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A Fast and Compact Invertible Sketch for
Network-Wide Heavy Flow Detection

Lu Tang, Qun Huang, Patrick P. C. Lee

Abstract—Fast detection of heavy flows (e.g., heavy hitters and
heavy changers) in massive network traffic is challenging due to
the stringent requirements of fast packet processing and limited
resource availability. Invertible sketches are summary data struc-
tures that can recover heavy flows with small memory footprints
and bounded errors, yet existing invertible sketches incur high
memory access overhead that leads to performance degradation.
We present MV-Sketch, a fast and compact invertible sketch
that supports heavy flow detection with small and static memory
allocation. MV-Sketch tracks candidate heavy flows inside the
sketch data structure via the idea of majority voting, such that
it incurs small memory access overhead in both update and
query operations, while achieving high detection accuracy. We
present theoretical analysis on the memory usage, performance,
and accuracy of MV-Sketch in both local and network-wide
scenarios. We further show how MV-Sketch can be implemented
and deployed on P4-based programmable switches subject to
hardware deployment constraints. We conduct evaluation in both
software and hardware environments. Trace-driven evaluation in
software shows that MV-Sketch achieves higher accuracy than
existing invertible sketches, with up to 3.38× throughput gain.
We also show how to boost the performance of MV-Sketch with
SIMD instructions. Furthermore, we evaluate MV-Sketch on a
Barefoot Tofino switch and show how MV-Sketch achieves line-
rate measurement with limited hardware resource overhead.

Index Terms—sketch, network measurement

I. INTRODUCTION

IDENTIFYING abnormal patterns of flows (e.g., hosts,
source-destination pairs, or 5-tuples) in massive network

traffic is essential for various network management tasks, such
as traffic engineering [8], load balancing [2] and intrusion
detection [21]. Two types of abnormal flows are of particular
interest: heavy hitters (i.e., flows that generate an unexpectedly
high volume of traffic) and heavy changers (i.e., flows that
generate an unexpectedly high change of traffic volume in a
short duration). By identifying both heavy hitters and heavy
changers (collectively referred to as heavy flows), network
operators can quickly respond to performance outliers, mis-
behaved usage, and potential DDoS attacks, so as to maintain
network stability and QoS guarantees.
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Unfortunately, the stringent requirements of fast packet
processing and limited memory availability pose challenges to
practical heavy flow detection. First, the packet processing rate
of heavy flow detection must keep pace with the ever-increasing
network speed, especially in the worst case when traffic bursts
or attacks happen [25]. For example, a fully utilized 10 Gb/s
link with a minimum packet size of 64 bytes implies that the
heavy flow detection algorithm must process at least 14.88M
packets per second. In addition, the available memory footprints
are constrained in practice (e.g., less than 2 MB of SRAM per
stage in emerging programmable switches [11], [43]). While
per-flow monitoring with linear hash tables is arguably feasible
in software [1], its performance degrades once the working set
grows beyond the available software cache capacity.

Given the rigid packet processing and memory requirements,
many approaches perform approximate heavy flow detection via
sketches, which are summary data structures that significantly
mitigate memory footprints with bounded detection errors.
Classical sketches [15], [16], [31] are proven effective, but
are non-invertible: while we can query a sketch whether a
specific flow is a heavy flow, we cannot readily recover all
heavy flows from only the sketch itself. Instead, we must check
whether every possible flow is a heavy flow. Such a brute-force
approach is computationally expensive for an extremely large
flow key space (e.g., the size is 2104 for 5-tuple flows).

This motivates us to explore invertible sketches, which
provide provable error bounds as in classical sketches, while
supporting the queries of recovering all heavy flows. Invertible
sketches are well studied in the literature (e.g., [13], [16],
[18], [26], [33], [40]) for heavy flow detection. However, there
remain limitations in existing invertible sketches. In particular,
they either maintain heavy flows in external DRAM-based
data structures [16], [26], or track flow keys in smaller-size
bits or sub-keys [13], [18], [33], [40]. We argue that both
approaches incur substantial memory access overhead that
leads to degraded processing performance (Section II-B).

In this paper, we present MV-Sketch, a fast and compact
invertible sketch for heavy flow detection. It tracks candidate
heavy flow keys together with the counters in a sketch data
structure, and updates the candidate heavy flow keys based
on the majority vote algorithm [12] in an online streaming
fashion. A key design feature of MV-Sketch is that it maintains
a sketch data structure with small and static memory allocation
(i.e., no dynamic memory allocation is needed). This not only
allows lightweight memory access in both update and detection
operations, but also provides viable opportunities for hardware
acceleration and feasible deployment in hardware switches. To
summarize, we make the following contributions.
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• We design MV-Sketch, an invertible sketch that supports
both heavy hitter and heavy changer detection and can
be generalized for distributed detection, including both
scalable detection (which provides scalability) and network-
wide detection (which provides a network-wide view of
measurement results). See Section III.

• We present theoretical analysis on MV-Sketch for its memory
space complexity, update/detection time complexity, and
detection accuracy. See Section IV.

• We present the implementation of MV-Sketch on P4-based
programmable switches [10] subject to various hardware
deployment constraints. See Section V.

• We conduct evaluation in both software and hardware envi-
ronments. We show via trace-driven evaluation in software
that MV-Sketch achieves higher detection accuracy for most
memory configurations and up to 3.38× throughput gain
over state-of-the-art invertible sketches. We also extend
MV-Sketch with Single Instruction, Multiple Data (SIMD)
instructions to boost its update performance. Furthermore, we
prototype MV-Sketch in the P4 language [10] and compile
it to the Barefoot Tofino chipset [45]. MV-Sketch achieves
line-rate measurement with limited resource overhead. It
also achieves higher accuracy and smaller resource usage
than PRECISION [7] (a heavy hitter detection scheme in
programmable switches). See Section VI.
The source code of MV-Sketch (including the software

implementation and the P4 code) is available for download at:
http://adslab.cse.cuhk.edu.hk/software/mvsketch.

II. BACKGROUND

A. Heavy Flow Detection

We consider a stream of packets, each of which is denoted by
a key-value pair (x,vx), where x is a key drawn from a domain
[n] = {0,1, · · · ,n− 1} and vx is the value of x. In network
measurement, x is the flow identifier (e.g., source/destination
address pairs or 5-tuples), while vx is either one (for packet
counting) or the packet size (for byte counting). We conduct
measurement at regular time intervals called epochs.

We formally define heavy hitters and heavy changers as
follows. Let φ be a pre-defined fractional threshold (where
0< φ < 1) that is used to differentiate heavy flows from network
traffic (we use the same φ for both heavy hitter and heavy
changer detection for simplicity). Let S(x) be the sum (of
all vx’s) of flow x in an epoch, and D(x) be the absolute
change of S(x) of flow x across two epochs. Let S be the total
sum of all flows in an epoch (i.e., S = ∑x∈[n] S(x)), and D be
the total absolute change of all flows across two epochs (i.e.,
D=∑x∈[n] D(x)). Both S and D can be obtained in practice: for
S , we can maintain an extra counter that counts the total traffic;
for D, we can run an l1-streaming algorithm and estimate D
(equivalent to the l1-distance) in one pass [37]. Finally, flow x
is said to be a heavy hitter if S(x)≥ φS, or a heavy changer
if D(x)≥ φD.

