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Abstract— Distributed storage systems can store data with1

erasure coding to maintain data availability with low storage2

redundancy. One class of erasure coding is based on regenerating3

codes, which provably minimize the amount of data transferred4

for failure repair and realize the optimal tradeoff between the5

storage redundancy and the amount of traffic transferred for6

repair. Typical regenerating codes often require surviving storage7

nodes to encode their stored data for repair. In this paper, we8

study a framework called proxy-assisted regeneration, which9

offloads the repair process to a centralized proxy. We extend10

the previous applied work on proxy-assisted regeneration by11

providing theoretical validation. Specifically, we study a special12

class of regenerating codes called proxy-assisted minimum storage13

regenerating (PMSR) codes, which enable uncoded repair without14

the need of encoding in surviving nodes, while preserving the15

minimum storage redundancy and minimum amount of traffic16

transferred for repair. We formally prove the existence of PMSR17

codes for two configurations: 1) repairing single-node failures18

under double fault tolerance and 2) repairing double-node19

failures under triple fault tolerance. We also provide a semi-20

deterministic PMSR code construction for repairing single-node21

failures under double fault tolerance.22

Index Terms— Distributed storage, regenerating codes,23

network coding.24

I. INTRODUCTION25

W
E HAVE witnessed the wide deployment of storage26

systems in Internet-wide distributed settings, such as27

peer-to-peer storage (e.g., [3], [10], [24], [48]), data-center28

storage (e.g., [7], [15]), or multi-cloud storage (e.g., [1], [9]).29

Such storage systems stripe data over multiple nodes that30
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span across a networked environment, such that each node 31

can represent a storage server (for peer-to-peer and data- 32

center storage) or a cloud storage provider (for multi-cloud 33

storage). For data availability, a storage system must keep 34

user data for a long period of time and allow users to access 35

their data if necessary. However, storage systems are prone 36

to node failures [14], [15]; there are even real-world cases 37

suggesting that cloud storage providers experience failures that 38

incur permanent data loss [9]. It is thus important for a storage 39

system to ensure data availability in practical deployment. 40

One way to ensure data availability is to store redundant 41

data over multiple nodes. Redundancy can be generated via 42

erasure coding, which incurs much less redundancy overhead 43

than replication under the same fault tolerance [35], [49]. 44

Maximum distance separable (MDS) codes are one popular 45

family of erasure coding. An MDS code can be defined by two 46

parameters n and k (where k < n). It first divides an original 47

file of size M into k fragments of size M/k each, and then 48

encodes them into n fragments also of size M/k each. It has 49

the property (which we call the MDS property) that any k 50

out of n encoded fragments suffice to recover the original 51

file, while the storage redundancy is shown to be minimum. 52

By storing the n encoded fragments over n nodes, a storage 53

system can tolerate at most n − k node failures. Examples 54

of MDS codes are Reed-Solomon codes [34] and Cauchy 55

Reed-Solomon codes [5]. 56

When a node fails, it is necessary to recover the lost data 57

of the failed node to preserve fault tolerance. Since bandwidth 58

resources are limited in a distributed networked environment, 59

it is critical to minimize the bandwidth usage in the repair 60

process and hence improve the overall repair performance. 61

Regenerating codes [13] are one special class of erasure coding 62

that minimizes the repair bandwidth, defined as the amount of 63

data traffic transferred in the repair process. The repair process 64

of regenerating codes builds on network coding [2], such that 65

to repair a failed node, existing surviving (i.e., non-failed) 66

nodes encode their own stored data and send the encoded data 67

to the new node, which then reconstructs the lost data. It is 68

proven that regenerating codes achieve the optimal trade-off 69

between storage cost and repair bandwidth, and incur much 70

less bandwidth than conventional repair under the same storage 71

redundancy and fault tolerance settings. 72

Typical regenerating code constructions (e.g., [6], [12], 73

[32], [39], [41], [42], [52]) require storage nodes encode 74

stored data for repair. However, this may not be feasible for 75

some storage devices (e.g., tapes, optical disks, raw disks) or 76
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thin-cloud storage services [44] (e.g., Amazon S3) that merely77

provide the basic I/O functionalities without being equipped78

with any computational capability for the encoding operation.79

Some studies [36], [38], [40] use a repair-by-transfer approach80

to eliminate the need of encoding in surviving nodes for81

repair, but the new node still needs to be equipped with the82

computational capability to decode the lost data.83

This motivates us to study proxy-assisted regeneration,84

which offloads the repair process to a centralized proxy85

to realize uncoded repair, meaning that all storage nodes86

(including the surviving nodes and new nodes) no longer need87

to perform encoding or decoding operations for repair; in the88

meantime, we still achieve the same optimality as regenerating89

codes in terms of minimizing the amount of data transferred90

for repair. Our previous work NCCloud [9] provides a starting91

point to this problem from an applied perspective, in which it92

runs as a proxy and implements functional minimum storage93

regenerating (FMSR) codes to realize uncoded repair for multi-94

cloud storage. Through analysis and experiments, NCCloud95

can achieve up to 50% of repair bandwidth saving compared96

to double-fault tolerant RAID-6 codes [22] for a single-node97

failure repair. Previous studies (e.g., RACS [1], BlueSky [45],98

etc.) also consider a proxy-based design to simplify the cloud99

storage deployment, and the design can be feasibly generalized100

for a distributed proxy to address any single-point-of-failure101

concern [1]. In addition, for traditional RAID (Redundant102

Arrays of Independent Disks) [28], since raw disks do not103

have computational capability for the encoding/decoding oper-104

ations, the RAID controller can be viewed as a centralized105

proxy; this idea has also been realized in previous studies106

(e.g., [21], [50]) to perform RAID-like encoding/decoding107

operations in distributed storage systems. Thus, we believe108

that proxy-assisted regeneration is of practical interest for real-109

world distributed storage systems.110

Note that FMSR codes are designed as non-systematic111

codes as they do not keep the original uncoded data; instead,112

they store only linear combinations of original data called113

parity chunks. Each round of repair regenerates new parity114

chunks for the new nodes and ensures that the fault tolerance115

level is maintained. A trade-off of FMSR codes is that the116

whole encoded file must be decoded first if parts of a file117

are accessed. Nevertheless, FMSR codes are more suited118

to persistence-critical applications rather than performance-119

critical ones. One example is long-term archival applications,120

in which data backups are rarely read and it is common to121

restore the whole file rather than the partial content of the122

file.123

While proxy-assisted regeneration has been experimented in124

cloud testbed environments, the original NCCloud work [9]125

does not provide any formal theoretical analysis to prove126

whether FMSR codes exist and whether they can be deter-127

ministically constructed. In particular, given that each round128

of repair regenerates new parity chunks, there is no guarantee129

that the MDS property is maintained after multiple rounds130

of repair. In addition, NCCloud only focuses on single node131

failures, yet concurrent multi-node failures are also commonly132

found in practical distributed storage systems and lead to data133

loss (e.g., power-on restart) [8]. Thus, the key motivation134

of this work is to provide theoretical foundation for the 135

practicality of proxy-assisted regeneration. 136

A. Contributions 137

In this paper, we conduct formal theoretical analysis on the 138

optimality of proxy-assisted regeneration. We propose a family 139

of proxy-assisted minimal storage regenerating (PMSR) codes, 140

which support optimal uncoded repair for both single-node and 141

multi-node failures, by minimizing the total amount of data 142

read from all surviving nodes for failure repair. To summarize, 143

this paper makes the following contributions. 144

• We propose a family of PMSR codes with uncoded repair 145

and polynomial subpacketization for a general number 146

of node failures (including single-node and multi-node 147

failures). We formally establish a necessary condition of 148

PMSR codes in terms of the lower bound of the amount 149

of data read from each surviving node. 150

• We formally prove the existence of PMSR codes for two 151

configurations: (i) repairing single-node failures under 152

double fault tolerance and (ii) repairing double-node 153

failures under triple fault tolerance. 154

• We provide a semi-deterministic PMSR code construction 155

for repairing single-node failures under double fault tol- 156

erance, such that the chunk selection from each surviving 157

node is deterministic and the encoding coefficients used 158

to regenerate new chunks can be determined based on a 159

set of rules rather than completely at random. We show 160

that our semi-deterministic PMSR code construction sig- 161

nificantly speeds up the repair time compared to the non- 162

deterministic approach in NCCloud [9]. 163

B. Paper Organization 164

The rest of the paper proceeds as follows. Section II 165

reviews related work. Section III-A states the proxy-assisted 166

regeneration problem. Section III gives an information 167

flow model of the the proxy-assisted regeneration problem 168

and derives a bound of the minimum repair bandwidth. 169

Section IV characterizes the system model of PMSR codes. 170

Section V formally proves the existence of PMSR 171

codes. Section VI provides a family of deterministic PMSR 172

code construction. Section VII presents evaluation results. 173

Section VIII concludes the paper. 174

II. BACKGROUND AND RELATED WORK 175

Dimakis et al. [13] first propose regenerating codes based 176

on network coding [2] for distributed storage systems, and 177

prove that when repairing a single failed storage node, 178

regenerating codes achieve the optimal trade-off between 179

storage cost and repair bandwidth. There are two extreme 180

points on the optimal trade-off spectrum: minimum storage 181

regenerating (MSR) codes, which incur the minimum storage 182

redundancy as MDS codes, and minimum bandwidth regen- 183

erating (MBR) codes, which incur higher storage redundancy 184

than MDS codes to further minimize the repair bandwidth. 185

In this work, we focus on the MSR codes. 186

Previous studies (e.g., [13], [18], [51]) show that the MSR 187

point is achievable through the construction of functional- 188

repair MSR (FMSR) codes, meaning that the repaired data 189
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may not be the same as the lost data, while the same fault190

