Metadedup stores nearly identical files regularly
(e.g., periodic backups [39]), the corresponding file and key
metadata are expected to have long sequences of references
that are in the same order. This implies that the metadata
chunks are highly redundant and hence can be effectively
deduplicated.

• We propose a distributed key management approach that
adapts Metadedup into a multi-server architecture for fault-
tolerant data storage. We generate the key of each data
chunk from one of the servers, encode it via secret sharing,
and distribute the resulting shares to remaining servers.
This ensures fault-tolerant storage of data chunks, while
being robust against adversarial compromise on a number
of servers through our decoupled management of keys
and shares.

• We implement a Metadedup prototype and evaluate its
performance in a networked setup. Compared to the
network speed of our Gigabit LAN testbed, we show that
Metadedup incurs only 13.09% and 3.06% of throughput
loss in writing and restoring files, respectively.

• Finally, we conduct trace-driven simulation on two real-
world datasets. We show that Metadedup achieves up to
93.94% of metadata storage savings in encrypted dedupli-
cation. We also show that Metadedup maintains the storage
load balance among all servers.

The source code of our Metadedup prototype is now avail-
able at http://adslab.cse.cuhk.edu.hk/software/metadedup.

The rest of this paper proceeds as follows. Section 2
motivates the need of mitigating metadata storage overhead
in encrypted deduplication via mathematical analysis and
trace-driven simulation. Section 3 reviews related work.
Section 4 presents the design of Metadedup. Section 5 extends
Metadedup with distributed key management. Section 6
presents the implementation details of our Metadedup proto-
type. Section 7 presents our evaluation results. Finally, Sec-
tion 8 concludes this paper. In the digital supplementary file,
we present security analysis on Metadedup and additional
evaluation results on the storage usage of Metadedup.

2 BACKGROUND AND MOTIVATION

2.1 Encrypted Deduplication Storage
Deduplication is a technique for space-efficient data storage
(see [40] for a complete survey of deduplication). It partitions
file data into either fixed-size or variable-size chunks, and
identifies each chunk by the cryptographic hash, called
fingerprint, of the corresponding content. Suppose that the
probability of fingerprint collision against different chunks
is practically negligible [10]. Deduplication stores only one
physical copy of duplicate chunks, and refers the duplicate
chunks that have the same fingerprint to the physical copy
by small references.

Encrypted deduplication augments plain deduplication
(i.e., deduplication without encryption) with an encryption
layer that operates on the chunks before deduplication, and
provides data confidentiality guarantees in deduplicated
storage. It implements the encryption layer based on message-
locked encryption (MLE) [7], [8], which encrypts each chunk
with a symmetric key (called the MLE key) derived from the
chunk content; for example, the MLE key can be computed

as the cryptographic hash of the chunk content in convergent
encryption [14]. This ensures that the encrypted chunks
derived from duplicate chunks still have identical content,
thereby being compatible with deduplication.

Historical MLE [8] builds on some publicly available func-
tion (e.g., cryptographic hash function [14]) to generate MLE
keys. It provides security protection for unpredictable chunks,
meaning that the chunks are drawn from a sufficiently large
message set, such that the content of a chunk cannot be easily
predicted; otherwise, if a chunk is predictable and known
to be drawn from a finite set, historical MLE is vulnerable
to the offline brute-force attack [8]. Specifically, given a target
encrypted chunk, an adversary samples each possible chunk
from the finite message set, derives the corresponding MLE
key (e.g., by applying the cryptographic hash function to
each sampled chunk [14]), and encrypts each sampled chunk
with such a key. If the encryption result is equal to the target
encrypted chunk, the adversary can infer that the sampled
chunk is the original input of the target encrypted chunk.

To defend against the offline brute-force attack, DupLESS
[7] implements server-aided MLE, which introduces a global
secret and protects the key generation process against public
access. Server-aided MLE leverages a dedicated key manager
to maintain a global secret that is protected from an adversary.
It derives the MLE key of each chunk based on both the
global secret and the cryptographic hash (a.k.a., fingerprint)
of the chunk, such that an adversary cannot feasibly derive
the MLE keys of any sampled chunks without knowing
the global secret. Thus, if the global secret is secure, server-
aided MLE is robust against the offline brute-force attack,
and achieves security for both predictable and unpredictable
chunks; otherwise, if the global secret is compromised, it
preserves the same security guarantees for unpredictable
chunks as in historical MLE [8]. DupLESS [7] further imple-
ments two mechanisms to strengthen security: (i) the oblivious
pseudorandom function (OPRF) protocol, which allows the
client to submit the fingerprint of each chunk (to the key
manager) in a blinded manner, such that the key manager
can successfully generate MLE keys without learning the
actual fingerprints; and (ii) the rate-limiting mechanism,
which proactively controls the key generation rate of the
key manager, so as to defend the online brute-force attack
from the compromised clients that try to issue too many key
generation requests.

In this paper, we focus on mitigating the metadata storage
overhead in MLE-based (including both historical MLE and
server-aided MLE) encrypted deduplication storage systems.

2.2 Metadata Storage Overhead

Section 1 reviewed the metadata components (i.e., deduplica-
tion metadata and key metadata) of encrypted deduplication.
We now show the high metadata storage overhead in
encrypted deduplication via both mathematical analysis and
trace-driven simulation.

Mathematical analysis. We first model the metadata storage
overhead in encrypted deduplication. We refer to the data
before and after deduplication as logical data and physical data,
respectively. Suppose that L is the size of logical data, P is the
size of physical data, and f is the ratio of the deduplication
metadata size to the chunk size. Plain deduplication incurs
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(a) Physical data vs. metadata in FSL and VM datasets
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(b) Breakdown of metadata in FSL and VM datasets

Fig. 1: Cumulative data and metadata storage of encrypted
deduplication in two real-world datasets of backup workloads
FSL and VM. The x-axis shows the number of FSL/VM backups
issued to encrypted deduplication storage, and the y-axis shows
the cumulative data/metadata sizes after issuing each backup.

f × (L+P ) of metadata storage [38], [39], where f ×L is the
size of file recipes and f×P is the size of the fingerprint index.
Encrypted deduplication has additional metadata storage for
keys. It incurs a total of f × (L + P ) + k × L of metadata
storage, where k is the ratio of the key metadata size to the
chunk size, and k × L is the size of key recipes.