B. Sketches

Sketches are summary data structures that track values in a
fixed number of entries called buckets. Classical sketches on

heavy flow detection (e.g., Count Sketch [15], K-ary Sketch
[31], and Count-Min Sketch [16]) represent a sketch as a two-
dimensional array of buckets and provide different theoretical
trade-offs across memory usage, performance, and accuracy.

Take Count-Min Sketch [16] as an example. We construct the
sketch as r rows of w buckets each. Each bucket is associated
with a counter initialized as zero. For each tuple (x,vx) received
in an epoch, we hash x into a bucket in each of the r rows
using r pairwise independent hash functions. We increment the
counter in each of the r hashed buckets by vx. Since multiple
flows can be hashed to the same bucket, we can only provide
an estimate for the sum of a flow. Count-Min Sketch uses the
minimum counter value of all r hashed buckets as the estimated
sum of a flow. We can check if a flow is a heavy hitter by
checking if its estimated sum exceeds the threshold; similarly,
we can check if a flow is a heavy changer by checking if the
absolute change of its estimated sums in two epochs exceeds
the threshold. However, Count-Min Sketch is non-invertible,
as we must check every flow in the entire flow key space to
recover all heavy flows; note that Count Sketch and K-ary
Sketch are also non-invertible.

Invertible sketches (e.g., [13], [16], [18], [26], [33], [40])
allow all heavy flows to be recovered from only the sketch
data structure itself. State-of-the-art invertible sketches can be
classified into three types.
Extra data structures. Count-Min-Heap [16] is an augmented
Count-Min Sketch that uses a heap to track all candidate
heavy flows and their estimated sums. If any incoming flow
whose estimated sum exceeds the threshold, it is added to the
heap. LD-Sketch [26] maintains a two-dimensional array of
buckets and links each bucket with an associative array to
track the candidate heavy flows that are hashed to the bucket.
However, updating a heap or an associative array incurs high
memory access overhead, which increases with the number
of heavy flows. In particular, LD-Sketch occasionally expands
the associative array to hold more candidate heavy flows, yet
dynamic memory allocation is a costly operation and difficult
to implement in hardware [4].
Group testing. Deltoid [18] comprises multiple counter groups
with 1+L counters each (where L is the number of bits in a
key), in which one counter tracks the total sum of the group,
and the remaining L counters correspond to the bit positions
of a key. It maps each flow key to a subset of groups and
increments the counters whose corresponding bits of the key are
one. To recover heavy flows, Deltoid first identifies all groups
whose total sums exceed the threshold. If each such group has
only one heavy flow, the heavy flow can be recovered: the bit
is one if a counter exceeds the threshold, or zero otherwise.
Fast Sketch [33] is similar to Deltoid except that it maps the
quotient of a flow key to the sketch. However, both Deltoid
and Fast Sketch have high update overhead, as their numbers
of counters increase with the key length.
Enumeration. Reversible Sketch [40] finds heavy flows by
pruning the enumeration space of flow keys. It divides a flow
key into smaller sub-keys that are hashed independently, and
concatenates the hash results to identify the hashed buckets.
To recover heavy flows, it enumerates each sub-key space
and combines the recovered sub-keys to form the heavy flows.
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SeqHash [13] follows a similar design, yet it hashes the key
prefixes of different lengths into multiple smaller sketches.
However, the update costs of both Reversible Sketch and
SeqHash increase with the key length.

III. MV-SKETCH DESIGN

MV-Sketch is a novel invertible sketch for heavy flow
detection and aims for the following design goals:
• Invertibility: MV-Sketch is invertible and readily returns all

heavy flows (i.e., heavy hitters or heavy changers) from only
the sketch data structure itself.

• High detection accuracy: MV-Sketch supports accurate
heavy flow detection with provable error bounds.

• Small and static memory: MV-Sketch maintains compact
data structures with small memory footprints. Also, it can be
constructed with static memory allocation, which mitigates
memory management overhead as opposed to dynamic
memory allocation [26].

• High processing speed: MV-Sketch processes packets at
high speed by limiting the memory access overhead of per-
packet updates. It also takes advantage of static memory
allocation to allow hardware acceleration.

• Scalable detection: To improve performance and scalability,
MV-Sketch can be extended for scalable detection by pro-
cessing packets in multiple MV-Sketch instances in parallel.

• Network-wide detection: MV-Sketch can provide a network-
wide view of heavy flows by aggregating the results from
multiple MV-Sketch instances deployed in different measure-
ment points across the whole network.

A. Main Idea

Like Count-Min Sketch [16], MV-Sketch is initialized as a
two-dimensional array of buckets (Section II-B), in which each
bucket tracks the values of the flows that are hashed to itself.
MV-Sketch augments Count-Min Sketch to allow each bucket
to also track a candidate heavy flow that has a high likelihood
of carrying the largest amount of traffic among all flows that
are hashed to the bucket. Our rationale is that in practice, a
small number of large flows dominate in IP traffic [49]. Thus,
the candidate heavy flow is very likely to carry much more
traffic than all other flows that are hashed to the same bucket.
Also, by hashing each flow to multiple buckets independently,
we can significantly reduce the error due to the collision of
heavy flows, so as to accurately track multiple heavy flows.

To find the candidate heavy flow in each bucket, we apply
the majority vote algorithm (MJRTY) [12], which enables us to
track the candidate heavy flow in an online streaming fashion.
MJRTY processes a stream of votes (corresponding to packets
in our case), each of which has a vote key and a vote count one.
It aims to find the majority vote, defined as the vote key that
has more than half of the total vote counts, from the stream of
votes in one pass with constant memory usage. At any time, it
stores (i) the candidate majority vote that is thus far observed
in a stream and (ii) an indicator counter that tracks whether
the currently stored vote remains the candidate majority vote.
Initially, it stores the first vote and initializes the indicator
counter as one. Each time when a new vote arrives, MJRTY

𝑉",$ 𝐾",$ 𝐶",$
𝑉",$ : total sum of values in 𝐵(𝑖, 𝑗)
𝐾",$ : key of the candidate heavy flow
𝐶",$ : indicator counter

𝑟 rows

Bucket 𝐵(𝑖, 𝑗)

𝑤	buckets
Fig. 1. Data structure of MV-Sketch.

compares the new vote with the candidate majority vote. If both
votes are the same (i.e., the same vote key), it increments the
indicator counter by one; otherwise, it decrements the indicator
counter by one. If the indicator counter is below zero, MJRTY
replaces the current candidate majority vote with the new vote
and resets the counter to one. MJRTY ensures that the true
majority vote must be the candidate majority vote stored by
MJRTY at the end of the stream [12].

MV-Sketch addresses the limitations of existing solutions as
follows. First, it supports static memory allocation and does
not maintain any complex data structure, thereby avoiding the
high memory access overhead in Count-Min-Heap [16] and
LD-Sketch [26]. Also, MV-Sketch stores candidate heavy flows
in buckets via MJRTY, thereby reducing the update overhead
of sketches that are based on group testing [18], [33] and
enumeration [13], [40].

B. Data Structure of MV-Sketch

Figure 1 shows the data structure of MV-Sketch, which is
composed of a two-dimensional array of buckets with r rows
and w columns. Let B(i, j) denote the bucket at the i-th row
and the j-th column, where 1 ≤ i ≤ r and 1 ≤ j ≤ w. Each
bucket B(i, j) consists of three fields: (i) Vi, j, which counts the
total sum of values of all flows hashed to the bucket; (ii) Ki, j,
which tracks the key of the current candidate heavy flow in
the bucket; and (iii) Ci, j, which is the indicator counter that
checks if the candidate heavy flow should be kept or replaced
as in MJRTY [12]. In addition, MV-Sketch is associated with
r pairwise-independent hash functions, denoted by h1 . . .hr,
such that each hi (where 1≤ i≤ r) hashes the key x ∈ [n] of
each incoming packet to one of the w buckets in row i. Note
that the data structure has a fixed memory size and can be
pre-allocated in advance.