tolerance is maintained. However, the corresponding coding191

schemes [13], [18], [51] are based on random linear codes192

and do not provide explicit construction. A number of studies193

(e.g., [6], [12], [32], [39], [42], [52]) have proposed exact-194

repair MSR (EMSR) codes, in which the repaired data is195

identical to the originally lost data.196

Most regenerating codes require surviving storage nodes197

encode stored data for repair, implying that storage nodes198

need to possess the computational capability. We examine code199

constructions that achieve uncoded repair, meaning that the200

encoding requirement of surviving storage nodes is eliminated.201

It is known that we can construct MBR codes with uncoded202

repair [33], [36], [38]. For EMSR codes, Tamo et al. [43]203

propose codes that have the uncoded repair property for204

systematic nodes (i.e., nodes that store original data chunks)205

but not for the parity nodes that store encoded chunks.206

Wang et al. [47] propose codes that achieve uncoded207

repair for both systematic and parity nodes, but the codes208

require the total number of data chunks being stored209

increase exponentially with the number of systematic nodes.210

Rashmi et al. [30] propose product-matrix (PM) MSR codes211

that support uncoded repair, but the storage redundancy212

n
k
of PM-MSR codes needs to be at least (2 − 1

k
)×.213

Pamies-Juarez et al. [27] present Butterfly codes, which are214

MSR codes that support uncoded repair and have storage215

redundancy below 2×, but the number of chunks per node is216

2k−1 (i.e., exponential with k). Our PMSR codes are MSR217

codes that support uncoded repair, while achieving storage218

redundancy below 2× (i.e., low storage overhead)) and having219

a polynomial number of chunks per node (i.e., small subpack-220

etization overhead). Furthermore, we analyze concurrent node221

failures and design a family of MSR codes for repairing two222

node failures with the minimum repair bandwidth.223

Aside regenerating codes, some studies (e.g., [23], [46],224

[54], [55]) propose uncoded repair schemes that minimize225

the amount of disk reads for existing XOR-based erasure226

codes (e.g., RDP [11], EVENODD [4], and STAR [20]). Some227

studies [19], [37], [53] propose implementations of locally228

repairable codes, which support uncoded repair, and deploy229

them in practical distributed storage systems. However, the230

codes that they consider do not achieve the optimal storage-231

bandwidth trade-off as regenerating codes.232

Our recent applied work NCCloud [9] (extended from the233

conference version [17]) builds a network-coding-based cloud234

storage system, which implements FMSR codes to minimize235

the repair bandwidth for repairing a single node failure with236

uncoded repair. Shum and Hu [40] analyze the correctness237

of FMSR codes for a special case of two systematic nodes238

(i.e., k = 2). In this paper, we generalize the analysis for239

more systematic nodes (i.e., k > 2) and address the repair of240

concurrent multi-node failures.241

III. PROBLEM FORMULATION FOR242

PROXY-ASSISTED REGENERATION243

In this section, we formulate the problem, derive the lower244

bound of β, and establish a necessary condition of preserving245

the (n, k)MDS property in proxy-assisted regeneration. We do246

not treat our derivations as a contribution of this paper, 247

since we mainly extend the information flow analysis of 248

Dimakis et al. [13]. Also, the previous work [25] gives the 249

identical result, although it only provides a sketch of proof. 250

Here, we only present a rigorous proof for completeness, 251

and use it as a starting point for our later existence proof 252

(see Section V) and semi-deterministic code construction 253

(see Section VI). 254

A. Proxy-Assisted Regeneration 255

We formulate the problem of proxy-assisted regeneration, 256

whose core idea is to coordinate the repair process through a 257

centralized proxy. 258

We first define the notation. We encode an original file of 259

size M via an (n, k) MDS code into n encoded fragments, 260

which will be distributed and stored at n distinct nodes 261

for storage. Let X1, X2, · · · , Xn be the n nodes. Suppose 262

that r (where 1 ≤ r ≤ n − k) nodes fail and their stored 263

fragments are lost. Our goal is to repair the lost fragments 264

and store the repaired fragments in r new nodes to preserve 265

fault tolerance. Without loss of generality, we assume that 266

nodes X1, X2, · · · , Xr fail, and let X ′
1, X ′

2, · · · , X ′
r be the 267

corresponding new nodes. 268

Proxy-assisted regeneration can be decomposed into three 269

steps: 270

1) The proxy downloads data from all surviving nodes 271

Xr+1, Xr+2, · · · , Xn . 272

2) The proxy encodes the collected data into repaired 273

fragments of size M
k
each. 274

3) The proxy uploads the repaired fragments to the new 275

nodes X ′
1, X ′

2, · · · , X ′
r . 276

Our analysis makes the following key assumptions. First, 277

we require that k > r ; otherwise (i.e., when r ≥ k), the proxy 278

can download k fragments to first reconstruct the original 279

file and hence the lost fragments. The condition k > r is 280

commonly found in real-life distributed storage systems. For 281

example, Facebook’s warehouse cluster [31] sets (n, k) = 282

(14, 10). Second, we consider a homogeneous setting, in 283

which all nodes have the same storage and bandwidth capac- 284

ities. Finally, we assume that the proxy is always available, 285

which can be enforced through a distributed proxy setting in 286

practice [1]. 287

Based on our assumptions, let β be the amount of data 288

that a proxy downloads from each surviving node for repair 289

(i.e., step (1)). Our primary goal is to minimize the amount of 290

traffic transferred during repair. To achieve this, our analysis 291

minimizes β, while preserving (n, k) MDS property after 292

repair. Note that we do not need to consider the amount of 293

repaired fragments that a proxy uploads to the new nodes, 294

since the amount is always fixed at r M
k
. In addition, we 295

can prove that the amount of data that the proxy downloads 296

from surviving nodes must be larger than that it uploads to 297

the new nodes (see Section III). Thus, if we pipeline the 298

download and upload processes, the download process will be 299

the bottleneck. Thus, under proxy-assisted regeneration, we 300

re-define the repair bandwidth as the amount of data that the 301

proxy downloads from all surviving nodes. 302
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Fig. 1. Information flow graph G for (n, k, r) = (6, 3, 2).

B. Information Flow Graph303

We construct an information flow graph G and derive the304

lower bound of β through information flow analysis. Figure 1305

illustrates an example of G for (n, k, r) = (6, 3, 2). Our306

analysis extends the one by Dimakis et al. [13] to include307

a new proxy and address the repair of multiple node failures.308

1) Nodes in G:309

• We add a virtual source S and a data collector T as the310

source and destination nodes of information flow to G,311

respectively.312

• For each node X i (where 1 ≤ i ≤ n), we expand it into313

an input/output node pair (X in
i , Xout

i ) and add the pair314

to G.315

• For the proxy, we add an input/output node pair316

(Y in , Y out ) in G.317

• We keep each new node X ′
i (where 1 ≤ i ≤ r ) in G.318

As we show later, the new nodes only receive the repaired319

fragments from the proxy and are not involved in the320

information flow analysis.321

2) Edges in G:322

• We add an edge from S to each X in
i (where 1 ≤ i ≤ n)323

with infinite capacity.324

• We add an edge from each X in
i to Xout

i (where 1 ≤ i ≤ n)325

with capacity M
k
, which represents the amount of data326

stored in node X i .327

• We add an edge from each surviving node Xout
i (where328

r + 1 ≤ i ≤ n) to Y in with capacity β, which represents329

the amount of data transferred from a surviving node to330

the proxy.331

• We add an edge from Y in to Y out with capacity r×M
K
,332

which represents the amount of repaired data for the r333

new nodes.334

• We add an edge from Y out to each new node X ′
i (where335

1 ≤ i ≤ r ) with infinite capacity.336

• We select k non-failed nodes (i.e., surviving or new337

nodes) for reconstructing the original file. We then add an338

edge from each of the k selected nodes to T with infinite339

capacity.340

C. Lower Bound 341

We derive the lower bound of β by studying the min-cut 342

capacity of G. We define a cut as a set of edges, such that 343

removing them from G will disconnect S and T , and we define 344

a min-cut as the cut that has the minimum capacity among 345

all cuts in G. Since the data collector T can reconstruct the 346

original file by connecting to any k out of n nodes, there 347

are
(

n
k

)

connection choices of T . Each choice leads to a 348

different G, and hence a different min-cut. To preserve (n, k) 349

MDS property, the capacity of each possible min-cut must 350

be at least the original file size M; otherwise, the maximum 351

flow from S to T is less than M , and T cannot retrieve 352

enough information to reconstruct the original file. This leads 353

to Lemma 1. 354

Lemma 1: To preserve (n, k) MDS property in proxy- 355

assisted regeneration, the capacity of each possible min-cut 356

must be at least M. 357

By Lemma 1, we specify the lower bound of β. 358

Lemma 2: If the capacity of each possible min-cut of G is 359

at least M, then β ≥ r M
k(n−k)

. 360

The proof of Lemma 2 is in Appendix A. 361

Note that Lemma 2 specifies the necessary condition of 362

preserving (n, k) MDS property, because if β < r M
k(n−k)

, then 363

there exists some possible min-cut of G whose capacity is less 364

than M , which makes it impossible for (n, k) MDS property 365

to be maintained by Lemma 1. 366

In Section IV, we will propose a code construction 367

that matches the lower bound. Therefore, the lower bound 368

in Lemma 2 is tight, and our code construction can 369

minimize β. 370

IV. PMSR CODES 371

A. Basics 372

We first present the basics of PMSR codes, which have three 373

design properties. 374

• Property 1: PMSR codes satisfy the MDS property. 375

PMSR codes satisfy the MDS property, such that for any 376
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Fig. 2. Two examples of PMSR codes. (a) n = 4, k = 2 and r = 1. (b) n = 6, k = 3 and r = 2.

subset of k out of n nodes, the k(n − k) parity chunks377

from the k nodes can be decoded to the k(n − k) native378

chunks of the original file, while incurring the minimum379

storage redundancy.380

• Property 2: PMSR codes minimize the repair band-381

width. If r ≥ 1 nodes fail, we must repair the lost382

data of r failed nodes to preserve fault tolerance. PMSR383

codes match the lower bound of β (see Section III).384

That is, to repair r failed nodes, the proxy only needs385

to download r M
k(n−k)

units of data from each surviving386

node (see Lemma 2), or equivalently, a size of r parity387

chunks. Note that for r = 1, the lower bound is equivalent388

to the classical MSR point [13].389

• Property 3: PMSR codes use uncoded repair. During390

repair, each surviving node under PMSR codes directly391

sends parity chunks to the proxy without the need of392

performing any encoding operation.393

Based on the above properties, we now provide a basic394

construction of PMSR codes. Figure 2 shows two examples395

of PMSR codes.396

1) File Distribution (Property 1): To store a file of size397

M units, a PMSR code splits the file evenly into k(n − k)398

native chunks, say F1, F2, . . . , Fk(n−k) , and encodes them into399

n(n − k) parity chunks of size M
k(n−k) each. Each l th parity400

chunk is formed by a linear combination of the k(n − k)401

native chunks, i.e,
∑k(n−k)

m=1 αl,m Fm for some encoding coef-402

ficients αl,m . All encoding coefficients and arithmetic are403

operated over a finite field Fq of size q . We store the n(n − k)404

parity chunks on n nodes X1, X2, · · · , Xn , each keeping405

n − k parity chunks. The original file can be reconstructed406

by decoding k(n − k) parity chunks of any k nodes, where407

decoding can be done by inverting an encoding matrix [29].408

Let Pi, j be the j th parity chunk stored on node i , where409

i = 1, 2, . . . , n and j = 1, . . . , n − k.410

2) Repair Process (Properties 2 and 3): To preserve the411

MDS property over multiple rounds of repair, our prior work412

NCCloud [9] uses random chunk selection in a way that413

verifies whether the selection can ensure that there is no linear 414

dependence in chunk regeneration that can lead to the loss 415

of the MDS property. This way is used and implemented in 416

NCCloud. Specifically, the proxy performs the mth (where 417

m ≥ 1) round of repair as follows (suppose that we have 418

r failed nodes X1, X2, · · · , Xr ): 419

(i) The proxy directly downloads r parity chunks from each 420

surviving node i (r + 1 ≤ i ≤ n). The proxy then 421

generates random encoding coefficients and encodes the 422

r(n −r) downloaded parity chunks into a set of r(n −k) 423

linearly independent parity chunks P ′
i ′, j ′ (1 ≤ i ′ ≤ r and 424

1 ≤ j ′ ≤ n − k). 425

(ii) The proxy then performs two-phase checking. In the 426

first phase, it checks if the MDS property is satisfied 427

with the new chunks generated (i.e., the chunks of 428

any k out of n nodes remain decodable) after the 429

current mth round of repair. In the second phase, it 430

further checks if the MDS property is still satisfied after 431

the (m + 1)th round of repair for any possible node 432

failure. 433

(iii) If both phases are passed, the proxy uploads the gener- 434

ated chunks P ′
i ′,1

, P ′
i ′ ,2

, · · · , P ′
i ′,n−k

to each new node 435

X ′
i ′
(1 ≤ i ′ ≤ r ); otherwise, it repeats (i) and (ii) 436

with another collection of random chunks and random 437

encoding coefficients. 438

We explain why two-phase checking is required. Since 439

PMSR codes regenerate different chunks in each repair, one 440

major challenge of PMSR codes is to preserve the MDS 441

property after multiple rounds of repair. We illustrate it with 442

an example in Figure 2(a). Suppose that X1 fails, and we 443

construct new chunks P ′
1,1 and P ′

1,2 using P2,1, P3,1, and P4,1 444

as in Figure 2(a). Now, suppose that X2 fails afterwards. If we 445

construct new chunks P ′
2,1 and P ′

2,2 using P ′
1,1, P3,1, and P4,1, 446

then in the two new nodes, the chunks {P ′
1,1, P ′

1,2, P ′
2,1, P ′

2,2} 447

are the linear combinations of only three chunks P2,1, P3,1, and 448

P4,1 instead of four. Hence, the chunks in these two new nodes 449

are not decodable, and the MDS property is lost. Therefore, 450
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the two-phase checking is to preserve the MDS property over451