Based on the above analysis, we show via an example
how the metadata storage overhead becomes problematic in
encrypted deduplication. Suppose that the size of deduplica-
tion metadata is 30 bytes [39], the size of key metadata
is 32 bytes (e.g., for AES-256 encryption keys), and the
chunk size is 8 KB [39]. Then f = 30 bytes

8 KB ≈ 0.0037 and
k = 32 bytes

8 KB ≈ 0.0039. If the deduplication factor (i.e., L/P )
is 50× [39] and L = 50 TB, then plain deduplication and
encrypted deduplication incur 191.25 GB and 391.25 GB of
metadata, or equivalently 18.67% and 38.21% additional
storage for 1 TB of physical data, respectively.

Trace-driven simulation. Our trace-driven simulation on
two real-world datasets of backup workloads, namely FSL
and VM (see Section 7.2 for the dataset details), further
validates the high metadata storage overhead in encrypted
deduplication. As in our mathematical analysis, we set the
size of deduplication metadata as 30 bytes per chunk and
the size of key metadata as 32 bytes per chunk.

We measure the cumulative metadata storage as we issue
backups to encrypted deduplication storage. Figure 1(a)
shows that the cumulative size of metadata (including the
fingerprint index, file recipes, and key recipes) increases
with the number of backups, and even exceeds that of
physical data in the VM dataset. For example, after 26
VM backups, the cumulative data and metadata consume
168.24 GB and 615.18 GB, respectively. Figure 1(b) further
presents the breakdown of metadata storage. We observe
that the dominant components are the file recipes and key
recipes, which contribute to 99.58% and 99.81% of the overall

metadata storage in the FSL and VM datasets, respectively.

3 RELATED WORK

Some studies organize metadata in efficient ways to improve
deduplication performance [9], [26], [29], [42] or storage
efficiency [27]. For example, DDFS [42], Sparse Indexing
[26], and Extreme Binning [9] are designed to effectively
cache a subset of fingerprint index entries, and mitigate the
performance bottleneck of disk access to the fingerprint index
on disk. Mandal et al. [29] transfer application metadata to
block-layer deduplication, so as to accelerate the dedupli-
cation speed. Lin et al. [27] separate metadata from data
to improve the storage efficiency of deduplication. While
the above studies address metadata management, they do
not consider how to mitigate metadata storage overhead in
deduplication.

Considering the high metadata storage overhead, several
studies reduce the amount of metadata in plain deduplica-
tion. We discuss their limitations in encrypted deduplication.
• Grouping and re-chunking. Fingerdiff [11] starts with

small chunks, and groups adjacent duplicate small chunks
into a big chunk for space-efficient metadata management.
FBC [28] and Subchunk [35] apply deduplication on big
chunks to reduce the amount of deduplication metadata,
and re-chunk the non-duplicate big chunks into small ones
for fine-grained deduplication. Bimodal [21] generalizes
grouping and re-chunking to operate in data regions.
However, these approaches depend on the prior knowl-
edge of deduplication results (e.g., whether some chunks
are duplicates), which can be abused to extract secret
information [17], [18], [32] against encrypted deduplication.
In addition, they cannot compress key metadata, since each
chunk still needs to be encrypted by the key derived from
its own content.

• Compression. Meister et al. [30] propose four approaches
to replace the fingerprints in file recipes by short code-
words, so as to compress deduplication metadata (see
Section 7.2 for details). However, they either cannot apply
to the key recipe that is encrypted by the file owner’s
master key, or only reduce the metadata of zero chunks.

• Key reduction. Dekey [22] applies deduplication to the
keys directly to reduce the amount of key metadata.
However, since the size of a key is often comparable to the
size of the additional reference (both are of tens of bytes) to
the corresponding physical copy, the storage saving of key
metadata can be negated by such additional deduplication
metadata in key-based deduplication. SecDep [41] and
REED [33] generate one MLE key for a group of chunks to
reduce the total number of keys. However, since duplicate
chunks are possibly encrypted with different keys (i.e., the
resulting encrypted chunks become different and cannot be
deduplicated), these systems [33], [41] degrade the storage
efficiency achieved by deduplication.

This paper is also related to some existing encrypted
deduplication designs. Lamassu [36] implements transparent
metadata management in encrypted deduplication. It places
metadata into some reserved sections of file data, so as to
be compatible with different applications. However, these
metadata sections are randomly encrypted, and cannot be
deduplicated along with data for storage savings. TEDStore
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Fig. 2: Metadedup architecture. In this section, we focus on a
single server for data and metadata management, and discuss
the extension to multiple servers in Section 5.

[24] balances the storage efficiency and data confidentiality
via tunable key management in encrypted deduplication,
while this paper targets metadata storage.

4 METADEDUP

Metadedup is designed for an organization that outsources
the storage of users’ data to a remote shared storage system.
It focuses on the storage of backup workloads, which are
known to have high content similarity [39]. It applies dedu-
plication to remove content redundancies of both data (i.e.,
the file data from users’ backup workloads) and metadata
(i.e., deduplication metadata and key metadata), so as to
improve the overall storage efficiency.

Metadedup builds on the client-server model (see Fig-
ure 2). A client is a software interface for users to process
backup files. It partitions a backup file into multiple chunks,
encrypts each chunk, and uploads the encrypted chunks to
a remote server that employs encrypted deduplication. The
server performs chunk-based deduplication, and only stores
the non-duplicate chunks that have unique content with
existing chunks. It also keeps the file recipe and key recipe of
each backup file (note that the key recipe is further encrypted
by the master key of the client that owns the backup file) for
the reconstruction of the backup file. Here, we assume that
the communication channels are carefully protected (e.g., via
SSL/TLS), so as to address network eavesdropping. To this
end, Metadedup aims for the following goals:
• Low storage overhead of metadata. It suppresses the

storage space of both file recipes and key recipes (which
dominate the metadata storage overhead as shown in
Section 2.2), while incurring only small storage overhead
to the fingerprint index as we also apply deduplication to
metadata.

• Security for data and metadata. It preserves the security
guarantees of underlying encrypted deduplication for both
data and metadata storage.

• Limited performance overhead. It adds small perfor-
mance overhead on writing (restoring) files to (from)
deduplicated storage.

In the following, we define the threat model of
Metadedup, and present its metadata deduplication design
in details. We also present the security analysis of Metadedup
on the protection of metadata chunks in Section 1 of the
digital supplementary file.

4.1 Threat Model
We consider an honest-but-curious adversary that exactly
follows the storage protocol, but attempts to learn the original
content of the data and metadata in storage. Specifically, the
adversary may take the following actions.