C. Basic Operations

MV-Sketch supports two basic operations: (i) Update, which
inserts each incoming packet into the sketch; (ii) Query, which
returns the estimated sum of a given flow in an epoch.

Algorithm 1 shows the Update operation. All fields Vi, j, Ki, j,
and Ci, j are initialized as zero for B(i, j), where 1≤ i≤ r and
1≤ j ≤ w. For each (x,vx), we hash x into B(i, j) in the i-th
row with j = hi(x) for 1 ≤ i ≤ r. We first increment Vi, j by
vx (Line 2). We then check if x is stored in Ki, j based on the
MJRTY algorithm: if Ki, j equals x, we increment Ci, j by vx
(Lines 3-4). Otherwise, we decrement Ci, j by vx (Lines 5-6); if
Ci, j drops below zero, we replace Ki, j by x and reset Ci, j with
its absolute value (Lines 7-10). Note that the Update operation
differs from MJRTY as it supports general value counts (or
the number of bytes) with any non-negative value vx, while
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Algorithm 1 Update
Input:(x,vx)

1: for i = 1 to r do
2: Vi,hi(x)←Vi,hi(x)+ vx
3: if Ki,hi(x) = x then
4: Ci,hi(x)←Ci,hi(x)+ vx
5: else
6: Ci,hi(x)←Ci,hi(x)− vx
7: if Ci,hi(x) < 0 then
8: Ki,hi(x)← x
9: Ci,hi(x)←−Ci,hi(x)

10: end if
11: end if
12: end for

Algorithm 2 Query
Input: flow key x
Output: estimate Ŝ(x) of flow x

1: for i = 1 to r do
2: if Ki,hi(x) = x then
3: Ŝi(x)← (Vi,hi(x)+Ci,hi(x))/2
4: else
5: Ŝi(x)← (Vi,hi(x)−Ci,hi(x))/2
6: end if
7: end for
8: Ŝ(x)←min1≤i≤r{Ŝi(x)}
9: return Ŝ(x)

MJRTY considers only vote counts (or the number of packets)
with vx always being one.

Algorithm 2 shows the Query operation. For each hashed
bucket in row i (where 1≤ i≤ r), we calculate a row estimate
Ŝi(x) of flow x (Lines 1-7): if x and Ki, j are the same, we set
Ŝi(x) = (Vi, j +Ci, j)/2; otherwise, we set Ŝi(x) = (Vi, j−Ci, j)/2.
The row estimate Ŝi(x) is actually the upper bound of x in the
hashed bucket B(i, j) (Lemma 2). Finally, we return the final
estimate Ŝ(x) as the minimum of all row estimates (Lines 8-9).

D. Heavy Flow Detection

Heavy hitter detection. To detect heavy hitters, we check
every bucket B(i, j) (1≤ i≤ r and 1≤ j ≤ w) at the end of an
epoch. For each B(i, j), if Vi, j ≥ φS , we let x = Ki, j and query
Ŝ(x) via Algorithm 2; if Ŝ(x) ≥ φS, we report x as a heavy
hitter.
Heavy changer detection. To detect heavy changers, we
compare two sketches at the ends of two epochs. One possible
detection approach is to exploit the linear property of sketches
as in prior studies [18], [33], [40], in which we compute
the differences of Vi, j’s of the buckets at the same positions
across the two sketches and recover the flows from the buckets
whose differences exceed the threshold φD (Section II-A).
However, such an approach can return many false negatives,
since the hash collisions of two heavy changers, one with a
high incremental change and another with a high decremental
change, can cancel out the changes of each other.

To reduce the number of false negatives, we instead use
the estimated maximum change of a flow for heavy changer
detection. Specifically, let U(x) and L(x) be the upper and lower
bounds of S(x), respectively. We set U(x) = Ŝ(x) returned by
Algorithm 2. Also, we set L(x)=max1≤i≤r{Li(x)}, where Li(x)

is set as follows: for each hashed bucket B(i, j) of x (where
1≤ i≤ r and j = hi(x)), if Ki, j equals x, we set Li(x) =Ci, j;
otherwise, we set Li(x) = 0. Note that both U(x) and L(x)
are the true upper and lower bounds of S(x), respectively
(Lemma 2 in Section IV-B). Now, let U1(x) and L1(x) (resp.
U2(x) and L2(x)) be the upper and lower bounds of S(x) in the
previous (resp. current) epoch, respectively. Then the estimated
maximum change of flow x is given by D̂(x) = max{|U1(x)−
L2(x)|, |L1(x)−U2(x)|}.

We now detect heavy changers as follows. We check every
bucket B(i, j) (1 ≤ i ≤ r and 1 ≤ j ≤ w) of two sketches of
the previous and current epochs. For each B(i, j) in each of
the sketches, if Vi, j ≥ φD, we let x = Ki, j and estimate D̂(x);
if D̂(x) ≥ φD, we report x as a heavy changer (note that a
necessary condition of a heavy changer is that its sum must
exceed the threshold in at least one epoch).

Currently, MV-Sketch focuses on the values (e.g., packet or
byte counts) of a flow. We can extend MV-Sketch to monitor
hosts with a high number of distinct connections in DDoS
or superspreader detection by either associating the buckets
with approximate distinct counters [17] or filtering duplicate
connections with a Bloom filter [50].

E. Scalable Heavy Flow Detection

We can improve the performance and scalability of MV-
Sketch by performing heavy flow detection on multiple packet
streams in parallel based on a distributed streaming architecture
[26]. Specifically, we deploy q≥ 1 detectors, each of which
deploys an MV-Sketch instance to monitor packets from
multiple streaming sources. Suppose that each streaming source
maps a flow to a subset d out of q detectors, where d ≤ q,
and dispatches each packet of the flow uniformly to one of the
d selected detectors. At the end of each epoch, each detector
sends the local detection results to a centralized controller for
final heavy flow detection.

For heavy hitter detection, each detector checks every bucket
B(i, j) in MV-Sketch. Let x = Ki, j, and if Ŝ(x) ≥ φ

d S, the
detector sends the tuple (x, Ŝ(x)) of flow x to the controller.
After collecting all results from q detectors, the controller adds
the estimates of each flow. If the added estimate of a flow
exceeds φS, the flow is reported as a heavy hitter.

For heavy changer detection, each detector checks every
bucket B(i, j) of two sketches of the previous and current
epochs. If Vi, j ≥ φ

dD, it lets x = Ki, j and estimates D̂(x); if
D̂(x)≥ φ

dD, the detector sends the tuple (x, D̂(x)) of flow x to
the controller. The controller adds the estimates of each flow
from q detectors. If the added estimate of a flow exceeds φD,
the flow is reported as a heavy changer.