multiple rounds of repair.452

3) Examples: We show via examples the repair bandwidth453

saving of PMSR codes compared to the conventional repair454

(e.g., as used by Reed-Solomon codes [34]). In conventional455

repair, the proxy needs to read k fragments from any k456

surviving nodes to first reconstruct the original file and then the457

lost data for all failed nodes. Clearly, the repair bandwidth is458

the file size M . For PMSR codes, we consider the two settings459

in Figure 2. For n = 4, k = 2, and r = 1 (see Figure 2(a)), the460

repair bandwidth of PMSR codes is 0.75M , i.e., 25% less than461

that of conventional repair. For n = 6, k = 3, and r = 2 (see462

Figure 2(b)), the repair bandwidth of PMSR codes is 8M/9,463

i.e., 11.11% less than that of conventional repair. In general,464

the repair bandwidth saving of PMSR codes increases with n.465

For example, for k = n − 2 and r = 1, the repair bandwidth466

of PMSR codes is M(n−1)
2(n−2)

. The saving compared to standard467

RAID-6 codes [22], which are also double-fault tolerant, is468

up to 50% if n is large. For k = n − 3 and r = 2, the repair469

bandwidth of PMSR codes is 2M(n−2)
3(n−3)

. The saving compared470

to STAR codes [20], which are also triple-fault tolerant, is up471

to 33.3% if n is large.472

B. Formulation of Repair Process of PMSR Codes473

We provide a theoretical framework for the repair process474

of PMSR codes so as to formally define PMSR codes which475

is based on three preliminary definitions.476

Definition 1 (Decodability): We say that a collection of477

k(n−k) parity chunks is decodable if the parity chunks can be478

decoded to the original file, which can be verified by checking479

if the associated k(n − k) vectors of encoding coefficients are480

linearly independent. Note that these k(n − k) parity chunks481

may be scattered among n nodes, and need not reside in482

exactly k nodes. �483

Recall that PMSR codes are non-systematic codes (see484

Section I). It means that PMSR codes operate on parity485

chunks. For simplicity, when we use the term “chunk” in our486

discussion, we actually refer to a parity chunk.487

Definition 2 (Repair-Based Collection (RBC)): An RBC of488

the mth round of repair is a collection of k(n − k) chunks that489

exist after the mth round of repair as follows:490

(i) We select any n − r out of n nodes.491

(ii) We select k − r out of the n − r nodes in Step (i) and492

choose n − k chunks from each selected node.493

(iii) We select the remaining n − k out of the n − r nodes in494

Step (i) and choose r chunks from each selected node.495

Clearly, the number of chunks of an RBC is (k − r)496

(n − k) + (n − k)r = k(n − k). �497

The physical meaning of an RBC after the mth round of498

repair is as follows. As stated in Section IV-A, the repair499

process of PMSR codes needs to perform two-phase checking;500

that is, it not only checks whether the k(n − k) chunks of any501

k nodes after the mth round of repair are decodable, but also502

checks whether the k(n − k) chunks of any k nodes after the503

(m + 1)th round of repair are still decodable. For example,504

after repairing X1 in Figure 2(a), PMSR codes first check505

whether four chunks of any two nodes out of X ′
1, X2, X3, X4506

are decodable. Then let us consider the next round of repair 507

for a failed node, say X2. A new node X ′
2 is repaired in the 508

same way as X ′
1, with its chunks reconstructed by the proxy 509

and generated from three random chunks from the surviving 510

nodes, say P ′
1,1, P3,1, and P4,1. Finally, PMSR codes further 511

check whether the four chunks of any two nodes out of 512

X ′
1, X ′

2, X3, X4 are decodable. If we select X ′
2 and X3, then 513

we can see that the four chunks of X ′
2 and X3 are obviously 514

the linear combinations of the collection {P ′
1,1, P3,1, P3,2, 515

P4,1}, which happens to be an RBC after repairing X ′
1. Thus, 516

if this RBC is not decodable, then the MDS property is not 517

maintained after repairing X ′
2. In fact, based on proxy-assisted 518

regeneration (see Section III), for the k(n−k) chunks of any k 519

nodes after the (m + 1)th round of repair, we can always find 520

an RBC of the mth round of repair such that these k(n − k) 521

chunks are linear combinations of the RBC (we will provide 522

the reason in Section V). Therefore, to maintain the MDS 523

property after the (m + 1)th round of repair, we must ensure 524

that the corresponding RBCs of the mth round of repair are 525

decodable. 526

Note that there exist some provably non-decodable RBCs 527

(i.e., they are linear combinations of a set of fewer 528

than k(n − k) chunks). For example, in Figure 2(a), 529

the RBCs {P ′
1,1, P ′

1,2, P2,1, P3,1}, {P ′
1,1, P ′

1,2, P2,1, P4,1}, and 530

{P ′
1,1, P ′

1,2, P3,1, P4,1} are non-decodable, since P ′
1,1 and P ′

1,2 531

are linear combinations of P2,1, P3,1, P4,1. In other words, 532

all the chunks of each of the above three RBCs are linear 533

combinations of P2,1, P3,1, P4,1, which have fewer than 534

k(n−k) chunks in total. Accordingly, we define the following: 535

Definition 3 (Linear Dependent Collection (LDC)): Consi- 536

der an RBC of the mth round of repair. If and only if all the 537

chunks of this RBC are linear combinations of a set of fewer 538

than k(n − k) chunks from all the surviving nodes, then it is 539

called an LDC of the mth round of repair. � 540

Definition 4 (Repair MDS (rMDS) Property): If all RBCs, 541

after excluding the LDCs, of the mth round of repair are 542

decodable, then we say the rMDS property is satisfied. � 543

Note that even though some RBCs are not classified as 544

LDCs (i.e., they are linear combinations of a set of k(n − k) 545

chunks from all the surviving nodes), they may still be non- 546

decodable due to some “bad” linear combinations that cause 547

linear dependency as a result of the selection of wrong encod- 548

ing coefficients. Thus, the rMDS property is to handle this case 549

and ensures that only if the rMDS property is maintained, all 550

RBCs except LDCs are decodable. 551

Definition 5 ((n,k,r )-PMSR Codes): An original file is 552

stored in n nodes in the form of n(n − k) chunks. If these 553

n(n − k) chunks satisfy both the MDS and rMDS properties 554

after repairing r failed nodes, then we say that this file is 555

PMSR-encoded. 556

Previous Results: Our previous work NCCloud [9] shows 557

via simulations that by checking both the MDS and rMDS 558

properties in each round of single node failures (i.e., r = 1), 559

PMSR codes can preserve the MDS property after hundreds of 560

rounds of repair. Also, if we only check the MDS property but 561

not the rMDS property, then after some rounds of repair, we 562

cannot regenerate the chunks that preserve the MDS property 563

within a fixed number of iterations (this is called the bad 564



IE
E
E
 P

ro
o

f

IE
E
E
 P

ro
o

f

HU et al.: PROXY-ASSISTED REGENERATING CODES WITH UNCODED REPAIR FOR DISTRIBUTED STORAGE SYSTEMS 7

repair [9]). In the following, we present formal theoretical565

analysis that justifies the need of two-phase checking to566

preserve the MDS property after any number of rounds of567

repair. Our analysis also addresses the repair of a general568

number r ≥ 1 of concurrent node failures.569

V. EXISTENCE OF PMSR CODES570

We now prove the existence of PMSR codes. In this work,571

we focus on two cases: (i) r = 1 when k = n−2, implying that572

PMSR codes are double-fault tolerant as traditional RAID-6573

codes [22]; (ii) r = 2 when k = n − 3, implying that PMSR574

codes are triple-fault tolerant as STAR codes [20].575

A. PMSR Codes With k = n − 2 and r = 1576

Double-fault tolerance has been assumed in real cloud577

storage systems (e.g., GFS [15] and Azure [7]). Our goal is to578

show that PMSR codes always maintain double-fault tolerance579

(i.e., the MDS property is always satisfied with k = n − 2)580

after any number of rounds of uncoded repair, while the repair581

bandwidth is equal to M
k(n−k) units (or equivalently, a size of582

one parity chunk) according to Property 2 in Section IV-A.583

Note that each node stores n − k = 2 parity chunks.584

We first give three lemmas. Lemma 3 and Lemma 4 provide585

a guideline of how to choose n−1 chunks from n−1 surviving586

nodes (one chunk from each node) to repair a failed node.587

Lemma 5 implies that if the finite field size is large enough,588

we can always find a set of encoding coefficients to regenerate589

new chunks for a repaired node so as to maintain the MDS and590

rMDS properties after each round of repair. Finally, we prove591

Theorem 1 for the existence of PMSR codes with k = n − 2592

and r = 1.593

Lemma 3: In single-node failure repair, let F be the set594

of n − 1 chunks selected from n − 1 surviving nodes to595

regenerate the n − k chunks of the repaired node. For the596

RBC of this repair, let Q be the set of chunks chosen Step 3597

of RBC construction (see Definition 2) excluding those from598

the repaired node. If an RBC (denoted by R) of this repair is599

an LDC, then F and Q have two or more identical common600

chunks of the surviving nodes.601

Proof: Without loss of generality, let node 1 be the failed602

node. There are two cases to construct an RBC which contains603

chunks of the repaired node 1: (1) the RBC contains the604

n − k = 2 chunks of the repaired node chosen in Step 2605

of RBC construction; (2) the RBC contains one chunk of the606

repaired node chosen in Step 3 of RBC construction. Note607

that we do not consider the RBCs which do not contain any608

chunks of the repaired node 1, because they have already been609

checked before the mth round of single-node failure repair.610

Case 1: Let P be the set of chunks chosen in Step 2 of611

Definition 2 excluding those from the repaired node 1. Thus,612

R = {P ′
1,1, P ′

1,2} ∪ P ∪ Q. As {P ′
1,1, P ′

1,2} are obtained by613

linearly combining the chunks in F , we infer that all the614

chunks of R of Case 1 are linear combinations of chunks in615

F ∪P ∪Q, which only contain chunks from surviving nodes.616