• It can compromise the server and access the fingerprint
index, file recipes, key recipes and physical copies of the
chunks that are kept by the server. It aims to infer the
original information of any data or metadata by observing
the server storage.

• In addition to the server, it can compromise some clients
and further access the original data or metadata of the
compromised clients. It aims to infer the original informa-
tion of unauthorized data or metadata that belong to other
non-compromised clients and are not permitted for access
by the compromised clients.

We ensure that our Metadedup design is compatible with
existing countermeasures [6], [17], [20], [25] that address
different threats against encrypted deduplication systems.
For example, a malicious client may abuse client-side dedu-
plication to learn whether other users have already stored
certain files [17], [18], and Metadedup can defeat the side-
channel leakage by adopting the server-side deduplication on
cross-user data [25] (see Section 6). A malicious server may
modify or even delete stored files to destroy the availability
of outsourced files, and Metadedup is compatible with the
availability countermeasure that disperses data across servers
via deduplication-aware secret sharing [25] (see Section 5).

We do not consider the threats that exploit the leakage of
access patterns [19], although Metadedup can work in con-
junction with the related countermeasures [37]. Metadedup
can also be deployed with a private server to tolerate
Byzantine faults [13], or with data auditing protocols [6], [20]
to efficiently check the integrity of outsourced files against
malicious corruptions.

4.2 Metadata Deduplication
Metadedup builds on indirection to preserve storage effi-
ciency, while minimizing the index overhead. Recall that
before deduplication, we first partition file data into chunks,
which we now call data chunks. After the data chunks are
encrypted by MLE (i.e., historical or server-aided MLE),
Metadedup collects the metadata of multiple regions of
adjacent encrypted data chunks into metadata chunks (each
of which corresponds to a region of encrypted data chunks).
Both file recipes and key recipes now store the information
of metadata chunks, which reference the physical copies of
data chunks in encrypted deduplication storage. Metadedup
further applies deduplication to metadata chunks as well.
Our observation is that identical data chunks across backups
tend to be clustered together, and form regions of dupli-
cates [21]. Thus, we can keep only one copy of metadata
chunks for such repeated regions of data, thereby mitigating
metadata storage overhead. Since Metadedup operates on
metadata chunks, which have significantly larger sizes than
fingerprints, it introduces limited storage overhead (e.g.,
0.33-1.94%; see Experiment C.1 in Section 2 of the digital
supplementary file) to the fingerprint index. In the following,
we describe the design decisions in Metadedup.
Segmentation. Metadedup works after the encryption pro-
cedure on the client side and collects metadata information
of the encrypted data chunks to be stored. It partitions the
stream of encrypted data chunks into multiple coarse-grained
data units called segments. A simple partitioning algorithm is
fixed-size segmentation, which fixes a segment size and puts a
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Fig. 3: Overview of metadata management in Metadedup.

segment boundary on every offset that is equal to a multiple
of the segment size. Fixed-size segmentation is fast, but is
vulnerable to the boundary-shift problem [16]. Since Metadedup
deduplicates the metadata of segments, the boundary-shift
problem can lead to many distinct segments and degrades
the effectiveness of metadata deduplication.

Thus, Metadedup adopts variable-size segmentation [26],
[33] to achieve high effectiveness for metadata deduplication.
Variable-size segmentation works on the fingerprints of
the encrypted data chunks, and configures the minimum,
average, and maximum segment sizes, where the average
segment size indicates a pre-defined divisor for segmentation.
It sequentially traverses each data chunk, and identifies a
segment boundary after a data chunk if (i) the size of the new
segment is larger than the minimum segment size, and (ii)
the fingerprint modulo the pre-defined divisor is equal to a
fixed constant (e.g., 1) or the inclusion of the encrypted data
chunk makes the size of the new segment larger than the
maximum segment size. By default, we fix the minimum and
maximum segment sizes as half and double of the average
segment size, respectively.

Metadata management. For each segment obtained from
the segmentation algorithm, Metadedup creates a metadata
chunk that keeps the fingerprint, size, key, and other nec-
essary metadata information derived from each encrypted
data chunk within the segment (see Figure 3). This enables
us to retrieve and decrypt a segment of data chunks based
on a metadata chunk.

To protect metadata chunks, Metadedup adopts historical
MLE (see Section 2.1) for both confidentiality and deduplica-
tion capabilities. Specifically, it computes the cryptographic
hash of each metadata chunk as a key, and uses the hash
key to encrypt this metadata chunk. The design decision
is driven from both performance and security perspectives.
From the performance perspective, historical MLE avoids the
interaction with the key manager in server-aided MLE (see
Section 2.1). From the security perspective, we argue that
the protection by historical MLE is sufficient for metadata
chunks, because it is much more computationally expensive
to launch the offline brute-force attack against metadata
chunks than against data chunks (see Section 1 of the digital
supplementary file).

Given the encrypted metadata chunks, Metadedup creates
both file and key recipes. Each entry of the file recipe keeps
the fingerprint, size and other metadata information of an
encrypted metadata chunk, while each entry of the key recipe
keeps the corresponding key. It further encrypts the key
recipe with the file owner’s master key for protection.

Metadedup applies deduplication to both encrypted
data and metadata chunks. Note that it does not further

compress the data and metadata chunks after deduplication,
since they are encrypted and less likely to benefit from
compression. Also, it does not further apply deduplication
to file recipes and key recipes. Both file recipes and key
recipes are now used to reference metadata chunks, and their
redundancies are relatively low. The benefits of eliminating
the recipe redundancies may be negated by the additional
deduplication metadata.

4.3 Basic Operations

We show how we incorporate variable-size segmentation
and metadata management into basic operations. We first
summarize the major notations used in the presentation of
Metadedup. Suppose that a client uses its individual master
key key to write and restore a target file. We denote the
file recipe and the key recipe of the target file as fRecipe
and kRecipe, respectively. We also denote a data chunk and
a metadata chunk by dChunk and mChunk, as well as
corresponding MLE keys as dkey and mkey, respectively.
We use [X]Y to denote the encryption output of an object X
(that can be kRecipe, dChunk or mChunk) encrypted with a
key Y (that can be key, dkey or mkey) using symmetric-key
encryption (e.g., AES).