F. Network-Wide Heavy Flow Detection

We can also perform network-wide heavy-flow detection
via MV-Sketch by deploying multiple MV-Sketch instances in
multiple detectors (e.g., end-hosts or programmable switches)
that span across the whole network and aggregating the mea-
surement results from all detectors in a centralized controller,
as in recent sketch-based network-wide measurement systems
[25], [27], [32], [34], [36], [46], [48]. While scalable detection
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Algorithm 3 Merge
Input: q MV-Sketch instances
Output: the merged MV-Sketch

1: for i = 1 to r do
2: for j = 1 to w do
3: Vi, j← ∑1≤k≤q V k

i, j
4: T ←{K1

i, j,K
2
i, j, . . . ,K

q
i, j}

5: for x ∈ T do
6: e(x)← 0
7: for k = 1 to q do
8: if Kk

i, j = x then
9: e(x)← e(x)+(V k

i, j +Ck
i, j)/2

10: else
11: e(x)← e(x)+(V k

i, j−Ck
i, j)/2

12: end if
13: end for
14: end for
15: Ki, j← x∗, where x∗ = argmaxx∈T {e(x)}
16: Ci, j←max{2e(x∗)−Vi, j,0}
17: end for
18: end for

(Section III-E) focuses on improving scalability by processing
multiple packet streams in parallel, network-wide detection
aims to provide an accurate network-wide measurement view
as if all traffic were measured in one big detector [34].

In network-wide heavy flow detection, we deploy an MV-
Sketch instance in each of the detectors, such that all MV-
Sketch instances share the same hash functions and parameter
settings. We assume that each packet being monitored appears at
only one MV-Sketch instance to avoid duplicate measurement
(e.g., by monitoring only the ingress or egress traffic). We
deploy a centralized controller that collects and merges the
MV-Sketch instances from all detectors. Note that we do not
make any assumption on the traffic size distribution of a heavy
flow in each detector (e.g., a heavy flow may have small traffic
size in some detectors); this is in contrast to scalable detection
(Section III-E), in which we assume that the traffic size of a
flow is uniformly distributed across detectors.

Algorithm 3 shows how the controller merges multiple MV-
Sketch instances. Suppose that there are q≥ 1 detectors. Let
Bk(i, j) denote the bucket in the i-th row and j-th column of
MV-Sketch in the k-th detector, where 1 ≤ i ≤ r, 1 ≤ j ≤ w,
and 1≤ k ≤ q. Let V k

i, j, Kk
i, j, and Ck

i, j denote the total sum of
values hashed to the bucket, the candidate heavy flow key,
and the indicator counter of Bk(i, j), respectively. Also, let
B(i, j) (with the corresponding fields Vi, j, Ki, j, and Ci, j) be the
bucket in the i-th row and j-th column in the merged sketch. In
Algorithm 3, the controller constructs each bucket B(i, j) of the
merged sketch by merging all Bk(i, j) that have the same i and
j in all q detectors. The controller first sets Vi, j as the sum of
V k

i, j’s of all q detectors (Line 3). It then calculates a network-
wide estimate e(x) for each candidate heavy flow key x ∈
T = {Kk

i, j}1≤k≤q (note that x is hashed to every bucket Bk(i, j)
for all k, where 1 ≤ k ≤ q). First, the controller initializes
e(x) as zero. For each Bk(i, j) (1 ≤ k ≤ q), if Kk

i, j equals x,
the controller increments e(x) by (V k

i, j +Ck
i, j)/2; otherwise, it

increments e(x) by (V k
i, j−Ck

i, j)/2 (Lines 4-14). After that, the
controller stores the key x∗ that has the maximum estimate

among all candidate heavy flow keys into Ki, j (Line 15). It
also sets Ci, j as the maximum value of 2e(x∗)−Vi, j and zero
(Line 16). By Lemma 2 in Section IV-B, we can show that the
network-wide estimate e(x) after Line 14 is an upper-bound
of S(x) (i.e., e(x)≥ S(x)).

Once the controller finishes the merge operation, it performs
heavy flow detection on the merged MV-Sketch as in Sec-
tion III-D. We show that the merged MV-Sketch achieves the
same theoretical guarantee on accuracy as in a single MV-
Sketch (Section IV-E).

IV. THEORETICAL ANALYSIS

We present theoretical analysis on MV-Sketch in heavy flow
detection. We also compare MV-Sketch with several state-of-
the-art invertible sketches.

A. Space and Time Complexities

Our analysis assumes that MV-Sketch is configured with
r = log 1

δ
and w = 2

ε
, where ε (0 < ε < 1) is the approximation

parameter, δ (0 < δ < 1) is the error probability, and the
logarithm base is 2. Theorem 1 states the space and time
complexities of MV-Sketch.

Theorem 1. The space usage is O( 1
ε

log 1
δ

logn). The update
time per packet is O(log 1

δ
), while the detection time of

returning all heavy flows is O( 1
ε

log2 1
δ
).

Proof. Each bucket of MV-Sketch stores a logn-bit candidate
heavy flow and two counters, so the space usage of MV-Sketch
is O(rw logn) = O( 1

ε
log 1

δ
logn).

Each per-packet update accesses r buckets and requires
r = log 1

δ
hash operations, thereby taking O(log 1

δ
) time.

Returning all heavy flows requires to traverse all rw buckets.
For each bucket whose Vi, j is above the threshold, we check r
buckets to obtain the estimate (either Ŝ(x) or D̂(x)) for x = Ki, j.
This takes O(r2w) = O( 1

ε
log2 1

δ
) time.

B. Error Bounds for Heavy Hitter Detection

Suppose that for all flows hashed to a bucket B(i, j), flow
x is said to be a majority flow of B(i, j) if its sum S(x) is
more than half of the total value count Vi, j. Then Lemma 1
states that the majority flow must be tracked; note that it is a
generalization of the main result of MJRTY [12].

Lemma 1. If there exists a majority flow x in B(i, j), then it
must be stored in Ki, j at the end of an epoch.

Proof. We prove by contradiction. By definition, the majority
flow x has S(x) > 1

2Vi, j. Suppose that Ki, j 6= x. Then the
increments (resp. decrements) of Ci, j due to x must be offset
by the decrements (resp. increments) of other flows that are
also hashed to B(i, j). This requires that Vi, j−S(x)≥ S(x) (i.e.,
the total value count of other flows is larger than S(x)). Thus,
Vi, j ≥ 2S(x)>Vi, j, which is a contradiction.

Lemma 2 next bounds the sum S(x) of flow x.

Lemma 2. Consider a bucket B(i, j) that flow x is hashed
to. If Ki, j equals x, then Ci, j ≤ S(x)≤ Vi, j+Ci, j

2 ; otherwise, 0≤
S(x)≤ Vi, j−Ci, j

2 .
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Proof. Suppose that Ki, j equals x. Let ∆ be the offset amount of
x from Ci, j due to other flows. Then we have S(x) =Ci, j +∆≥
Ci, j. Also, since Vi, j ≥ S(x) + ∆ = Ci, j + 2∆, we have ∆ ≤
Vi, j−Ci, j

2 . Thus, S(x) =Ci, j +∆≤ Vi, j+Ci, j
2 .

Suppose now that Ki, j 6= x. Then the increments (resp.
decrements) of Ci, j due to x must be offset by the decrements
(resp. increments) made by other flows that are also hashed to
the same bucket (see the proof of Lemma 1). The total value
count of all flows other than x (i.e., Vi, j−S(x)) minus the offset
amount S(x) is at least Ci, j. Thus, we have Vi, j ≥Ci, j +2S(x),
implying that 0≤ S(x)≤ Vi, j−Ci, j

2 .