Since F selects r = 1 chunk from each surviving nodes617

and P has all the chunks from k −r −1 = k −2 out of all the618

surviving nodes, F and P have k−2 identical common chunks619

of the surviving nodes, i.e., |F∩P | = k −2. Q contains r = 1 620

chunk from each of n − k = 2 surviving nodes, i.e., |Q| = 2. 621

According to the given conditions, we can easily have the 622

following equalities: |F | = n − 1, |P | = 2(k − 2), |P ∩ Q| = 623

|F∩P∩Q| = 0. Finally, we can have |F∪P∪Q| = |F |+|P |+ 624

|Q|−|F∩P |−|F∩Q|−|P∩Q|+|F∩P∩Q| = 2k+1−|F∩Q|. 625

If an RBC of Case 1 is an LDC, which means F ∪ P ∪ Q 626

are linear combinations of less than k(n − k) chunks from the 627

surviving nodes, then |F ∪P ∪Q| < 2k. Hence, |F ∩Q| ≥ 2. 628

Case 2: Similar to Case 1, we infer that all the chunks of 629

R of Case 2 are linear combinations of chunks in F ∪P ∪Q. 630

Since F selects r = 1 chunk from each surviving nodes and 631

P has all the chunks from k−r = k−1 out of all the surviving 632

nodes, F and P have k − 1 identical common chunks of the 633

surviving nodes, i.e., |F∩P | = k −1. Q contains r = 1 chunk 634

from each of n − k − 1 = 1 surviving node, i.e., |Q| = 1. 635

According to the given conditions, we can easily have the 636

following equalities: |F | = n − 1, |P | = 2(k − 1), |P ∩ Q| = 637

|F∩P∩Q| = 0. Finally we can have |F∪P∪Q| = |F |+|P |+ 638

|Q|−|F∩P |−|F∩Q|−|P∩Q|+|F∩P∩Q| = 2k+1−|F∩Q|. 639

Because |Q| = 1, |F ∪ P ∪ Q| ≥ 2k, which means the RBC 640

of case 2 is never an LDC. 641

Therefore, Lemma 3 holds. � 642

Lemma 4: Suppose that the rMDS property is satisfied after 643

every mth round of single-node failure repair. Then for any 644

n − 1 out of n nodes, we can always select one chunk from 645

these n − 1 nodes (i.e., a total of n − 1 chunks) such that any 646

RBC containing the selected n − 1 chunks is decodable. 647

Proof: Without loss of generality, suppose that we con- 648

struct an RBC R by selecting the chunks from nodes 2, . . . , n 649

(see Step 1 of Definition 2), and that H be the set of n − 1 650

chunks selected from nodes 2, . . . , n (one chunk from each 651

node). We prove the existence of H such that if R contains 652

H (i.e., H ⊂ R), then R is decodable. 653

If node 1 is the repaired node in the mth round of repair, then 654

all the k(n−k) chunks of each possibleR must come from the 655

surviving nodes. Thus, R is never an LDC (by Definition 3). 656

Since the rMDS property is satisfied by our assumption, R is 657

decodable (by Definition 4). 658

If node 1 is not the repaired node in the mth round of repair, 659

then without loss of generality, let node 2 be the repaired 660

node and the new parity chunks are P ′
2,1 and P ′

2,2. By the 661

PMSR code design, the chunks of node 2 are linearly com- 662

bined by one chunk in each of nodes 1, 3, . . . , n. We denote 663

these chunks by F = {P1, f (1), P3, f (3), . . . , Pn, f (n)}. Since 664

each node has n − k = 2 chunks, we can construct H = 665

{P ′
2,g(2), P3,g(3), . . . , Pn,g(n)} such that g(i) 6= f (i) for i = 666

3, . . . , n (while g(2) can be randomly picked). Let Q be the 667

set of chunks chosen in Step 3 of Definition 2 excluding 668

those from the repaired node. If R contains H, then Q and 669

F have no identical common chunks of the surviving nodes. 670

By Lemma 3, R is not an LDC. Since the rMDS property is 671

satisfied, R is decodable. � 672

Based on Lemma 4, we have the following claim. 673

Claim 1: Consider an RBC that selects n−1 nodes out of n 674

nodes except node 1. There exists a set of n−1 chunks, denoted 675

by F = {P2, f (2), . . . , Pk+2, f (k+2)} (i.e., one chunk is retrieved 676

from each of nodes 2, . . . , n), such that the RBC containing 677
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F must be decodable. Here, f (i), where 2 ≤ i ≤ k + 2,678

denotes a function that specifies the index of the chunk to be679

retrieved from surviving node i to the proxy. For example, if680

the retrieved chunk of the surviving node 4 is its second chunk,681

then f (4) = 2.682

Lemma 5 (Schwartz-Zippel Theorem [26]): Consider a683

multivariate non-zero polynomial h(x1, . . . , xt ) of total degree684

ρ over a finite field F. Let S be a finite subset of F, and685

x̃1, . . . , x̃t be the values randomly selected from S. Then the686

probability Pr[h(x̃1, . . . , x̃t ) = 0] ≤
ρ
|S|

.687

Theorem 1: Consider a file encoded using PMSR codes688

with k = n − 2. In the mth (m ≥ 1) round of uncoded repair689

of some failed node j , the lost chunks are reconstructed by690

the random linear combination of n − 1 chunks selected from691

n −1 surviving nodes (one chunk from each node). Then after692

the repair, the distributed storage system still satisfies both the693

MDS and rMDS properties with probability that can be driven694

arbitrarily to 1 by increasing the size of Fq .695

Proof: We prove by induction on m. Initially, we use696

Reed-Solomon codes to encode a file into n(n − k) = 2n697

chunks that satisfy both the MDS and rMDS properties.698

Suppose that after the mth round of repair, both the MDS699

and rMDS properties are satisfied (this is our induction700

hypothesis).701

Let Um = {P1,1, P1,2; . . . ; Pk+2,1, Pk+2,2} be the current set702

of chunks after the mth round of repair. In the (m +1)th round703

of repair, without loss of generality, let node 1 be the failed704

node to repair.705

Since Um satisfies the rMDS property, we use F to repair706

node 1 with the help of Claim 1. Suppose that the repaired707

node 1 has the new chunks {P ′
1,1, P ′

1,2}. Then708

P ′
i ′, j ′ =

k+2
∑

i=2

γ i
i ′, j ′ Pi, f (i), for i ′ = 1, j ′ = 1, 2. (1)709

Here γ i
i ′, j ′ denotes the encoding coefficient for the single710

retrieved chunk of the surviving node i to generate the the j ′th
711

chunk of the new node i ′. Next we prove that we can always712

tune γ i
i ′, j ′ in Fq in such a way that the set of chunks in the (m+713

1)th round of repair Um+1 = {P ′
1,1, P ′

1,2; . . . ; Pk+2,1, Pk+2,2}714

still satisfies both MDS and rMDS properties. The proof715

consists of two parts.716

Part I Um+1 Satisfies the MDS Property: Since Um satisfies717

the MDS property, we only need to ensure that for any718

k − 1 surviving nodes, say for any subset {s1, . . . , sk−1} ⊆719

{2, . . . , n}, all the k(n − k) chunks (denoted by V) of nodes720

s1, . . . , sk−1 and the repaired node 1 are decodable.721

First, we prove that every chunk of V is a linear com-722

bination of a certain decodable RBC (denoted by R) and723

let A be the encoding matrix which shows the linear com-724

bination, i.e., V = A × R. Without loss of generality, let725

(s1, . . . , sk−1) = (2, . . . , k), and the other cases are symmet-726

ric. In this case, V = {P2,1, P2,2;. . . ;Pk,1, Pk,2;P ′
1,1, P ′

1,2},727

i.e., the set of chunks of nodes 1 to k. By Equation (1),728

each chunk of V is a linear combination given by729

R = {P2,1, P2,2; . . . ; Pk,1, Pk,2; Pk+1, f (k+1), Pk+2, f (k+2)}.730

Mathematically, we express as: 731





















P2,1
P2,2
. . .

Pk,1

Pk,2

P ′
1,1

P ′
1,2





















= A ×





















P2,1
P2,2
. . .

Pk,1

Pk,2

Pk+1, f (k+1)

Pk+2, f (k+2)





















, 732

where A is a k(n − k) × k(n − k) (i.e., 2k × 2k) encoding 733

matrix given by 734

A =























1, 0, · · · , 0, 0, 0, 0

0, 1, · · · , 0, 0, 0, 0
...

. . .
...

...

0, 0, · · · , 1, 0, 0, 0

0, 0, · · · , 0, 1, 0, 0

δ21γ
2
1,1, δ

2
2γ
2
1,1, · · · , δk

1γ
k
1,1, δ

k
2γ

k
1,1, γ k+1

1,1 , γ k+2
1,1

δ21γ
2
1,2, δ

2
2γ
2
1,2, · · · , δk

1γ
k
1,2, δ

k
2γ

k
1,2, γ k+1

1,2 , γ k+2
1,2























735

where δi
1 = 1, δi

2 = 0 when f (i) = 1; and δi
1 = 0, δi

2 = 1 736

when f (i) = 2. Since R is an RBC consisting of set F 737

(i.e., the n − 1 chunks from n − 1 nodes), it is decodable 738

due to Lemma 4. 739

In addition, the determinant det (A) is a multivariate poly- 740

nomial in terms of variables γ i
i ′, j ′ . By Lemma 5, the value of 741

det (A) is non-zero, with probability driven to 1 if we increase 742

the finite field size. Now since R is decodable and A has a 743

full rank, V is decodable. 744

Similarly, for any {s1, . . . , sk−1} ⊆ {2, . . . , n}, all the k(n − 745

k) chunks of node s1, . . . , sk−1 and the repaired node 1 are 746

linear combinations of a certain decodable RBC. In addition, 747

∏

{s1,...,sk−1}⊆{2,...,n} det (A) is also a multivariate polynomial 748

in terms of variables γ i
i ′, j ′ and the value of it is also non- 749

zero with probability driven to 1 if we increase the finite 750

field size by Lemma 5. Therefore, for any s1, . . . , sk−1, the 751

corresponding V is decodable. This implies that Um+1 satisfies 752

the MDS property. 753

Part II Um+1 Satisfies the rMDS Property: By Definition 4, 754

we need to prove that all the RBCs of Um+1 except the LDCs 755

are decodable. By Definition 2, we only consider two cases of 756

RBCs which contain the chunks of the repaired node 1 due to 757

the same reason stated by Lemma (3). 758

Case 1: The repaired node 1 is selected in Step 2. Suppose 759

in Step 1, an RBC needs to select (n − r) − 1 = k additional 760

surviving nodes, say {s1, . . . , sk} ⊆ {2, . . . , n}. Then in Step 2, 761

the RBC further selects any subset of (k−r)−1 = k−2 nodes 762

if k > 2, say nodes s1, . . . , sk−2 . If k ≤ 2, the RBC does not 763

have to select additional nodes. Finally, in Step 3, the RBC 764

chooses two chunks, denoted by Psk−1,g(sk−1) and Psk ,g(sk) from 765

the remaining two nodes sk−1 and sk , respectively. Without 766

loss of generality, let (s1, . . . , sk−2) = (2, . . . , k − 1) and 767

(sk−1, sk) = (k, k + 1). 768

Denote the RBC by R1 = {P2,1, P2,2; . . . ; Pk−1,1, Pk−1,2; 769

P ′
1,1, P ′

1,2; Pk,g(k), Pk+1,g(k+1)}. In addition, by Equation (1), 770

the chunks of R1 are linear combinations of a set of 771

chunks denoted by X = {P2,1, P2,2; . . . ; Pk−1,1, Pk−1,2; 772

Pk,g(k), Pk, f (k); Pk+1,g(k+1), Pk+1, f (k+1); Pk+2, f (k+2)}. 773
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Our goal is to show that if R1 is not an LDC, then it is774