Algorithm 1 shows the interaction between a client and
a server when writing a target file into storage. The client
first divides the target file into data chunks and encrypts
each data chunk (Lines 2-5). It creates segments based on
encrypted data chunks (Line 6), collects the metadata in each
segment into a metadata chunk (Lines 9-10), and encrypts
the metadata chunk using historical MLE (Lines 11-12). It
adds the deduplication metadata and key metadata of the
metadata chunk into the file and key recipes, respectively
(Lines 13-14). It further encrypts the key recipe with its
master key (Line 15), and uploads the following information
to the server (Line 16): (i) the file recipe and encrypted key
recipe, (ii) the encrypted data chunks, and (iii) the encrypted
metadata chunks.

The server performs deduplication on received (en-
crypted) data and metadata chunks, and stores the unique
ones (Lines 18-19). It also stores the file recipe and encrypted
key recipe (Line 20).

Algorithm 2 shows the two-round interactions for restor-
ing a target file. In the first round, the client requests the
metadata of the file based on its full pathname (Line 1);
the server retrieves and sends the file recipe, encrypted
key recipe and encrypted metadata chunks (Lines 2-5). In
the second round, the client decrypts the key recipe and
metadata chunks (Lines 7-10), and requests file data (Line 11);
the server retrieves and sends the encrypted data chunks
back to the client (Lines 12-14). The client decrypts each
data chunk based on the corresponding key in metadata
chunks (Lines 16-18), and finally assembles the data chunks
to reconstruct the original file (Line 19).

5 DISTRIBUTED KEY MANAGEMENT

One limitation of Metadedup is that it does not ensure the
fault tolerance of data chunks since the server is a single-
point-of-failure. To this end, we adopt a quorum-based
design [25], and extend Metadedup to incorporate multiple
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Algorithm 1 Write operation of Metadedup

Client input: target file file, client’s master key key
1: Initialize file and key recipes: fRecipe, kRecipe
2: Divide file into data chunks {dChunk}
3: for each dChunk do
4: dkey ← hash of dChunk
5: [dChunk]dkey ← encryption of dChunk with dkey

6: Divide {[dChunk]dkey} into segments {Seg}
7: for each Seg do
8: Initialize metadata chunk mChunk
9: for each [dChunk]dkey in Seg do

10: Add metadata of [dChunk]dkey into mChunk

11: mkey ← cryptographic hash of mChunk
12: [mChunk]mkey ← encryption of mChunk with mkey
13: Add deduplication metadata of [mChunk]mkey into

fRecipe
14: Add mkey into kRecipe

15: [kRecipe]key ← encryption of kRecipe with key
16: Upload:

fRecipe, [kRecipe]key, {[dChunk]dkey}, {[mChunk]mkey}

Server input: fingerprint index
17: Receive:

fRecipe, [kRecipe]key, {[dChunk]dkey}, {[mChunk]mkey}
18: Deduplicate {[dChunk]dkey} and {[mChunk]mkey}
19: Store unique {[dChunk]dkey} and {[mChunk]mkey}
20: Store fRecipe and [kRecipe]key

servers. Specifically, we treat each data chunk as a secret, and
encode it on the client side into s shares that are stored by s
distinct servers using a (s, t)-deduplication-aware secret sharing
algorithm (where s ≥ t > 0), in which the random factor in
traditional secret sharing is replaced by the cryptographic
hash of the input secret. This enables three properties: (i)
reliability, i.e., the data chunk can be correctly rebuilt if any t
shares are available; (ii) security, i.e., the data chunk remains
confidential if no more than t− 1 shares are compromised;
and (iii) deduplication-aware, i.e., identical data chunks are
encoded into identical shares that can be deduplicated on
the server side.

However, the deduplication-aware secret sharing algo-
rithm [25] relies on the assumption that each secret is
unpredictable (see Section 2.1); otherwise, it is susceptible
to the offline brute-force attack as in historical MLE. In other
words, an adversary that compromises a share can learn
the original data chunk, by finding the data chunk that is
encoded into the share (i.e., like the offline brute-force attack
in Section 2.1).

In this section, we argue that existing key management
approaches have limitations in addressing the unpredictabil-
ity assumption in the multi-server architecture. Thus, we
propose a distributed key management approach to ensure
data robustness against adversarial compromise, while pre-
serving secure and space-efficient metadata management.

5.1 Limitations of Existing Approaches
To address the unpredictability assumption, a simple way
is to extend the server-aided approach [7], in which we
introduce a global secret and generate the MLE key of each
data chunk based on the global secret in addition to the chunk
hash (see Section 2.1). Instead of using the MLE key directly
for encryption, we feed the MLE key and the corresponding

Algorithm 2 Restore operation of Metadedup

Client input: full pathname name of the target file
1: Request metadata based on name

Server input: fRecipe, {[mChunk]mkey} and [kRecipe]key
of each stored file

2: Receive name
3: Retrieve the corresponding fRecipe and [kRecipe]key based

on name
4: Retrieve {[mChunk]mkey} based on fRecipe
5: Send fRecipe, {[mChunk]mkey} and [kRecipe]key

Client input: client’s master key key
6: Receive fRecipe, {[mChunk]mkey} and [kRecipe]key
7: kRecipe← decryption of [kRecipe]key with key
8: for each [mChunk]mkey do
9: mkey ← corresponding key in kRecipe

10: mChunk ← decryption of [mChunk]mkey with mkey

11: Request data chunks using deduplication metadata in
{mChunk}

Server input: {[dChunk]dkey}
12: Receive deduplication metadata of data chunks
13: Retrieve {[dChunk]dkey} based on deduplication metadata
14: Send {[dChunk]dkey}

Client input: {mChunk}
15: Receive {[dChunk]dkey}
16: for each [dChunk]dkey do
17: Retrieve corresponding dkey in {mChunk}
18: dChunk ← decryption of [dChunk]dkey with dkey

19: Assemble {dChunk} to original file

data chunk as input to the deduplication-aware secret sharing
algorithm [25], which returns the shares that are in essence
protected by the global secret. If the global secret remains
confidential, we can provide security guarantees for all data
chunks without relying on the unpredictability assumption.

However, the above server-aided approach has two
limitations. First, the global secret is a single-point-of-failure,
in that the security level of all data chunks is inevitably
degraded if it is compromised. Second, the implementation
of the server-aided approach [7] protects the global secret in a
dedicated key manager, yet the key manager easily becomes
a performance bottleneck as the number of clients scales up.
Although we can replicate multiple key managers for load
balance, this introduces additional risk for the leakage of the
global secret.