We now study the bounds of the estimated sum Ŝ(x) of flow
x returned by Algorithm 2. From Lemma 2 and the definition of
Ŝ(x) in Algorithm 2, we see that Ŝ(x)≥ S(x). Also, Lemma 3
states the upper bound of Ŝ(x) in terms of ε and δ .

Lemma 3. Ŝ(x)≤ S(x)+ εS
2 with a probability at least 1−δ .

Proof. Consider the expectation of the total sum of all flows
except x in each bucket B(i, j). It is given by E[Vi, j−S(x)] =
E[∑y6=x,hi(y)=hi(x) S(y)]≤ S−S(x)

w ≤ εS
2 due to the pairwise inde-

pendence of hi and the linearity of expectation. By Markov’s
inequality, we have

Pr[Vi, j−S(x)≥ εS]≤ 1
2 . (1)

We now consider the row estimate Ŝi(x) (Algorithm 2). If
Ki, j equals x, then Ŝi(x)−S(x) = Vi, j+Ci, j

2 −S(x)≤ Vi, j−S(x)
2 due

to Lemma 2; if Ki, j 6= x, then Ŝi(x)−S(x) = Vi, j−Ci, j
2 −S(x)≤

Vi, j
2 −S(x)≤ Vi, j−S(x)

2 .
Combining both cases, we have Pr[Ŝi(x)− S(x) ≥ εS

2 ] ≤
Pr[Vi, j−S(x)

2 ≥ εS
2 ]≤ 1

2 due to Equation (1).
Since Ŝ(x) is the minimum of all row estimates, we

have Pr[Ŝ(x) ≤ S(x) + εS
2 ] = 1− Pr[Ŝ(x)− S(x) ≥ εS

2 ] = 1−
Pr[Ŝi(x)−S(x)≥ εS

2 ,∀i]≥ 1− ( 1
2 )

r = 1−δ .

Theorem 2 summarizes the error bounds for heavy hitter
detection in MV-Sketch.

Theorem 2. MV-Sketch reports every heavy hitter with a
probability at least 1−δ (provided that φS ≥ εS), and falsely
reports a non-heavy hitter with sum no more than (φ − ε

2 )S
with a probability at most δ .

Proof. We first prove that MV-Sketch reports each heavy hitter
(say x) with a high probability. If flow x is the majority flow
in any one of its hashed buckets, it will be reported due to
Lemma 1. MV-Sketch fails to report x only if x is not the
majority flow of any of its r hashed buckets, i.e., S(x)≤ Vi, j

2 for
1≤ i≤ r and j = hi(x). The probability that it occurs (denoted
by P) is P= Pr[S(x)≤ Vi, j

2 ,∀i] = Pr[Vi, j−S(x)≥ S(x),∀i]. Since
S(x)≥ φS ≥ εS , we have P≤ Pr[Vi, j−S(x)≥ εS,∀i]≤ ( 1

2 )
r =

δ due to Equation (1). Thus, a heavy hitter is reported with a
probability at least 1−δ .

We next prove that MV-Sketch reports a non-heavy hitter (say
y) with S(y)≤ (φ − ε

2 )S with a small probability. A necessary
condition is that y has its estimate Ŝ(y) ≥ φS. Thus, Ŝ(y)−
S(y)≥ φS−(φ− ε

2 )S=
εS
2 . From Lemma 3, we have Pr[Ŝ(y)−

S(y)≥ εS
2 ]≤ δ . In other words, y is reported as a heavy hitter

with a probability at most δ .

C. Error Bounds for Heavy Changer Detection

Recall that heavy changer detection relies on the upper bound
U(x) and the lower bound L(x) of S(x) (Section III-D). From
Lemma 2, both U(x) and L(x) are the true upper and lower
bounds of S(x), respectively. Lemma 3 has shown that U(x),
which equals Ŝ(x), differs from S(x) by a small range with
a high probability. Now, Lemma 4 shows that L(x) and S(x)
also differ by a small range with a high probability.

Lemma 4. S(x)−L(x)≤ εS with a probability at least 1−δ .

Proof. Consider the lower bound estimate Li(x) given by the
hashed bucket B(i, j) of flow x (where 1≤ i≤ r) (Section III-D).
If Ki, j equals x, Li(x) = Ci, j. By Lemma 2, we have S(x) ≤
Vi, j+Ci, j

2 , implying that S(x)−Li(x) = S(x)−Ci, j ≤Vi, j−S(x).
If Ki, j 6= x, Li = 0 and x is not the majority flow for bucket

B(i, j). We have S(x)−Li(x) = S(x)≤Vi, j−S(x).
Combining both cases, we have Pr[S(x)− L(x) ≥ εS] =

Pr[S(x)−Li(x)≥ εS,∀i]≤ Pr[Vi, j−S(x)≥ εS,∀i]≤ ( 1
2 )

r = δ

due to Equation (1).

Lemma 5 provides an upper bound of the estimated maxi-
mum change D̂(x) = max{|U1(x)−L2(x)|, |U2(x)−L1(x)|} in
terms of S1 and S2, which are the total sums of all flows in
the previous and current epochs, respectively.

Lemma 5. D̂(x) ≤ D(x)+ ε(S1 +S2) with a probability at
least (1−δ )2.

Proof. Without loss of generality, we consider D̂(x) = |U1(x)−
L2(x)|. Let S1(x) and S2(x) be the sums of x in the previous
and current epochs, respectively. Let e1

u(x) = U1(x)− S1(x)
and e2

l = S2(x)−L2(x). Then D̂(x) = |S1(x)+e1
u(x)− (S2(x)−

e2
l (x))| ≤D(x)+e1

u(x)+e2
l (x). Since e1

u(x) and e2
l (x) are inde-

pendent, we have Pr[e1
u(x)+ e2

l (x)≤ ε(S1 +S2)]≥ Pr[e1
u(x)≤

εS1] ·Pr[e2
l (x)≤ εS2]≥ (1−δ )2, where the last inequality is

due to Lemmas 3 and 4. Thus, Pr[D̂(x)−D(x)≤ ε(S1+S2)]≥
Pr[e1

u(x)+ e2
l (x)≤ ε(S1 +S2)]≥ (1−δ )2.

Theorem 3 summarizes the error bounds for heavy changer
detection in MV-Sketch.

Theorem 3. MV-Sketch reports every heavy changer with a
probability at least 1−δ (provided that φD

ε
≥max{S1,S2}),

and falsely reports any non-heavy changer with change no more
than φD− ε(S1 +S2) with a probability at most 1− (1−δ )2.

Proof. We first prove that MV-Sketch reports each heavy
changer (say x) with a high probability. If flow x is the majority
flow in any one of its hashed buckets, it must be reported, as
its estimate D̂(x) ≥ D(x) ≥ φD. Flow x is not reported only
if it is not stored as a candidate heavy flow in both sketches.
Since there must exist one sketch (either in the previous or
current epoch) with S(x)≥ φD, by Theorem 2, the probability
that x is not reported in that sketch is at most δ (assuming
that φD

ε
≥ max{S1,S2}). Thus, a heavy changer is reported

with a probability at least 1−δ .
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TABLE I
COMPARISON OF MV-SKETCH WITH STATE-OF-THE-ART INVERTIBLE SKETCHES.