decodable. Clearly, if and only if g(k) = f (k) and g(k +1) =775

f (k + 1), X have less than k(n − k) chunks of the surviving776

nodes after the mth repair such that R1 becomes an LDC.777

Thus, to prove that R1 except the LDCs is decodable, it is778

equivalent to prove thatR1 is decodable when (a) g(k) 6= f (k)779

and g(k + 1) = f (k + 1), (b) g(k) = f (k) and g(k + 1) 6=780

f (k + 1), or (c) g(k) 6= f (k) and g(k + 1) 6= f (k + 1).781

First consider (a). We can reduce X to {P2,1, P2,2; . . . ;782

Pk−1,1, Pk−1,2; Pk,1, Pk,2; Pk+1, f (k+1), Pk+2, f (k+2)}. The783

above collection is an RBC containing F . By Claim 1, the784

collection is decodable. Therefore, R1 is linear combination785

of a decodable collection. We can also prove that R1 is a786

linear combination of a decodable collection which is similar787

to (a) and thus omit the proof.788

Lastly, let us consider (c). Now, X can be written789

as {P2,1, P2,2; . . . ; Pk−1,1, Pk−1,2; Pk,1, Pk,2; Pk+1,1, Pk+1,2;790

Pk+2, f (k+2)}. Define X = X − {Pk+2, fk+2 }. Note that the791

MDS property of X is satisfied by induction hypothesis. Thus,792

X is decodable, implying that Pk+2, f (k+2) can be seen as a793

linear combination of X . Obviously, we can also say that X794

is a linear combination of X . Therefore, R1 is also a linear795

combination of the decodable collection X .796

Case 2: The repaired node 1 is selected in Step 3. Suppose797

in Step 1, the RBC selects any n − 2 = k surviving nodes,798

say {s1, . . . , sk} ⊆ {2, . . . , n}. Then in Step 2, the RBC799

further selects any subset of k − 1 nodes, say s1, . . . , sk−1800

to choose all the chunks of nodes s1, . . . , sk−1. Finally, in801

Step 3, the RBC chooses two chunks P ′
1,g(1) and Psk ,g(sk) from802

the repaired node 1 and the last selected node sk , respectively.803

Without loss of generality, let (s1, . . . , sk−1) = (2, . . . , k) and804

sk = k + 1.805

Denote the RBC by R2 = {P2,1, P2,2; . . . ; Pk,1, Pk,2;806

P ′
1,g(1), Pk+1,g(k+1)}. We need to show that if R2 is not a807

LDC, it is decodable. Based on Lemma 3, there is no more808

than one identical chunk between F and the RBC’s chunks809

chosen in Step 3, so R2 is never an LDC. We just prove that810

every possible R2 is decodable.811

By Equation (1), the chunks of R2 are linear combinations812

of a set of chunks denoted by Y = {P2,1, P2,2; . . . ; Pk,1, Pk,2;813

Pk+1,g(k+1), Pk+1, f (k+1); Pk+2, f (k+2)}. Suppose g(k + 1) 6=814

f (k + 1). Define Y = Y − {Pk+1,g(k+1)}. Since Y is an815

RBC containing F , by Claim 1, Y is decodable. Therefore,816

Pk+1,g(k+1) can be seen as a linear combination of Y . Obvi-817

ously, we can also say Y is a linear combination of Y .818

Therefore, R2 is also linear combination of the decodable819

collection Y .820

Combining Case 1 and Case 2, we deduce that each RBC821

excluding the LDCs is linear combination of a decodable822

collection, and let B be the encoding matrix which shows823

the linear combination for a certain set {s1, . . . , sk}. Similar824

to Part I, for all possible {s1, . . . , sk} of Case 1 and Case 2,825
∏

{s1,...,sk}⊆{2,...,n} det (B) is also a multivariate polynomial in826

terms of variables γ i
i ′, j ′ , and by Lemma 5 there always exists827

an assignment of γ i
i ′, j ′ in a sufficiently large field such that828

R1 and R2 are also decodable. This implies Um+1 satisfies829

the rMDS Property.830

Therefore, for Part I and II, there always exists an assign- 831

ment of γ i
i ′, j ′ in a sufficiently large field such that 832

∏

{s1,...,sk−1}⊆{2,...,n}

det (A) 833

×
∏

{s1,...,sk}⊆{2,...,n} o f Case 1,2

det (B) 6= 0. (2) 834

This concludes the proof of Theorem 1. � 835

B. PMSR Codes With k = n − 3 and r = 2 836

We now extend the analysis for PMSR codes for a more 837

complicated case k = n − 3 and r = 2. In Section V-A, we 838

have analyzed the case of optimally repairing a single node 839

failure under double fault tolerance. We can readily generalize 840

the analytical result to the case of optimally repairing a single 841

node failure under triple fault tolerance. Thus, we here only 842

focus on the case of optimally repairing a double-node failure. 843

Our goal is to show that PMSR codes always maintain triple- 844

fault tolerance (i.e., the MDS property is always satisfied 845

with k = n − 3) after any number of rounds of uncoded 846

double-node repair, while the repair bandwidth is equal to 847

2M
k(n−k)

units (or equivalently, a size of two parity chunks) 848

according to Property 2 in Section IV. Note that each node 849

stores n − k = 3 parity chunks. We will give two new 850

lemmas and a new theorem as in Section V-A. While the 851

proof steps are similar to those for Lemma 3, Lemma 4, and 852

Theorem 1, the proof details become more complicated and 853

cannot be directly obtained since we need to address more 854

cases. To make the paper more concise, we present the proofs 855

in Appendix B, C and D. 856

Lemma 6: In double-node failure repair, let F be the set 857

of 2(n − 2) chunks selected from n − 2 surviving nodes to 858

regenerate the six chunks of two repaired nodes. For the RBC 859

of this double-node failure repair, let Q be the set of chunks 860

chosen in Step 3 of Definition 2 excluding those from all the 861

repaired nodes. If an RBC (denoted by R) of this repair is 862

an LDC, then F and Q have four or more identical common 863

chunks of the surviving nodes. 864

Lemma 7: Suppose that the rMDS property is satisfied after 865

every mth round of double-node failure repair. Then for any 866

n − 2 out of n nodes, we can always select two chunks from 867

these n − 2 nodes (i.e., a total of 2(n − 2) chunks) such that 868

any RBC containing the selected 2(n−2) chunks is decodable. 869

Based on Lemma 7, we have the following claim. 870

Claim 2: Consider an RBC that selects n − 2 871

nodes out of n nodes except node 1 and node 2. 872

There exists a set of 2(n − 2) chunks, denoted by 873

F = {P3, f1(3), P3, f2(3), . . . , Pk+3, f1(k+3), Pk+3, f2(k+3)} 874

selected from nodes 3, . . . , n, such that the RBC containing 875

F must be decodable. Here, fi ′ (i) (where 3 ≤ i ≤ k + 3 876

and 1 ≤ i ′ ≤ 2) denotes a function that specifies the index 877

of the i ′th
retrieved chunk of surviving node i to the proxy. 878

For example, if the second retrieved chunk of the surviving 879

node 4 is its third chunk, then f2(4) = 3. 880

Theorem 2: Consider a file encoded using PMSR codes 881

with k = n − 3. In the mth (m ≥ 1) round of uncoded 882
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repair of two failed node j1 and node j2, the lost chunks are883