Building on the server-aided approach, Duan [15] pro-
poses to distribute the global secret across multiple key
managers. Specifically, each key manager keeps a share
of the global secret, and returns a key share (based on its
secret share) upon key generation request. After collecting a
threshold number of key shares, a client can rebuild the MLE
key of a data chunk. This approach preserves security even if
a number of key managers are compromised. It also achieves
load balance, since the client can choose some unoccupied
key managers for key generation. However, the distributed
approach [15] builds on an expensive cryptographic primi-
tive (i.e., threshold signature) that is theoretically proven but
is not yet readily implemented in practice.
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Fig. 4: Overview of our distributed key management approach.
Here, we deploy five servers under (4, 3)-deduplication-aware
secret sharing. For example, for the input segment, we choose
the fifth server (based on the minimum fingerprint) to perform
key generation and upload the shares to the first four servers.

5.2 Our Proposed Key Management Approach

We propose a new distributed key management approach
in a multi-server architecture. To be compatible with (s, t)-
deduplication-aware secret sharing, we deploy s+ 1 servers,
so as to generate the MLE key of each data chunk from
one server (using the server-aided MLE approach [7]; see
Section 2.1) and distribute its resulting shares to the remain-
ing s servers (i.e., except the one that generates the MLE
key). Our rationale is to preserve security of the data chunks
against any single compromised server. The reason is that
an adversary cannot learn the original information based on
either a global secret or a single share of a data chunk from
the compromised server.

In addition, instead of arranging a dedicated server to
generate the MLE keys for all data chunks (e.g., the simple
approach in Section 5.1), we allow any server to perform key
generation. Specifically, we maintain an independent global
secret in each server (i.e., there are s + 1 global secrets in
total). For each data chunk, we leverage the chunk content
to choose the server to generate its MLE key. This ensures
that if more servers are compromised, the security level of
the overall system only gracefully degrades (see Theorem 2
in Section 5.3), since each server just generates the MLE keys
of a subset of all data chunks.

In the following, we elaborate the design decisions of
implementing our key management approach (see Figure 4)
in Metadedup.

Key generation. To generate MLE keys, one approach is to
run an oblivious pseudorandom function (OPRF) protocol
[7] on a per-chunk basis, such that the MLE keys can be
successfully generated without leaking the underlying chunk
fingerprints or the global secret. However, the OPRF protocol
incurs substantial performance overhead when there is a
huge number of data chunks [33], [41].

To mitigate the key generation performance overhead,
Metadedup uses the similarity-based approach [33] to gen-
erate coarse-grained MLE keys. Specifically, it performs
variable-size segmentation on the original data chunks (as
opposed to our basic design that applies segmentation to
encrypted data chunks; see Section 4.2). It chooses the data
chunk that has the minimum fingerprint in each segment, as
well as the server identified by the value of the minimum
fingerprint modulo s+ 1. Then it runs the OPRF protocol [7]
with the chosen server, so as to generate a per-segment MLE
key based on the minimum fingerprint.

Our design choice only slightly degrades the deduplica-
tion effectiveness of data chunks. The reason is that similar
segments share a large fraction of identical data chunks. They
are likely to have the same minimum fingerprint [9], [12] and
hence the same MLE key (recall that an identical minimum
fingerprint is always directed to the same server for key
generation). More importantly, our design does not affect
the deduplication effectiveness of metadata chunks, since
Metadedup creates metadata chunks on a per-segment basis
and identical segments still lead to identical metadata chunks
(see details below).

Metadata chunk organization. For each segment,
Metadedup encodes its data chunks by the corresponding
MLE key (i.e., as in the simple approach in Section 5.1) and
generates s share streams, which are then written to the
s servers except the one that is applied in key generation.
Since we distribute the key generation workload across all
s+ 1 servers, each of the s+ 1 servers will receive a share
stream if it is not selected for key generation. Thus, we have
s+ 1 share streams in total for all segments, while the MLE
key generation is also distributed across all s+ 1 servers.

For each of the s + 1 share streams, Metadedup creates
metadata chunks. Each metadata chunk keeps the finger-
prints, sizes, and other necessary metadata information of
the shares from a segment. We do not include MLE keys
in metadata chunks, since they are not necessary for the
reconstruction of original data chunks [25]. Also, we do not
need to encrypt metadata chunks (as opposed to our basic
design in Section 4.2), since the metadata chunks now only
include deduplication metadata for shares. This information
is not helpful for inferring original data chunks. For each of
the s+1 streams of metadata chunks, Metadedup creates a file
recipe that keeps the fingerprints, sizes, sequence numbers,
and the corresponding share indexes of metadata chunks.
Then it distributes the shares, metadata chunks, and the file
recipe in each stream to the corresponding server.

5.3 Robustness Analysis

We analyze the robustness of Metadedup from both reliability
and security perspectives. We first show that Metadedup
maintains the fault tolerance capability of the underlying
deduplication-aware secret sharing algorithm.

Theorem 1. Suppose that Metadedup deploys s+ 1 servers to
work with the (s, t)-deduplication-aware secret sharing algorithm.
If at most s− t servers fail, it can recover all data chunks from the
remaining t+ 1 available servers.

Proof. We prove the theorem by contradiction. Suppose the
contrary that at least one data chunk M cannot be recovered
from the t+1 available servers. We denote the set of available
servers by Sa, and the set of servers that store any share of
M by Sr . Since M cannot be recovered, the servers in Sa do
not have the sufficient number (i.e., t) of shares of M . This
implies that |Sa ∩ Sr| < t.

In addition, we have the number of servers in Sa as |Sa|
= t + 1, as well as |Sr| = s due to the (s, t)-secret-sharing
of M . Thus, we have |Sa ∪ Sr| = |Sa| + |Sr| − |Sa ∩ Sr| >
t+1+ s− t = s+1. This contradicts the hypothesis that the
total number of severs is s+ 1.
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We now consider the security of Metadedup under
distributed key management. Our goal is to show that even
an adversary compromises more servers, the security level
of Metadedup does not vanish completely; instead, it still
preserves the security of a large fraction of data chunks.

Theorem 2. Suppose that Metadedup deploys s+ 1 servers to
work with the (s, t)-deduplication-aware secret sharing algorithm,
and each server generates the MLE keys of 1

s+1 data chunks and
stores the shares of the remaining 1− 1

s+1 data chunks. Suppose
now that an adversary compromises any k out of the s+1 servers,
where k ≤ t. Metadedup provides security guarantees under
three cases:

• If k = 1, it ensures the security for all data chunks.
• If 1 < k < t, it ensures the security for 1− k

s+1 data chunks.
It also protects the remaining k

s+1 data chunks if they are
unpredictable.