Sketch r w FN Prob. Space Update time Detection time

Count-Min-Heap log 1
δ

2
ε

0 O( 1
ε

log 1
δ
+H logn) O(log H

δ
) O(H)

LD-Sketch log 1
δ

2H
ε

0 O( H
ε

log 1
δ

logn) O(log 1
δ
) O( H

ε
log 1

δ
)

Deltoid log 1
δ

2
ε

δ O( 1
ε

log 1
δ

logn) O(log 1
δ

logn) O( 1
ε

log2 1
δ

logn)
Fast Sketch 4H log 4

δ
1+log n

4H log(4/δ ) δ O(H log 1
δ

log n
H log(1/δ ) ) O(log 1

δ
log n

H log(1/δ ) ) O(H log3 1
δ

log( n
H log(1/δ ) ))

MV-Sketch log 1
δ

2
ε

δ O( 1
ε

log 1
δ

logn) O(log 1
δ
) O( 1

ε
log2 1

δ
)

We next prove that MV-Sketch reports a non-heavy changer
(say y) with D(y)≤ φD−ε(S1 +S2) with a small probability.
Let D̂(y) = D(y)+∆ for some ∆; hence, D̂(y)≤ φD− ε(S1 +
S2)+∆. If y is reported as a heavy changer, it requires that
∆≥ ε(S1 +S2) and such a probability is at most 1− (1−δ )2

due to Lemma 5.

D. Error Bounds for Scalable Heavy Flow Detection

We generalize the analysis for a single detector in Theo-
rems 2 and 3 for scalable heavy flow detection under MV-
Sketch. Our analysis assumes that the stream of packets of
each flow is uniformly distributed to d ≤ q detectors.

Theorem 4. The controller reports every heavy hitter with a
probability at least (1−δ )d , and falsely reports a non-heavy
hitter with sum no more than d

q (φ −
ε

2 )S with a probability at
most 1− (1−δ )d .

Proof. We first study the probability of reporting each heavy
hitter (say x). Recall that the estimate of x at each detector is
at least φ

d S (Section IV-B). If all d detectors report flow x to
the controller, flow x must be reported as a heavy hitter since
its added estimate is at least d× φ

d S = φS . Such a probability
is at least (1−δ )d by Theorem 2.

We next study the probability of reporting a non-heavy hitter
(say y). It happens if at least one detector reports flow y to
the controller. If S(y)≤ d

q (φ −
ε

2 )S , the sum of flow y at each
detector is at most 1

q (φ−
ε

2 )S . From Theorem 2, the probability
that a detector reports flow y is at most δ . Thus, it is falsely
reported as a heavy hitter by the controller with a probability
at most 1− (1−δ )d .

Theorem 5. The controller reports every heavy changer with
a probability at least (1−δ )d , and falsely reports a non-heavy
changer with change no more than d

q (φD− ε(S1 +S2)) with
a probability at most 1− (1−δ )2d .

Proof. It is similar to that in Theorem 4 and omitted.

E. Error Bounds for Network-Wide Heavy Flow Detection

For network-wide heavy flow detection, we can readily check
that the complexity of the merge operation in Algorithm 3 is
O(rwq2) = O( q2

ε
log 1

δ
). In the following, we analyze the error

bounds for network-wide heavy flow detection.
Lemma 6 shows that if there exists a majority flow (defined

in Section IV-B) in a bucket of the merged sketch, then the
bucket can track the majority flow, even though each of the
detectors only sees a portion of traffic of the majority flow.

Lemma 6. After the q MV-Sketch instances are merged, if
there exists a majority flow x in B(i, j) in the merged sketch,
then it must be stored in Ki, j.

Proof. We first show that x is stored in Kk
i, j in at least one

Bk(i, j) for 1≤ k ≤ q. Suppose that the contrary holds. Then

by Lemma 2, S(x)≤ ∑k
V k

i, j−Ck
i, j

2 ≤ Vi, j
2 , which contradicts the

definition of a majority flow.
We next show that x must be the key with the maximum

network-wide estimate among all Kk
i, j’s for 1≤ k≤ q. Suppose

the contrary that y 6= x is the maximum key being returned.
Without loss of generality, let Kk

i, j = x for 1 ≤ k ≤ t for
some t ≥ 1. By Algorithm 3, the network-wide estimates

of x and y are e(x) = ∑1≤k≤t
V k

i, j+Ck
i, j

2 +∑t+1≤k≤q
V k

i, j−Ck
i, j

2 and

e(y) ≤ ∑1≤k≤t
V k

i, j−Ck
i, j

2 +∑t+1≤k≤q
V k

i, j+Ck
i, j

2 , respectively. Thus,
e(x)+ e(y)≤ ∑k V k

i, j =Vi, j.
This implies that Vi, j ≥ 2e(x) as y is the maximum key. By

Lemma 2, e(x) is an upper bound of S(x), but 2S(x)>Vi, j as
x is a majority flow. This leads to a contradiction.

Lemma 7 bounds the sum S(x) of flow x in the merged
sketch, where S(x) now corresponds to the network-wide sum.

Lemma 7. Consider a bucket B(i, j) that flow x is hashed to in
the merged sketch. If Ki, j equals x, then Ci, j ≤ S(x)≤ Vi, j+Ci, j

2 ;
otherwise, 0≤ S(x)≤ Vi, j−Ci, j

2 .

Proof. Suppose Ki, j=x. Without loss of generality, let Kk
i, j = x

for 1 ≤ k ≤ t for some t ≥ 1. By Algorithm 3, 2e(x) −
Vi, j =2(∑1≤k≤t

V k
i, j+Ck

i, j
2 +∑t+1≤k≤q

V k
i, j−Ck

i, j
2 )−Vi, j =∑1≤k≤t Ck

i, j
−∑t+1≤k≤q Ck

i, j ≤∑1≤k≤t Ck
i, j ≤ S(x) (the last inequality is due

to Lemma 2). Thus, Ci, j = max{2e(x)−Vi, j,0} ≤ S(x).
Also, by Lemma 2, e(x)≥ S(x). Since Vi, j is the total sum of

values in B(i, j), Vi, j ≥ S(x). Thus, Vi, j+Ci, j
2 ≥ Vi, j+2e(x)−Vi, j

2 =
e(x)≥ S(x).

Suppose now Ki, j 6= x. Let Ki, j = y, meaning that e(y) is the
maximum network-wide estimate among all keys hashed to
B(i, j). Without loss of generality, let Kk

i, j = y for 1≤k≤ t for
some t≥1. Note that Ci, j = max{2e(y)−Vi, j,0}. If Ci, j = 0,
then 2e(y)−Vi, j ≤ 0. Thus, S(x)≤ e(x)≤ e(y)≤ Vi, j

2 =
Vi, j−Ci, j

2 .

If Ci, j 6= 0, then Vi, j−Ci, j
2 =Vi, j−e(y)=∑kV k

i, j−∑1≤k≤t
V k

i, j+Ck
i, j

2

−∑t+1≤k≤q
V k

i, j−Ck
i, j

2 = ∑1≤k≤t
V k

i, j−Ck
i, j

2 +∑t+1≤k≤q
V k

i, j+Ck
i, j

2 ≥
S(x) (by Lemma 2).

Theorem 6 summarizes the error bounds for network-wide
heavy hitter and heavy changer detection in the merged MV-
Sketch.
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Theorem 6. The merged MV-Sketch reports every heavy hitter
with a probability at least 1− δ (provided that φS ≥ εS),
and falsely reports a non-heavy hitter with sum no more than
(φ − ε

2 )S with a probability at most δ ; it reports every heavy
changer with a probability at least 1−δ (provided that φD

ε
≥

max{S1,S2}), and falsely reports any non-heavy changer with
change no more than φD− ε(S1 +S2) with a probability at
most 1− (1−δ )2.