reconstructed by the random linear combination of 2(n − 2)884

chunks selected from n − 2 surviving nodes (two chunks from885

each node). Then after the repair, the distributed storage886

system still satisfies both the MDS and rMDS properties with887

probability that can be driven arbitrarily to 1 by increasing888

the size of Fq .889

C. Discussion on Arbitrary (n, k, r)890

We observe that PMSR codes are constructed based on891

Lemmas 3 and 4. However, it is much more difficult to892

generalize both lemmas with arbitrary (n, k, r). For example,893

in the proof of Lemma 3, when r > 1, we need to consider894

more cases of how an RBC includes the chunks of more895

than one repaired node. How to generalize the construction896

of PMSR codes for arbitrary (n, k, r) is posed as future work.897

VI. SEMI-DETERMINISTIC PMSR CODES898

In NCCloud [9], the repair operation under PMSR codes899

is accomplished based on two random processes: (i) using900

random chunk selection to read chunks from the surviving901

nodes and (ii) applying random linear combinations of the902

selected chunks to generate new chunks for the repaired node.903

Section V has proved the correctness of the random-based904

repair operation by virtue of existence of PMSR codes. On the905

other hand, a drawback of the random approach is that it may906

need to try many iterations to generate the correct set of chunks907

that satisfies both the MDS and rMDS properties.908

In this section, we propose a repair scheme under PMSR909

codes (k = n − 2, r = 1), such that the chunk selection is910

deterministic and the linear combination operations are still911

random but have some inequality constraints. This enables us912

to significantly speed up the repair operation. Note that the913

randomness lies in the fact that γ i
1,1 and γ i

1,2 (see Equation (1))914

are randomly chosen. Thus, we call this family of PMSR codes915

semi-deterministic. In our semi-deterministic construction, we916

specify which particular chunk should be read from each917

surviving node in each round of repair. We also derive the918

sufficient conditions that the encoding coefficients should919

satisfy. Here, we will use Lemma 4 to design the semi-920

deterministic construction with k = n − 2, r = 1, so we can921

also design a similar semi-deterministic repair scheme with922

k = n − 3, r = 2 with the help of Lemma 7. Thus, in this923

paper we only consider the case of k = n − 2, r = 1 as924

a representative case. First, we introduce an evolved repair925

MDS property.926

Definition 6 (Evolved Repair MDS (erMDS) Property):927

Let k = n −2. For any k +1 out of n nodes, if we can always928

select one specific chunk from each of the k + 1 nodes such929

that any RBC which consists of these selected k + 1 chunks930

is decodable, then we say the code scheme has the erMDS931

property. �932

We see that if the erMDS property is satisfied, then933

Lemma 4 is ensured, so it suffices for our codes to satisfy934

both MDS and erMDS properties, and hence Theorem 1 can935

be satisfied. Thus, we use the erMDS property to construct936

semi-deterministic PMSR codes.937

A. Construction of Semi-Deterministic PMSR Codes 938

To construct semi-deterministic PMSR codes for k = n − 939

2, r = 1, we describe how we store a file and how we trigger 940

the mth (m ≥ 1) round of repair for a node failure. 941

1) Storing a File: We divide a file into k(n−k) = 2k equal- 942

size native chunks, and encode them into n(n − k) = 2(k + 2) 943

parity chunks denoted by P1,1, P1,2; . . . ; Pk+2,1, Pk+2,2 using 944

Reed-Solomon codes, such that any 2k out of 2(k +2) chunks 945

are decodable to the original file. Note that the number of 946

chunks per file is polynomial with k; compared to some state- 947

of-the-art MSR codes [27], this causes small sub-packetization 948

which can reduce the access overhead to chunks. Each node i 949

(where i = 1, 2, . . . , k + 2) stores two chunks Pi,1 and Pi,2 . 950

Clearly, the generated parity chunks satisfy the MDS property, 951

i.e., for any k out of n nodes {s1, . . . , sk} ⊂ {1, . . . , k + 2}, 952

the 2k parity chunks {Ps1,1, Ps1,2; . . . ; Psk ,1, Psk ,2} are decod- 953

able. In addition, the generated parity chunks also satisfy 954

the erMDS property (see Definition 6), i.e., for any k + 1 955

nodes s1, . . . , sk+1, we can always select some specific chunks 956

Ps1, f (s1), . . . , Psk+1, f (sk+1) such that any RBC consisting of 957

them is decodable. Here, we need to find and record such 958

k + 1 specific chunks for any k + 1 nodes. For illustrative 959

purposes, we let f (si ) = 1, where i = 1, 2, . . . , k + 1, so we 960

record the chunks {Ps1,1, . . . , Psk+1,1}. 961

2) The First Round of Repair: Suppose without loss of 962

generality that node 1 fails and then is repaired by the 963

following two steps. 964

Step 1 (Chunk Selection): We select k +1 chunks P2,1, . . . , 965

Pk+2,1 that are recorded when the file is stored. 966

Step 2 (Coefficient Construction): For each selected chunk 967

Pi∗,1 (i
∗ = 2, . . . , k+2), we compute 2k encoding coefficients 968

λ
(i∗)
i, j (i = 2, . . . , k + 2, i 6= i∗, j = 1, 2) which satisfy 969

Pi∗,1 =

k+2
∑

i=2,i 6=i∗

2
∑

j=1

λ
(i∗)
i, j Pi, j . (3) 970

Each parity chunk is a linear combination of k(n − k) = 2k 971

native chunks (see Section III). By equating the coefficients 972

that are multiplied with the 2k native chunks on both left and 973

right sides of Equation (3), we obtain 2k equations, which 974

allow us to solve for λ
(i∗)
i, j . 975

Next we need to construct the encoding coefficients γ i
1,1 976

and γ i
1,2 (See Equation (1)) by satisfying the following 977

inequalities (4), (5), and (6): 978

γ i
1,1γ

j
1,2 6= γ i

1,2γ
j
1,1, (4) 979

where i 6= j and i, j = 2, 3, . . . , k + 2; 980

γ i
1,2 + γ i∗

1,2λ
(i∗)
i,1 6= 0, (5) 981

where i 6= i∗ and i, i∗ ∈ {2, . . . , k + 2}; and 982

(γ i
1,1 + γ i∗∗

1,1λ
(i∗∗)
i,1 )(γ i∗

1,2 + γ i∗∗

1,2λ
(i∗∗)
i∗,1 ) 983

6= (γ i∗

1,1 + γ i∗∗

1,1λ
(i∗∗)
i∗,1 )(γ i

1,2 + γ i∗∗

1,2λ
(i∗∗)
i,1 ), (6) 984

where i , i∗ and i∗∗ are distinct, i, i∗, i∗∗ ∈ {2, . . . , k + 985

2}. Lastly, we regenerate new chunks P ′
1,1 and P ′

1,2 986
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as follows:987

P ′
1,1 = γ 21,1P2,1 + γ 31,1P3,1 + . . . + γ k+2

1,1 Pk+2,1, (7)988

P ′
1,2 = γ 21,2P2,1 + γ 31,2P3,1 + . . . + γ k+2

1,2 Pk+2,1. (8)989

Note that Equation (4) is used for maintaining the MDS990

property, while Equations (5) and (6) are used for maintaining991

the erMDS property.992

3) The mth Round of Repair (m > 1): If the failed node993

in the mth round of repair is the repaired node in the (m −994

1)th round of repair, then we just repeat the (m − 1)th repair.995

Otherwise, we first select the k + 1 chunks such that they996

are different from those selected in the (m − 1)th round of997

repair. Then similar to the first round of repair, we generate the998

coefficients that satisfy inequalities in (4), 5), and (6). Finally,999

we regenerate the new chunks accordingly as (7) and (8).1000

B. Proof of Correctness of Semi-Deterministic PMSR Codes1001

We now prove the correctness of the semi-deterministic1002

PMSR codes in Section VI. Since the file is stored by Reed-1003

Solomon codes, any 2k out of 2(k + 2) (parity) chunks1004

are decodable to the original file. Therefore, the MDS and1005

erMDS properties are satisfied. Now, we show that the1006

MDS and erMDS properties are always satisfied after each1007

round of repair, based on our chunk selection and coefficient1008

construction.1009

1) The First Round of Repair: Let U1 = {P ′
1,1, P ′

1,2;1010

P2,1, P2,2; . . . ; Pn,1, Pn,2} be the set of all chunks after the1011

first round of repair (for failed node 1). Next we prove that1012

U1 still satisfies both the MDS and erMDS properties.1013

(U1 satisfies the MDS property) Since the file is stored1014

with Reed-Solomon Codes, all the chunks of any k out1015

of nodes 2, . . . , k + 2 are obviously decodable. Thus, we1016

only need to check whether the chunks of the repaired1017

node 1 and any k − 1 of nodes 2, . . . , k + 2 are decod-1018

able. Take the repaired node 1 and nodes 2, . . . , k for1019

instance. Denote the 2k chunks of them by V = {P ′
1,1, P ′

1,2;1020

P2,1, P2,2; . . . ; Pk,1, Pk,2}. Due to Equations (7) and (8),1021

span(V) = span(γ k+1
1,1 Pk+1,1 + γ k+2

1,1 Pk+2,1, γ
k+1
1,2 Pk+1,1 +1022

γ k+2
1,2 Pk+2,1;P2,1, P2,2; . . . ; Pk,1, Pk,2). Due to inequality (4),1023

we can find coefficients that satisfy γ k+1
1,1 γ k+2

1,2 6= γ k+1
1,2 γ k+2

1,1 .1024

So span(V) = span(Pk+1,1, Pk+2,1;P2,1, P2,2; . . . ;Pk,1, Pk,2).1025

Based on the erMDS property, the right hand side of1026

the above equation is decodable because it contains1027

P2,1, P3,1, . . . , Pk+2,1 for nodes 2, . . . , k + 2. So V is also1028

decodable.1029

(U1 satisfies the erMDS Property) Since the file is stored1030

with Reed-Solomon Codes, there already exist k + 1 chunks1031

P2,1, . . . , Pk+2,1 such that any RBC consisting of them is1032

decodable due to the erMDS property that we enforce when1033

we store the file. Thus, we only need to check whether for the1034

repaired node 1 and any k of nodes 2, . . . , k +2, there always1035

exist k +1 chunks such that by choosing one chunk from each1036

such node, any RBC consisting of them is decodable. Without1037

loss of generality, we just consider the case for the repaired1038

node 1 and nodes 2, . . . , k + 1 for simplicity.1039

Fig. 3. Aggregate checking time of 50 rounds of repair (y-axis is in log
scale).

Here, we select the k + 1 chunks in the way that they are 1040

distinct from those selected for the first round of repair. In this 1041

case, we collect F1 = {P ′
1,2, P2,2, . . . , Pk+1,2} (note: either 1042

P ′
1,1 or P ′

1,2 is fine). Next we show the constructed γ i
1,1 and 1043

γ i
1,2 make any RBC consisting of F1 decodable. Since the 1044

repaired node 1 may offer one or two chunks to an RBC, we 1045

consider two cases. 1046

Case 1: The repaired node 1 only offers one chunk. Then the 1047

RBC needs another k −1 nodes (e.g., nodes 2, . . . , k) to offer 1048

all their chunks and another one node (e.g., node k+1) to offer 1049

one chunk. To make the RBC include F1, we have the repaired 1050

node 1 offering P ′
1,2 and node k + 1 offering Pk+1,2. Then 1051

the RBC is R1 = {P ′
1,2; P2,1, P2,2; . . . ; Pk,1, Pk,2; Pk+1,2}. 1052

By Equation (8), span(R1) = span ({γ k+1
1,2 Pk+1,1 + 1053

γ k+2
1,2 Pk+2,1; P2,1, P2,2; . . . ; Pk,1, Pk,2; Pk+1,2}). 1054

Based on the MDS property, we consider a decodable 1055

collection Z = {P2,1, P2,2; . . . ; Pk+1,1, Pk+1,2}. Then Pk+2,1 1056

is a linear combination of Z , and can be expressed as 1057

Pk+2,1 =

k+1
∑

i=2

2
∑

j=1

λk+2
i, j Pi, j , (9) 1058

based on Equation (3). Thus, span(R1) = span ( {(γ k+1
1,2 + 1059

γ k+2
1,2 λk+2

k+1,1)Pk+1,1; P2,1, P2,2; . . . ; Pk,1, Pk,2; Pk+1,2}). Due 1060

to inequality (5), we can find coefficients that satisfy 1061

γ k+1
1,2 + γ k+2

1,2 λk+2
k+1,1 6= 0. Thus, span(R1) = span 1062

({P2,1, P2,2; . . . ; Pk,1, Pk,2; Pk+1,1, Pk+1,2}). The right hand 1063

side of the above equation is decodable due to the MDS 1064

property. So R1 is also decodable. 1065

Case 2: The repaired node 1 offers two chunks. Then the 1066

RBC needs another k − 2 nodes (e.g., nodes 2, . . . , k − 1) 1067

to offer all their chunks and another two nodes (e.g., 1068

nodes k and k + 1) to offer one chunk. To make the 1069

RBC include F1, we have nodes k and k + 1 offering 1070

Pk,2 and Pk+1,2, respectively. Then the RBC is R2 = 1071

{P ′
1,1, P ′

1,2; P2,1, P2,2; . . . ; Pk−1,1, Pk−1,2; Pk,2; Pk+1,2}. 1072

Due to Equations (7) and (8), span (R2) = span 1073

({γ k
1,1Pk,1+γ k+1

1,1 Pk+1,1+γ k+2
1,1 Pk+2,1, γ

k
1,1Pk,1+γ k+1

1,1 Pk+1,1+ 1074

γ k+2
1,1 Pk+2,1, P2,1, P2,2; . . . ; Pk−1,1, Pk−1,2; Pk,2; Pk+1,2}). 1075
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Fig. 4. Cumulative checking time of m rounds of repair. (a) random PMSR codes. (b) semi-deterministic PMSR codes.