• If k = t, it protects t
s+1 data chunks, if they are unpredictable.

Proof. When k = 1, the adversary can access shares and
global secret from a single compromised server. Since
Metadedup separates the management of the shares and
corresponding global secrets in different servers, the compro-
mised shares and the global secret in one server are unrelated.
The adversary cannot use either of them to infer the original
information.

When 1 < k < t, the adversary can access k global
secrets that are used to generate the MLE keys of k

1+s data
chunks. Since the global secrets corresponding to 1 − k

1+s
data chunks remain confidential, Metadedup ensures the
security for these data chunks. In addition, for each of the
remaining k

1+s data chunks, the adversary can access the
corresponding global secret and at most k − 1 shares of each
of the data chunks. Metadedup protects these data chunks if
they are unpredictable, since the adversary does not have the
sufficient number of shares to recover any original contents.

When k = t, the adversary can access at most t−1 shares
of the data chunks, whose MLE keys are generated from the
compromised servers. In other words, for each of the t

s+1
data chunks, the adversary only learns its t− 1 shares and
the corresponding global secret. Thus, Metadedup ensures
the security, if these data chunks are unpredictable.

6 IMPLEMENTATION

We implement a Metadedup prototype in C++ based on
our previously built system CDStore [25], a multi-cloud
storage system that supports encrypted deduplication via
deduplication-aware secret sharing (see Section 5). CDStore
also applies client-side deduplication on the data from the
same client, followed by server-side deduplication on that
from all clients, so as to be robust against side-channel
leakage. On the other hand, CDStore does not address
metadata management in the multi-cloud architecture; while
the goal of Metadedup is to augment CDStore with new
approaches to improve its security and storage efficiency.

We follow the modular approach as in CDStore to
implement Metadedup. Figure 5 shows how Metadedup
adds new modules to CDStore. We use OpenSSL 1.1.1 [3] to
implement the cryptographic operations in Metadedup. Our
current Metadedup prototype adds about 7,400 lines of code
to the original CDStore prototype.

Chunking Segmentation

Key Client

Key Manager

Coding Metadata Chunk 

Construction

MetaComm DataComm

MetaDedupCore DataDedupCore

Container Manager
Storage 

Backend

Client

Server

Files

Batching

Fig. 5: Implementation of the Metadedup prototype (the modules
that are newly added to CDStore are colored in orange).

6.1 Modules

We elaborate how Metadedup augments CDStore to realize
the write and restore operations with metadata deduplication
and distributed key management.

Write. As in CDStore, a client writes a file by partitioning it
into data secrets via the chunking module, which implements
Rabin fingerprinting [34] for variable-size chunking. Rabin
fingerprinting takes the minimum, average and maximum
sizes of chunks as inputs, which we now fix as 2 KB, 8 KB
and 16 KB, respectively. It groups chunks into variable-size
segments (see Section 4.2) via the segmentation module.

In the key client and key manager modules, Metadedup
implements the RSA-based OPRF [7], which uses RSA blind
signature to protect the original fingerprints against each
server. It configures each key manager (that is deployed in
each server) with a 1024-bit RSA public/private key pair. In
key generation, (i) the key client sends the blinded minimum
chunk fingerprint of each segment to corresponding key
manager; (ii) the key manager computes an RSA signature
on the blinded fingerprint; (iii) the key client unblinds the
result to form the segment-level MLE key.

In the coding module, Metadedup encodes each data
chunk into s shares, and organizes the shares of the chunks
from different segments into s+ 1 share streams.

Metadedup introduces a new metadata chunk construction
module. In each of the s+1 streams, it constructs a metadata
chunk based on the shares, whose original data chunks are
in the same segment. It also prepares a file recipe to keep
the metadata of the metadata chunks that correspond to the
same stream (i.e., we have s+ 1 file recipes in total).

Metadedup adds a MetaComm module for the communi-
cation of metadata chunks and file recipes with servers,
in addition to the original DataComm module for data
communication in CDStore. Specifically, in MetaComm, it
performs intra-user deduplication on metadata chunks, and
only sends (i) unique metadata chunks, and the (ii) file
recipe to corresponding server. To mitigate the network
transmission overhead, we batch the uploaded content in
an in-memory buffer of size 4 MB, and upload the buffered
content when the buffer is full.

On the server side, when a server receives the shares
and metadata chunks from a client, it applies deduplication
to them in the DataDedupCore and MetaDedupCore modules,
respectively. Each module maintains an independent fin-
gerprint index implemented based on the key-value store
levelDB [2], which maps a fingerprint to an ID of a container
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(see below) that stores the corresponding data share or
metadata chunk.

In the container manager, the server writes the unique
content, as well as the file recipe, in the units of containers.
Each container is now configured with a fixed size of 4 MB.
This mitigates the disk access overhead due to the frequent
accesses to the data shares or metadata chunks that have
smaller sizes of several kilobytes (e.g., 8 KB).

Restore. To restore a file, a client connects to any t+ 1 out of
s+ 1 servers to request for the shares of the file (recall that
Metadedup allows to recover all data chunks from any t+ 1
servers, see Theorem 1 in Section 5.3). Each server returns the
file recipe, metadata chunks, and shares. The client extracts
the deduplication metadata of shares, and recovers each data
chunk from the corresponding t shares. Finally, it assembles
the recovered data chunks to the original file.

6.2 Discussion

We discuss several implementation details in our prototype.

Parallelization. We follow CDStore to parallelize the op-
erations of Metadedup through multi-threading. We first
parallelize the processing of different modules, and transfer
the outputs of the paralleled modules via a high-performance
lock-free message queue [1]. In addition, we apply multi-
threading to the encoding and decoding operations for the
secret sharing algorithm (see [25] for details).

Filename protection. Our current implementation uses the
full pathname of a file to write and restore the corresponding
file data. We can use an obfuscated name (e.g., encoded by a
salted hash function) to access the file.

7 EVALUATION

7.1 Performance

Experiment A.1 (Microbenchmarks). We first implement the
metadata workflow of our metadata deduplication algorithms
(see Section 4.3) and study the computational performance
of each processing step. Here, we do not consider the client-
server communication as in our prototype evaluation (which
will be addressed in Experiment A.2).

We create 10 GB of unique data without any content
redundancy, which enables us to perform stress-tests with
the maximum amount of metadata. We generate the cor-
responding data chunks and their metadata that are to be
processed by the metadata deduplication algorithms. We
conduct microbenchmarks on a local machine equipped with
2.40 GHz Intel(R) Xeon(R) E5-2620 v3 and 32 GB memory.