Proof. By Lemmas 6 and 7, the bounds of S(x) in the merged
MV-Sketch are the same as if all traffic were processed by a
single MV-Sketch. Thus, the network-wide detection of MV-
Sketch achieves the same accuracy as in local detection.

F. Comparison with State-of-the-art Invertible Sketches

We present a comparative analysis on MV-Sketch and state-
of-the-art invertible sketches, including Count-Min-Heap [16],
LD-Sketch [26], Deltoid [18], and Fast Sketch [33]. In the
interest of space, we focus on heavy hitter detection using a
single sketch. Table I shows the false negative probability, and
the space and time complexities, in terms of ε , δ , n, and H
(the maximum number of heavy hitters in an epoch).

We first study the false negative probability (i.e, the max-
imum probability of not reporting a heavy hitter); we study
other accuracy metrics in Section VI. Both Count-Min-Heap
and LD-Sketch guarantee zero false negatives as they are
configured to keep all heavy hitters in extra structures, while
MV-Sketch can miss a heavy hitter with a probability at most δ .
Nevertheless, MV-Sketch achieves almost zero false negatives
in our evaluation based on real traces (Section VI).

Regarding the space complexity, all sketches have a logn
term. However, it refers to logn bits (i.e., the key length) in
Count-Min-Heap, LD-Sketch, and MV-Sketch, while it refers
to logn integer counters in Deltoid and Fast Sketch.

Regarding the (per-packet) update time complexity, Count-
Min-Heap updates the sketch (O(log 1

δ
) time) and accesses

its heap if the packet is from a heavy flow (O(logH) time),
and its update time increases with H. Both Deltoid and Fast
Sketch have high time complexities, which increase with the
key length logn. Both MV-Sketch and LD-Sketch have the
same update time complexities, yet LD-Sketch may need to
expand its associative arrays on-the-fly and this decreases the
overall throughput from our evaluation (Section VI).

We also present the detection time complexity. However,
our evaluation shows that the detection time of recovering all
heavy flows is very small (within milliseconds) for all sketches
shown in Table I.

V. IMPLEMENTATION IN PROGRAMMABLE SWITCHES

We study how to deploy MV-Sketch in programmable
switches to support heavy flow detection in the data plane.
However, realizing MV-Sketch with high performance in
programmable switches is non-trivial, due to various restrictions
in the switch programming model. In this section, we introduce
PISA (Protocol-Independent Switch Architecture), and discuss
the challenges of realizing MV-Sketch in PISA switches.
Finally, we show how we overcome the challenges to make
MV-Sketch deployable.

A. Basics

We target a family of programmable switches based on PISA
[11], [41]. A PISA switch consists of a programmable parser,
followed by an ingress/egress pipeline of stages, and finally a
de-parser. Packets are first parsed by the parser, which extracts
header fields and custom metadata to form a packet header
vector (PHV). The PHV is then passed to the ingress/egress
pipeline of stages that comprises match-action tables. Each
stage matches some fields of the PHV with a list of entries and
applies a matched action (e.g., modifying PHV fields, updating
persistent states, or performing routing) to the packet. Finally,
the de-parser reassembles the modified PHV with the original
packet and sends the packet to an output port. PISA switches are
fast in packet forwarding, by limiting the complexity of stages
in the pipeline. Each stage has its own dedicated resources,
including SRAM and multiple arithmetic logic units (ALUs)
that run in parallel.

PISA switches achieve programmability by supporting
multiple customizable match-action tables in the same stage
and connecting many stages into a pipeline. Programmers can
write a program using a domain-specific language (e.g., P4 [10])
to define packet formats, build custom processing pipelines,
and configure the match-action tables.

B. Challenges

Supporting heavy flow detection in PISA switches must
address the hardware resource constraints [23], [39], [43]: (i)
the SRAM of each stage is of small and identical size (e.g.,
few megabytes); (ii) the number of available ALUs per stage is
limited; (iii) the pipeline contains a fixed number of physical
stages (e.g., 1-32); and (iv) only a limited size of a PHV can
be passed across stages (e.g., few kilobits). Nevertheless, the
small and static memory design feature of MV-Sketch makes
it a good fit to address the limited resources in PISA switches.

However, realizing MV-Sketch in PISA switches still faces
programming challenges, due to the restrictions in the switch
programming model. Consider the update operation of MV-
Sketch in Algorithm 1. For simplicity, we focus on r = 1 row
in the sketch in the following discussion, yet we can generalize
our analysis for multiple rows by duplicating the single-row
implementation. Intuitively, we can create three register arrays,
namely V , K and C, to track the total sum, the candidate
flow key, and the indicator counter in MV-Sketch, respectively.
However, there are several programming challenges.
Challenge 1 (C1): Limited computation capability for
handling flow keys with more than 32 bits. ALUs of PISA
switches now only support primitive arithmetic (e.g., addition
and subtraction) on the variables of up to 32 bits. While MV-
Sketch is also designed based on primitive arithmetic only,
updating the candidate flow key in K is beyond the capability
of the ALUs since the size of a flow key is typically more
than 32 bits (e.g., a 5-tuple flow key has 104 bits).
Challenge 2 (C2): Limited memory access for managing
dependent fields. PISA switches support a limited memory
access model. First, the time budget for each memory access
is limited, as only one read-modify-write is allowed for each
variable. Also, each memory block can only be accessed in
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Algorithm 4 Implementation for 5-tuple flow keys
1: if Metadata.repass = 0 then
2: // Stage 1: update Vh(x) and access (K1

h(x),K
2
h(x))

3: Vh(x)←Vh(x)+ vx

4: if (K1
h(x),K

2
h(x)) 6= (x1,x2) then

5: Metadata.flag ← 1
6: end if
7: // Stage 2: access (K3

h(x),K
4
h(x))

8: if (K3
h(x),K

4
h(x)) 6= (x3,x4) then

9: Metadata.flag ← 1
10: end if
11: // Stage 3: update Ch(x)
12: if Metadata.flag 6= 1 then
13: Ch(x)←Ch(x)+ vx
14: else if Metadata.flag = 1 and Ch(x) ≥ vx then
15: Ch(x)←Ch(x)− vx
16: end if
17: if Metadata.flag = 1 and Ch(x) < vx then
18: Metadata.repass ← 1
19: end if
20: // Stage 4: recirculate x
21: if Metadata.repass = 1 then
22: recirculate x
23: end if
24: else
25: // Stage 1: update (K1

h(x),K
2
h(x))

26: (K1
h(x),K

2
h(x))← (x1,x2)

27: // Stage 2: update (K3
h(x),K

4
h(x))

28: (K3
h(x),K

4
h(x))← (x3,x4)

29: // Stage 3: update C
30: Ch(x)← vx−Ch(x)
31: end if

the stage to which it belongs, meaning that we can only
access a memory region once as a packet traverses the pipeline.
Note that PISA switches allow concurrent memory accesses to
mutually exclusive memory blocks in a single stage. However,
in Algorithm 1, the operations on K and C are dependent on
each other: the write to C is conditioned on K (Line 4), while
the write to K is conditioned on C (Line 8). If we want to
update K and C in one stage, we need to perform multiple
reads and writes sequentially, which breaks the time budget
of a stage; however, if we place K and C in different stages,
K needs to be accessed twice (the first access is to check the
content of K in Line 3, and the second access is to update K
in Line 8).
Challenge 3 (C3): Limited branching for updates. To
simplify processing, PISA switches design their ALUs with a
small circuit depth (e.g., 3) that hinders complicated predicted
operations. The packet processing in a stage typically supports
an if-else chain with at most two levels [41]. In Algorithm 1,
updating C requires a three-level if-else chain (Lines 4, 6, and
9), which makes it difficult to perform the update operation
within one stage. While complex branching is allowed across
stages, updating C in different stages is infeasible with the
memory access model of PISA switches (C2).