By Equation (9), span (R2) = span ({(γ k
1,1 +1076

γ k+2
1,1 λk+2

k,1 )Pk,1 + (γ k+1
1,1 + γ k+2

1,1 λk+2
k+1,1)Pk+1,1, (γ k

1,2 +1077

γ k+2
1,2 λk+2

k,1 )Pk,1+ (γ k+1
1,2 + γ k+2

1,2 λk+2
k+1,1)Pk+1,1; P2,1, P2,2;1078

. . . ; Pk−1,1, Pk−1,2; Pk,2; Pk+1,2}).1079

Due to inequality (6), we can find coefficients which1080

satisfy (γ k
1,1 + γ k+2

1,1 λk+2
k,1 )(γ k+1

1,2 + γ k+2
1,2 λk+2

k+1,1) 6= (γ k+1
1,1 +1081

γ k+2
1,1 λk+2

k+1,1)(γ
k
1,2+γ k+2

1,2 λk+2
k,1 ), then span(R2) = span ({P2,1,1082

P2,2; . . . ; Pk+1,1, Pk+1,2}).1083

The right hand side of the above equation is decodable due1084

to the MDS property. So R2 is also decodable.1085

2) The mth Repair (m > 1): Take m = 2 for instance.1086

Suppose without loss of generality that node k + 2 fails,1087

then we select {P ′
1,2, P2,2, . . . , Pk+1,2} which are distinct from1088

those in the first round of repair. We can observe that in1089

fact this set is F1 in the first round of repair. As mentioned1090

above, any RBC consisting of F1 is decodable. So F1 can be1091

used for the second round of repair. Then we can generate1092

the coefficients that satisfy the similar inequalities as (4), (5),1093

and (6). The proof of correctness is similar to m = 1 and thus1094

omitted.1095

VII. EVALUATION1096

In this section, we evaluate the repair performance of two1097

implementations of PMSR codes with k = n − 2, r = 1 in a1098

real multiple cloud storage system: (i) random PMSR codes,1099

which use random chunk selection in repair and is used in1100

NCCloud [9] and (ii) semi-deterministic PMSR codes, which1101

use deterministic chunk selection proposed in Section VI.1102

We show that our proposed semi-deterministic PMSR codes1103

can significantly reduce the time required to regenerate parity1104

chunks in repair.1105

We implement both versions of PMSR codes in C. We1106

implement finite-field arithmetic operations over a Galois Field1107

GF(28) based on the standard table lookup approach [16]. We1108

conduct our evaluation on a server running on an Intel CPU1109

at 2.4GHz. We consider different values of n (i.e., the number1110

of nodes). For each n, we first apply Reed-Solomon codes to1111

generate the encoding coefficients that will be used to encode1112

a file into parity chunks before uploading. In each round of1113

repair, we randomly pick a node to fail. We then repair the1114

failed node using two-phase checking, based on either random1115

or semi-deterministic PMSR code implementations. The failed 1116

node that we choose is different from that of the previous 1117

round of repair, so as to ensure a different chunk selection in 1118

each round of repair. We conduct 50 rounds of repair in each 1119

evaluation run. We conduct a total of 30 runs over different 1120

seeds for each n. 1121

The metric we are interested in is the checking time spent 1122

on determining if the chunks selected from surviving nodes 1123

can be used to regenerate the lost chunks. We do not measure 1124

the times of reading or writing chunks, as they are the same for 1125

both random and semi-deterministic PMSR codes. Instead, we 1126

focus on measuring the processing time of two-phase checking 1127

in each round of repair. It is important to note that two- 1128

phase checking only operates on encoding coefficients, and 1129

is independent of the size of the file being encoded. Note that 1130

we do not specifically optimize our encoding operations, but 1131

we believe our results provide fair comparison of both ran- 1132

dom and semi-deterministic PMSR codes using our baseline 1133

implementations. 1134

Figure 3 first depicts the aggregate checking times for a total 1135

of 50 rounds of repair versus the number of nodes when using 1136

random and semi-deterministic PMSR codes. The aggregate 1137

checking time of random PMSR codes is small when n is small 1138

(e.g., less than 1 second for n ≤ 6), but exponentially increases 1139

as n is large. On the other hand, the aggregate checking time 1140

of semi-deterministic PMSR codes is significantly small (e.g., 1141

within 0.2 seconds for n ≤ 10). 1142

Our investigation finds that the checking time of random 1143

PMSR codes increases dramatically as the value of n increases. 1144

For example, when n = 12 (not shown in our figures), we find 1145

that the repair operation of our random PMSR code imple- 1146

mentation still cannot return a right set of regenerated chunks 1147

after running for two hours. In contrast, our semi-deterministic 1148

PMSR codes can return a solution within 0.5 seconds. 1149

To further examine the significant performance overhead of 1150

random PMSR codes, Figures 4 and 5 show the cumulative 1151

checking time and number of two-phase checking operations 1152

performed for m rounds of repair, respectively, for n = 1153

8, 9, 10. We observe that the checking time in each round 1154

of repair remains almost the same regardless of the number 1155

of repairs that have been performed; in other words, the 1156

repair performance remains stable after a number of rounds 1157
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Fig. 5. Cumulative number of two-phase checkings of m rounds of repair. (a) random PMSR codes. (b) semi-deterministic PMSR codes.

of repairs. We note that random PMSR codes incur a fairly1158

large but constant number of two-phase checking operations1159

in each round of repair. For example, for n = 10, each round1160

of repair takes around 100 iterations of two-phase check-1161

ing (see Figure 5(a)). On the other hand, semi-deterministic1162

PMSR codes significantly reduce the number of iterations1163

of two-phase checking (e.g., less than 2.5 on average for1164

n = 10). In summary, our evaluation results show that semi-1165

deterministic PMSR codes significantly reduce the two-phase1166

checking overhead of ensuring that the MDS property is1167

preserved during repair.1168

VIII. CONCLUSIONS1169

This paper formulates an uncoded repair problem based on1170

proxy-assisted minimum storage regenerating (PMSR) codes.1171

We formally prove the existence of PMSR codes with uncoded1172

repair against both single and concurrent failures matching1173

the lower bound of repair bandwidth, and provide a semi-1174

deterministic family of PMSR code construction. We also1175

show via our evaluation that our semi-deterministic PMSR1176

codes significantly reduce the repair time overhead of random1177

PMSR codes. Our theoretical results validate the correctness1178

of the NCCloud implementation [9] and design a more generic1179

family of PMSR codes for repairing concurrent node failures.1180

We also demonstrate the feasibility of preserving the benefits1181

of network coding in minimizing the repair bandwidth with1182

uncoded repair.1183

APPENDIX A1184

PROOF OF LEMMA 21185

Proof: Suppose that T is connected to t (where t ≤ r )1186

new nodes X ′
1, · · · , X ′

t and k − t surviving nodes1187

Xn−k+t+1, · · · , Xn for reconstructing the original file.1188

By excluding edges with infinite capacities, a possible cut can1189

fall into one of three cases:1190

• Cut C1: It spans across all surviving nodes, i.e., it contains1191

all edges from X in
i to Xout

i , where r + 1 ≤ i ≤ n.1192

• Cut C2: It spans across some surviving nodes and the1193

connections between the surviving nodes and the proxy,1194

i.e., it contains some edges from X in
i to Xout

i and some1195

edges from Xout
i to Y in , where r + 1 ≤ i ≤ n.1196

• Cut C3: It spans across some surviving nodes and the 1197

proxy, i.e., it contains some edges from X in
i to Xout

i , 1198

where r + 1 ≤ i ≤ n and the edge from Y in to Y out . 1199

Figure 1 shows the cuts C1, C2, and C3 in G. Let 31, 32, 1200

and 33 denote the capacities of C1, C2, and C3, respectively. 1201

We now analyze the capacity of each cut as follows. 1202

A. Derivations of 31 1203

Since n − k ≥ r (otherwise, there is data loss when r nodes 1204

fail), we have: 1205

31 = (n − r) · M/k 1206

≥ k · M/k 1207

= M. 1208

B. Derivations of 32 1209

Let w be the number of edges from some Xout
i (where r + 1210

1 ≤ i ≤ n) to Y in . 1211

32 = w · β + (n − r − w) · M/k. (10) 1212

Since32 of every possible min-cut is at least M , Equation (10) 1213

implies that for all variants of G, 1214

β ≥ M/k · (1−
n − k − r

w
). (11) 1215

Let β ′ be the right side of Equation (11). Then for all variants 1216

of G, Equation (11) can be reduced to: 1217

β ≥ max{β ′}. (12) 1218

We now derive max{β ′}. Since T is connected to at most r 1219

new nodes, we have t ≤ r . Also, since T is connected to k − t 1220

surviving nodes, we have w ≤ (n − r) − (k − t). Thus, we 1221

have w ≤ n − k. When w = n − k, max{β ′} is achieved. That 1222

is, 1223

max{β ′} =
r M

k(n − k)
. (13) 1224

By Equations (12) and (13), we have 1225

β ≥
r M

k(n − k)
. 1226
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C. Derivations of 331227

Since T is connected to k − t surviving nodes, we have1228

33 ≥ r · M/k + (k − t) · M/k. (14)1229

Since t ≤ r , Equation (14) implies that1230

33 ≥ M.1231

D. Summary1232

Clearly, both 31 and 33 are always at least M , independent1233

of β. Also, when 32 ≥ M , we have a lower bound of β equal1234

to r M
k(n−k)

. This concludes the proof of Lemma 2. �1235

APPENDIX B1236

PROOF OF LEMMA 61237

Proof: Without loss of generality, let node 1 and node 21238

be the failed nodes. Suppose that there are x repaired nodes1239

selected in Step 2 of RBC construction and y repaired nodes1240

selected in Step 3 of RBC construction.1241

There are five cases to construct an RBC which contains1242

chunks of the repaired node 1 and node 2: (1) x = 2, y = 0;1243

(2) x = 1, y = 1;(3) x = 0, y = 2 (4) x = 1, y = 0;1244

(5) x = 0, y = 1. For the same reason as stated by Lemma 3,1245

we do not consider the RBCs which do not contain any chunks1246

of the repaired nodes.1247

Let P be the set of chunks chosen in Step 2 of Definition 21248

excluding those from the repaired nodes. Similar to the proof1249

of Lemma 3, we infer that all the chunks of R are linear1250

combinations of chunks in F ∪ P ∪ Q, which only contain1251

chunks from surviving nodes.1252

Since P contains n−k = 3 chunks from each of k −r −x =1253

k − 2− x surviving nodes, P has 3(k − 2− x) chunks of the1254

surviving nodes, i.e., |P | = 3(k − 2 − x);1255

Since F selects r = 2 chunks from each surviving nodes1256

and P has all the chunks from k−r−x = k−2−x out of all the1257

surviving nodes, F and P have 2(k −2−x) identical common1258

chunks of the surviving nodes, i.e., |F ∩ P | = 2(k − 2− x).1259

Since Q contains r = 2 chunks from each of n − k − y =1260

3− y surviving nodes, Q has 2(3− y) chunks of the surviving1261

nodes, i.e., |Q| = 2(3− y).1262

According to the given conditions, we can easily have the1263

following equalities: |F | = 2(n−2), |P∩Q| = |F∩P∩Q| =1264

0. Thus, we have1265

|F ∪ P ∪ Q| = |F | + |P | + |Q| − |F ∩ P |1266

− |F ∩ Q| − |P ∩ Q| + |F ∩ P ∩ Q|1267

= 3k + (6− x − 2y) − |F ∩ Q|. (15)1268

If an RBC is an LDC, which means F ∪ P ∪ Q are linear1269

combinations of less than k(n − k) chunks from the surviving1270

nodes, then |F∪P∪Q| < 3k. There are five cases of different1271

values of x and y as follows:1272

Case 1: When x = 2, y = 0, we have 6 − x − 2y = 4.1273

Hence, by Equation (15), when an RBC of Case 1 is an LDC,1274

we can obtain: |F ∩ Q| ≥ 5.1275

Case 2: When x = 1, y = 1, we have 6 − x − 2y = 3. 1276

Hence, by Equation (15), when an RBC of Case 2 is an LDC, 1277

we can obtain: |F ∩ Q| ≥ 4. 1278

Case 3: When x = 0, y = 2, we have 6 − x − 2y = 2, 1279

|Q| = 2(3− y) = 2. Hence, by Equation (15) and |F ∩ Q| ≤ 1280

|Q|, we can obtain |F ∪P ∪Q| ≥ 3k, which means the RBC 1281

of case 3 is never an LDC. 1282

Case 4: When x = 1, y = 0, we have 6 − x − 2y = 5. 1283

Hence, by Equation (15), when an RBC of Case 4 is an LDC, 1284

we can obtain: |F ∩ Q| ≥ 5. 1285

Case 5: When x = 0, y = 1, we have 6 − x − 2y = 4, 1286

|Q| = 2(3− y) = 4. Hence, by Equation (15) and |F ∩ Q| ≤ 1287

|Q|, we can obtain |F ∪P ∪Q| ≥ 3k, which means the RBC 1288

of case 5 is never an LDC. 1289

Therefore, Lemma 6 holds. � 1290

APPENDIX C 1291

PROOF OF LEMMA 7 1292

Proof: Without loss of generality, suppose that we con- 1293

struct an RBC R by selecting the chunks from nodes 3, . . . , n 1294

(see Step 1 of Definition 2), and that H be the set of 2(n − 2) 1295

chunks selected from nodes 3, . . . , n (two chunks from each 1296

node). We prove the existence of H such that if R contains H 1297

(i.e.,H ⊂ R), thenR is decodable. There are three cases about 1298

node 1 and node 2: (1) node 1 and node 2 are the repaired 1299

nodes in the mth round of repair; (2) node 1 and node 2 are 1300

not the repaired nodes in the mth round of repair; (3) node 1 1301

(or node 2) is the repaired node while node 2 (node 1) is not 1302

the repaired node in the mth round of repair. We discuss them 1303

as follows: 1304

Case 1: If node 1 and node 2 are the repaired nodes in the 1305

mth round of repair, then R is never an LDC (by Definition 3) 1306

similar to that in Lemma 4. Since the rMDS property is 1307

satisfied by our assumption, R is decodable (by Definition 4). 1308

Case 2: If node 1 and node 2 are not the repaired 1309

nodes in the mth round of repair, then without loss 1310

of generality, let node 3 and node 4 be the repaired 1311

nodes and the new parity chunks are P ′
3,1, P ′

3,2, P ′
3,3, 1312

P ′
4,1, P ′

4,2 and P ′
4,3. By the PMSR code design, the 1313

chunks of node 3 and node 4 are linearly combined by 1314

two chunks in each of nodes 1, 2, 5, . . . , n. We denote 1315

these chunks by F = {P1, f1(1), P1, f2(1), P2, f1(2), P2, f2(2), 1316

P5, f1(5), P5, f2(5), . . . , Pn, f1(n), Pn, f2(n)}. Since each node has 1317

n − k = 3 chunks, we can construct H = {P ′
3,g1(3)