We measure the time consumed in each step of data write
and restore procedures. Specifically, the write procedure
includes: (i) segmentation, which groups data chunks into
segments; (ii) metadata handling, which creates metadata
chunks and file recipes; (iii) recipe handling, which collects
both file and key recipes and further encrypts the key
recipe. The restore procedure includes: (i) recipe restore, which
reconstructs both the file recipe and the key recipe; and (ii)
metadata restore, which recovers all metadata chunks.

Table 1 presents the evaluation results averaged over 10
runs, including the 90% confidence intervals for the through-
put results. We observe that the most time-consuming step in

TABLE 1: Metadata deduplication microbenchmarks of meta-
data flow for the average segment size from 512 KB to 4 MB.
Note that the write and restore throughput results are computed
based on original data size (i.e., 10 GB).

Procedures/Steps 512KB 1MB 2MB 4MB

Write

Segmentation 0.394s 0.391s 0.395s 0.404s
Metadata handling 3.084s 0.632s 0.611s 0.627s
Recipes handling 0.441s 0.427s 0.425s 0.439s
Throughput (GB/s) 4.84±0.12 9.45±0.01 9.65±0.00 9.39±0.01

Restore
Recipes restore 0.005s 0.003s 0.001s 0.001s
Metadata restore 5.085s 2.664s 1.437s 0.858s
Throughput (GB/s) 1.96±0.00 3.75±0.00 6.95±0.00 11.65±0.01
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Fig. 6: Write throughput and restore throughput of Metadedup
under different average segment sizes. We omit the performance
variances across different runs since they are very small (e.g.,
within 0.07 MB/s).

the write procedure is metadata handling, which takes 42.65-
78.69% of the overall time. In addition, the write throughput
generally increases with the average segment size, since the
number of metadata chunks to be handled is reduced with
fewer segments. For example, when the average segment size
is at least 1 MB, the write throughput is capable to achieve
above 9 GB/s.

In the restore procedure, the performance bottleneck is
metadata restore, which takes more than 99% of the total
time. When the average segment size is 4 MB, the restore
throughput achieves 11.65 GB/s.
Experiment A.2 (Prototype performance). We now study the
performance of the Metadedup prototype (that enables both
metadata deduplication and distributed key management)
in a networked setting. Our evaluation setting is as follows.
We deploy a client instance on a machine that has a six-core
2.40GHz Intel(R) Xeon(R) CPU E5-2620 v3 and 32 GB RAM,
and five server instances on a different machine that has
a 10-core 2.40GHz Intel(R) Xeon(R) CPU E5-2640 v4 and
32 GB RAM. We distinguish different server instances in
the same machine by distinct ports. Both client and server
machines are connected via a 1 Gb/s switch. We configure
the coder module (of Metadedup) with two threads to boost
performance. We do not consider more threads, because our
results (see Figure 6) suggest that two encoding threads are
sufficient for achieving the required performance.

We vary the size of test data, and evaluate Metadedup
under different average segment sizes. Specifically, we create
and upload a certain size of unique data to five servers, and
then download them. We evaluate the throughput of both
write and restore operations, and present the average results
over 10 runs.

Figure 6 shows the performance results. In the write
operation, a larger average segment size leads to higher
performance of Metadedup. The reason is that it generates a
fewer number of MLE keys. When the average segment size
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increases to 4 MB, the write throughput reaches 73.33 MB/s
for processing 5 GB of unique data. To examine the perfor-
mance overhead, we find that the effective network speed of
our testbed is about 112.5 MB/s. Since (s, t)-deduplication-
aware secret sharing adds slightly more than s/t times
redundancies of the original data chunks [25], the upper
bound of the effective transfer speed of the shares is 112.5 ×
t/s = 84.38 MB/s, where s = 4 is the number of shares
encoded by a data chunk and t = 3 is the number of
necessary shares for the reconstruction of a data chunk. Thus,
the write operation incurs about 13.09% throughput loss to
the maximum transfer speed of the shares.

In the restore operation, the performance of Metadedup
(slightly) increases with the average segment size, because
the number of metadata chunks to be restored decreases.
When the average segment size is 4 MB, Metadedup achieves
109.06 MB/s for restoring 10 GB of unique data, only 3.06%
less than our effective network speed (Metadedup only needs
to retrieve t shares for restoring each data chunk). Note that
the overall restore performance significantly outperforms the
restore performance that we previously reported [23], which
achieves only about 50 MB/s when the average segment size
is 512 KB. The reason is that we now do not need to encrypt
metadata chunks (see Section 5.2), and hence avoid the serial
retrieval of metadata and data.

7.2 Storage Efficiency
We evaluate the storage efficiency of overall Metadedup that
enables metadata deduplication (see Section 4.2) and dis-
tributed key management (see Section 5.2). We assume that
Metadedup stores data in five servers via (4, 3)-deduplication-
aware secret sharing. We use two real-world datasets.
• FSL: This is a public dataset collected by the File systems

and Storage Lab (FSL) at Stony Brook University [4], [38].
We focus on the fslhomes, which contains the snapshots
of students’ home directories from a shared network file
system. Each FSL snapshot is represented by 48-bit finger-
prints of variable-size chunks, as well as corresponding
metadata information. We pick all snapshots from January
22 to June 17, 2013, aggregate them in a daily basis and
obtain 115 daily backups (that are not continuous). The
dataset takes 56.20 TB of data before deduplication.

• VM: This is our private dataset collected by ourselves and
is also used in the evaluation of our previous work [25],
[33]. It consists of the virtual machine (VM) image snap-
shots that capture the three-month programming activities
of students enrolling in a university programming course.
It includes 156 VM image snapshots, each of which is of
10 GB and represented by the SHA-1 fingerprints of 4 KB
fixed-size chunks. We aggregate all snapshots on a daily
basis, and obtain 26 full daily backups for the VM images.
The dataset contains 39.61 TB of data before deduplication.

We build a trace-driven simulator based on the metadata
size settings in Section 2.2 and the chunk data sizes in each
trace. The simulator adds the FSL or VM backups to storage
in the order of their creation times, and computes three
metrics: (i) data storage saving, the percentage of the total
data size reduced by data deduplication; (ii) metadata storage
saving, the percentage of the total metadata size (excluding
the fingerprint index) reduced by metadata deduplication;

and (iii) index overhead, the percentage of additional storage
cost to the fingerprint index.