, P ′
3,g2(3)

, 1318

P ′
4,g1(4)

, P ′
4,g2(4)

, P5,g1(5), P5,g2(5), . . . , Pn,g1(n), Pn,g2(n)} such 1319

that g1(i) 6= f1(i) and g2(i) = f2(i) for i = 5, . . . , n (while 1320

g3(1), g3(2),g4(1) and g4(2) can be randomly picked). Let Q 1321

be the set of chunks chosen in Step 3 of Definition 2 excluding 1322

those from the two repaired nodes. If R contains H, then Q 1323

and F only contain 1 · (n − k) = 3 identical common chunks 1324

of the surviving nodes. By Lemma 6, R is not an LDC. Since 1325

the rMDS property is satisfied, R is decodable. 1326

Case 3: The proof is similar to that of Case 2. So omitted. 1327

� 1328

APPENDIX D 1329

PROOF OF THEOREM 2 1330

Proof: We prove by induction on m. Initially, we use 1331

Reed-Solomon codes to encode a file into n(n − k) = 3n 1332
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chunks that satisfy both the MDS and rMDS properties.1333

Suppose that after the mth round of repair, both the MDS1334

and rMDS properties are satisfied (this is our induction1335

hypothesis).1336

Let Um = {P1,1, P1,2, P1,3; . . . ; Pk+3,1, Pk+3,2, Pk+3,3} be1337

the current set of chunks after the mth round of repair. In the1338

(m+1)th round of repair, without loss of generality, let node 11339

and node 2 be the failed nodes to be repaired.1340

Since Um satisfies the rMDS property, we use F to repair1341

node 1 and node 2. Suppose that the repaired node 11342

and node 2 have the new chunks {P ′
1,1, P ′

1,2, P ′
1,3} and1343

{P ′
2,1, P ′

2,2, P ′
2,3}, respectively. Then1344

P ′
i ′, j ′ =

k+3
∑

i=3

γ
i,1
i ′, j ′ Pi, f1(i) + γ

i,2
i ′, j ′ Pi, f2(i),1345

for i ′ = 1, 2 and j ′ = 1, 2, 3. (16)1346

Here γ
i,1
i ′, j ′ and γ

i,2
i ′, j ′ denote the encoding coefficients for1347

the two retrieved chunks of the surviving node i to generate1348

the the j ′th chunk of the new node i ′. Next we prove that1349

we can always tune γ
i,1
i ′, j ′ and γ

i,2
i ′, j ′ in Fq in such a way that1350

the set of chunks in the (m + 1)th round of repair Um+1 =1351

{P ′
1,1, P ′

1,2, P ′
1,3; P ′

2,1, P ′
2,2, P ′

2,3; P3,1, P3,2, P3,3; . . . ; Pk+3,1,1352

Pk+3,2, Pk+3,3} still satisfies both MDS and rMDS properties.1353

The proof consists of two parts.1354

Part I Um+1 Satisfies the MDS Property:1355

The proof of Part I is similar to that in Theorem 1. So1356

omitted.1357

Part II Um+1 Satisfies the rMDS Property:1358

By Definition 4, we need to prove that all the RBCs of1359

Um+1 except the LDCs are decodable. By Definition 2, we1360

only consider the following five cases of RBCs which contain1361

the chunks of the repaired node 1 and node 2 due to the same1362

reason stated by Lemma (3): (Case 1) The repaired node 1 and1363

node 2 are selected in Step 2; (Case 2) The repaired node 1 is1364

selected in Step 1 and node 2 is selected in Step 2; (Case 3)1365

The repaired node 1 and node 2 are selected in Step 3; (Case 4)1366

The repaired node 1 is selected in Step 2 while the repaired1367

node 2 is selected neither in Step 2 nor in Step 3; (Case 5)1368

The repaired node 1 is selected in Step 3 while the repaired1369

node 2 is selected neither in Step 2 nor in Step 3. Due to the1370

similarity of the proofs of all the Cases, we only prove Case 11371

as follows:1372

Suppose the repaired node 1 and node 2 are selected1373

in Step 2 (Case 1). In Step 1, an RBC needs to ran-1374

domly select (n − r) − 2 = k − 1 additional surviving1375

nodes, say {s1, . . . , sk−1} ⊆ {3, . . . , n}. Then in Step 2,1376

the RBC needs to select (k − r) − 2 = k − 4 addi-1377

tional nodes if k > 4, say nodes s1, . . . , sk−4 . The cases1378

with k ≤ 4 are similar to but easier than those with1379

k > 4 and thus are omitted. Finally, in Step 3, the RBC1380

chooses six chunks, denoted by {Psk−3,g1(sk−3), Psk−3,g2(sk−3)},1381

{Psk−2,g1(sk−2), Psk−2,g2(sk−2)} and {Psk−1,g1(sk−1), Psk−1,g2(sk−1)}1382

from the remaining three nodes sk−3, sk−2 and sk−1, respec-1383

tively. Without loss of generality, let (s1, . . . , sk−4) =1384

(3, . . . , k − 2) and (sk−3, sk−2, sk−1) = (k − 1, k, k + 1).1385

Denote the RBC by 1386

R1 = {P ′
1,1, P ′

1,2, P ′
1,3; P ′

2,1, P ′
2,2, P ′

2,3} 1387

∪ {P3,1, P3,2, P3,3; . . . ; Pk−2,1, Pk−2,2, Pk−2,3} 1388

∪ {Pk−1,g1(k−1), Pk−1,g2(k−1)} 1389

∪ {Pk,g1(k), Pk,g2(k)} 1390

∪ {Pk+1,g1(k+1), Pk+2,g2(k+1)}. 1391

In addition, by Equation (16), the chunks of R1 are linear 1392

combinations of a set of chunks denoted by 1393

X1 = {P3,1, P3,2, P3,3; . . . ; Pk−2,1, Pk−2,2, Pk−2,3} 1394

∪ {Pk−1,g1(k−1), Pk−1,g2(k−1), Pk−1, f1(k−1), Pk−1, f2(k−1)} 1395

∪ {Pk,g1(k), Pk,g2(k), Pk, f1(k), Pk, f2(k)} 1396

∪ {Pk+1,g1(k+1), Pk+1,g2(k+1), Pk+1, f1(k+1), Pk+1, f2(k+1)} 1397

∪ {Pk+2, f1(k+2), Pk+2, f2 (k+2)} 1398

∪ {Pk+3, f1(k+3), Pk+3, f2 (k+3)}. 1399

Note that because there are n − k = 3 chunks in 1400

node k-1, there are at least one identical chunk between 1401

{Pk−1,g1(k−1), Pk−1,g2(k−1)} and {Pk−1, f1(k−1), Pk−1, f2 (k−1)}, 1402

so we suppose that Pk−1,g2(k−1) = Pk−1, f2(k−1) without loss of 1403

generality. Thus, we can consider that node k-1 contains three 1404

chunks {Pk−1,g1(k−1), Pk−1, f1(k−1), Pk−1, f2(k−1)} as shown in 1405

Equation (17); and so do the nodes k and k+1. 1406

X1 = {P3,1, P3,2, P3,3; . . . ; Pk−2,1, Pk−2,2, Pk−2,3} 1407

∪ {Pk−1,g1(k−1), Pk−1, f1(k−1), Pk−1, f2 (k−1)} 1408

∪ {Pk,g1(k), Pk, f1(k), Pk, f2(k)} 1409

∪ {Pk+1,g1(k+1), Pk+1, f1(k+1), Pk+1, f2 (k+1)} 1410

∪ {Pk+2, f1(k+2), Pk+2, f2 (k+2)} 1411

∪ {Pk+3, f1(k+3), Pk+3, f2(k+3)}. (17) 1412

Our goal is to show that if R1 is not an LDC, then it is 1413

decodable. Clearly, there are k(n − k)+ 1 chunks in the right- 1414

hand side of Equation (17), so if and only if there exist at least 1415

two out of three nodes k − 1, k and k + 1 (let’s say they are 1416

nodes k − 1 and k without loss of generality) satisfying that 1417

g1(k − 1) = f1(k − 1) and g1(k) = f1(k), R1 becomes an 1418

LDC since X1 can be reduced to less than k(n − k) chunks of 1419

the surviving nodes after the mth repair. Thus, to prove that 1420

R1 except the LDCs is decodable, it is equivalent to prove that 1421

R1 is decodable when there exists at most one out of three 1422

nodes k −1, k and k +1 (let’s say it is the node k −1 without 1423

loss of generality) satisfying that (a) g1(k − 1) = f1(k − 1), 1424

g1(k) 6= f1(k) and g1(k + 1) 6= f1(k + 1); or (b) g1(k − 1) 6= 1425

f1(k − 1), g1(k) 6= f1(k) and g1(k + 1) 6= f1(k + 1). 1426

First consider (a) and define X1 = X1 − {Pk,g1(k), 1427

Pk+1,g1(k+1)}. Since X1 is an RBC containing F , by Claim 2, 1428

X1 is decodable. Therefore, {Pk,g1(k), Pk+1,g1(k+1)} can be 1429

seen as a linear combination of X1. Obviously, we can also 1430

say X1 is a linear combination of X1. Therefore, R1 is also 1431

linear combination of the decodable collection X1. 1432

Similarly, we can also prove that all the RBCs of 1433

Cases 2,3,4,5 can be reduced to linear combination of a 1434

decodable RBC containing F by Claim 2. Then we can use 1435

the similar method in Part I of Theorem (1) to prove that for 1436
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all possible {s1, . . . , sk−1} ⊆ {3, . . . , n}, there always exists1437

an assignment of γ
i,1
i ′, j ′ and γ

i,2
i ′, j ′ in a sufficiently large field1438

such that all RBCs excluding the LDCs are decodable (by1439

Lemma 5). Thus, Um+1 satisfies the rMDS Property.1440

Therefore, there always exists an assignment of γ i
i ′, j ′1441

in a sufficiently large field such that for for all possi-1442

ble {s1, . . . , sk−1} ⊆ {3, . . . , n}, both MDS and rMDS1443

Property can be maintained. This concludes the proof1444

of Theorem 2. �1445
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