In addition to FSL and VM backups, we also include a
new real-world dataset from Microsoft [31] for our evaluation
(see Section 2 of the digital supplementary file). We show
that the metadata deduplication approach (see Section 4.2)
achieves at least 67% of metadata storage savings under file
system snapshots.

Experiment B.1 (Overall storage efficiency). Table 2 shows
the simulation results of data and metadata storage savings
and index overhead after storing all FSL and VM backups,
where raw denotes the resulting data and metadata size
after applying exact data deduplication only (i.e., without
Metadedup). Metadedup degrades the data storage sav-
ings by 0.3-0.8% from exact deduplication. The reasons
are two-fold. First, it introduces redundancies (via secret
sharing) for the goal of fault-tolerant data storage. Second, it
only achieves near-exact deduplication for data chunks for
performance consideration (i.e., using similarity-based key
generation [33]).

Metadedup generally preserves high metadata storage
saving such as about 90% in the FSL dataset and 88-93%
in the VM dataset. Specifically, in addition to metadata
deduplication, Metadedup does not need to maintain key
recipes, since it protects data chunks via secret sharing
[25] that is a keyless security algorithm; on the other hand,
Metadedup amplifies metadata storage due to the distributed
storage across multiple servers.

Metadedup adds high storage overhead to the fingerprint
index. For example, when we vary the average segment size
from 512 KB to 4 MB, the index overheads increase from 478%
to 537% and from 481% to 580% in the FSL and VM datasets,
respectively. The reason is that a larger average segment size
introduces more non-duplicate shares, thereby increasing the
storage overhead of the fingerprint index (see below).

We argue that the index overhead is acceptable in practice,
since index storage only takes a small fraction (e.g., less
than 0.5%, see Section 2.2) in overall metadata storage. For
example, without Metadedup, we only need up to 1.39 GB of
index storage to process tens of TB backup workloads (e.g.,
FSL and VM, see Section 7.2); even Metadedup amplifies the
index storage by about five times, it takes up to 8.86 GB. More
importantly, the index storage is shared by multiple servers,
and each server only spends about 1.77 GB of index storage
on average; this can be fit for most commodity machines.

In addition, the index overhead is contributed by (i)
the non-duplicate data shares introduced by near-exact
deduplication and (ii) the unique metadata chunks in meta-
data deduplication. Our metadata deduplication approach
only introduces negligible part (e.g., less than 1.94% in a
single server; see Experiment C.1 in Section 2 of the digital
supplementary file) of the index overhead.

Experiment B.2 (Load balance analysis). We analyze the
storage load distribution across servers. Our goal is to show
that while not explicitly address this issue, Metadedup can
balance the storage load across all servers. We assume that
each server stores file recipes, metadata chunks and data
chunks in disk for long-term backup, while keeps fingerprint
index in memory for high deduplication performance [42].
To measure load balance, we define memory (disk) skew rate as
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TABLE 2: Overall storage efficiency of Metadedup in FSL and
VM datasets. Raw denotes the resulting data and metadata
size after applying exact data deduplication only (i.e., without
Metadedup). For Metadedup, we consider the average segment
size that ranges from 512 KB to 4 MB.

Components/Metrics Raw 512KB 1MB 2MB 4MB

FS
L

Total logical data size (GB) 57548.3
Total unique data size (GB) 431.90 750.28 779.13 810.80 846.21
Data Storage saving 99.25% 98.70% 98.65% 98.59% 98.53%

File recipes (GB) 178.19 7.73 3.86 1.92 0.86
Key recipes (GB) 190.07 – – – –
Metadata chunks (GB) – 27.22 29.48 32.16 35.25
Fingerprint index (GB) 1.39 8.03 8.26 8.54 8.86
Total metadata size (GB) 369.65 42.98 41.60 42.62 44.97
Metadata storage saving – 90.55% 90.98% 90.78% 90.23%
Index overhead – 478% 494% 514% 537%

V
M

Total logical data size (GB) 40560.0
Total data size (GB) 168.24 321.29 332.04 352.14 380.14
Data storage saving 99.59% 99.21% 99.18% 99.13% 99.06%

File recipes (GB) 297.07 4.77 2.38 1.19 0.59
Key recipes (GB) 316.88 – – – –
Metadata chunks (GB) – 32.42 39.17 49.10 67.30
Fingerprint index (GB) 1.23 7.15 7.35 7.77 8.37
Total metadata size (GB) 615.18 44.34 48.90 58.06 76.26
Metadata storage saving – 93.94% 93.23% 91.81% 88.94%
Index overhead – 481% 498% 532% 580%

Note: (i) The results of Metadedup are aggregated from all five servers;
(ii) The total metadata size excludes the size of fingerprint index.
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(a) Memory skew rates in FSL and VM datasets. The ranges of the y-axis
are from zero to 1.2% and 5% for the FSL and VM datasets, respectively.
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(b) Disk skew rates in FSL and VM datasets. The ranges of the y-axis
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Fig. 7: Load balance analysis of Metadedup under different
average segment sizes.

the percentage of the difference between the maximum and
minimum memory (disk) usage among all servers by their
average memory (disk) usage. Clearly, the lower the skew
rate is, the better load balance Metadedup achieves.

Figure 7 presents the memory and disk skew rates after
storing each FSL/VM backup. A larger average segment size
generally leads to a higher skew rate (for both memory and
disk). The reason is that the minimum chunk fingerprints
in large segments incur a skew distribution on the usage
of the servers for key generation. In addition, compared to
the FSL dataset, the VM dataset suffers from a (relatively)
higher skew rate. The reason is that the VM dataset includes
a large fraction of zero chunks, which naturally affects the
skew rate. Nevertheless, Metadedup achieves a good storage

load balance across servers. For example, after storing all
FSL backups, its memory skew rate is below 0.91%, while
disk skew rate is below 1.05%.

8 CONCLUSION

We present Metadedup, which exploits the power of indi-
rection to realize deduplication to metadata. It significantly
mitigates the metadata storage overhead in encrypted dedu-
plication, while preserving confidentiality guarantees for
both data and metadata. We extend Metadedup for secure
and fault-tolerant storage in a multi-server architecture;
in particular, we propose a distributed key management
approach, which preserves security guarantees even a num-
ber of servers are compromised. We extensively evaluate
Metadedup from performance and storage efficiency aspects.
We show that Metadedup significantly suppresses the storage
space of metadata, while incurring limited performance
overhead compared to network speed.
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