C. Implementation

We elaborate how we address the challenges of implementing
MV-Sketch in PISA switches. To address Challenge C1, we

split a long flow key into multiple sub-keys and use multiple
stages and ALUs to process the sub-keys. For example, we
can split a 104-bit 5-tuple flow key into three 32-bit sub-keys
and one 8-bit sub-key, and access each sub-key in one stage
with a single ALU. To reduce the number of stages, we can
use paired atoms [41] (an atom refers to a packet-processing
unit) to update a pair of sub-keys in one stage. Specifically,
in paired updates, the ALUs of PISA switches can read two
32-bit elements from the register memory, set up conditional
branching based on both elements, perform primitive arithmetic,
and write back the final results.

To address Challenges C2 and C3, we leverage the recir-
culation feature [7], [43] of PISA switches to eliminate the
inter-dependency between K and C and the complex branching
for updating C. We define the change point as the point where
we need to update the candidate heavy flow key and negate the
indicator counter during the update process (i.e., Lines 8-9 in
Algorithm 1). Our idea is to put the operations at the change
point in the second pass of a packet, such that the operations
are carried out if and only if the packet is recirculated to the
second pass of the switch pipeline. More concretely, in the
first pass, we just read K, update C, and recirculate the packet
if the change point appears; in the second pass, we update K
and negate C.

Algorithm 4 shows the pseudo-code of implementing MV-
Sketch in PISA switches for 5-tuple flow keys. Let Vh(x), Kh(x),
and Ch(x) be the entries that x is hashed into in the register
arrays V , K, and C via the hash function h, respectively. We
split a 104-bit flow key x into four sub-keys: source IP x1,
destination IP x2, source-destination ports x3, and protocol x4.
We use two register arrays, (K1,K2) and (K3,K4), to track
the candidate heavy flow sub-keys, such that each element in
the arrays is a pair of 32-bit variables. We use the metadata
Metadata.repass, initialized as zero, in the first pass of each
packet to control the execution of the pipeline. In the first
pass of x, we perform the following operations. In Stage 1 and
Stage 2, we update Vh(x) and compare each sub-key with the
candidate heavy flow sub-keys; if either sub-key is not matched,
we set Metadata.flag as one (Lines 4-10). We update Ch(x) based
on the value of Metadata.flag in Stage 3 (Lines 11-16). Finally,
in Stage 4, we check the value of Metadata.repass; if it is
one, we recirculate the packet together with Metadata.repass
to the switch pipeline (Lines 21-23). In the second pass of x,
we update the two register arrays (K1,K2) and (K3,K4), as
well as Ch(x) (Lines 25-30).

Note that our evaluation (Section VI-B) shows that MV-
Sketch requires a second pass only on a small fraction of
packets (e.g., less than 5%), meaning that the recirculation
overhead is limited.

D. Optimizations

We can optimize the implementation of MV-Sketch if the
flow keys have no more than 32 bits (e.g, the source or
destination IPv4 address). This allows us to access a flow
key via a single ALU (i.e., C1 addressed), and update K and C
atomically via paired atoms to address their dependency (i.e.,
C2 addressed). Specifically, we can place K and C in a 64-bit
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Algorithm 5 Size counting on 32-bit flow keys
1: if Metadata.repass = 0 then
2: // Stage 1: update Vh(x) and (Kh(x),Ch(x))
3: Vh(x)←Vh(x)+ vx
4: if Kh(x) = x then
5: Ch(x)←Ch(x)+ vx
6: else if Kh(x) 6= x and Ch(x) ≥ vx then
7: Ch(x)←Ch(x)− vx
8: end if
9: if Kh(x) 6= x and Ch(x) < vx then

10: Kh(x)← x
11: Metadata.repass = 1
12: end if
13: // Stage 2: recirculate x
14: if Metadata.repass = 1 then
15: recirculate x
16: end if
17: else
18: // Stage 1: this is the second pass
19: Ch(x)← vx−Ch(x)
20: end if

Algorithm 6 Packet counting on 32-bit flow keys
1: // Stage 1: update Vh(x) and (Kh(x),Ch(x))
2: Vh(x)←Vh(x)+ vx
3: if Kh(x) = x or Ch(x) = 0 then
4: Ch(x)←Ch(x)+1
5: else
6: Ch(x)←Ch(x)−1
7: end if
8: if Kh(x) 6= x and Ch(x) = 0 then
9: Kh(x)← x

10: end if

register array, in which the high 32 bits of each entry store the
key field, while the low 32 bits store the indicator counter field.
The paired atom packs the operations of reading, conditional
branching, primitive arithmetic, and writing for both K and C
atomically.

We show how to update the pair (K, C) via limited branching
in two cases: (i) size counting, which counts the total bytes of
each flow; and (ii) packet counting, which counts the number of
packets of each flow. For size counting, similar to Algorithm 4,
we put the update of C at the change point in the second pass
of the packet. For packet counting, the size vx of flow x is
the constant one. We observe that when the packet processing
reaches the change point, the state of Ch(x) is zero and should
change from zero to one (Lines 6-9 in Algorithm 1). It is
equivalent to incrementing Ch(x) by one as in the case when
Kh(x) equals x (Line 4 in Algorithm 1). By merging these two
branches, we can change and reorganize the if-conditions in
Algorithm 1 to reduce the three-level if-else chain to a two-
level one, as well as eliminate the recirculation operations (i.e.,
C3 addressed).

Algorithms 5 and 6 summarize our optimized implementation
of MV-Sketch for size counting and packet counting in PISA
switches, respectively. Note that Lines 4-12 of Algorithm 5 and
Lines 3-10 of Algorithm 6 can be done in one paired atom.

VI. EVALUATION

We conduct evaluation in both software and hardware envi-
ronments. Our trace-driven evaluation in software shows that

MV-Sketch achieves (i) high accuracy in heavy flow detection
with small and static memory space, (ii) high processing speed,
and (iii) high accuracy in scalable detection, compared to
state-of-the-art invertible sketches. We also show how SIMD
instructions can further boost the update performance of MV-
Sketch in software. Furthermore, our evaluation in a Barefoot
Tofino switch [45] shows that MV-Sketch achieves (i) line
speed for packet counting and incurs slight (e.g., less than 5%)
performance degradation for size counting, and (ii) incurs only
limited switch resource overhead.

A. Evaluation in Software

Simulation testbed. We conduct our evaluation on a server
equipped with an eight-core Intel Xeon E5-1630 3.70 GHz
CPU and 16 GB RAM. The CPU has 64 KB of L1 cache per
core, 256 KB of L2 cache per core, and 10 MB of shared L3
cache. The server runs Ubuntu 14.04.5. To exclude the I/O
overhead on performance, we load all datasets into memory
prior to all experiments.
Dataset. We use the anonymized Internet traces from CAIDA
[14], captured on an OC-192 backbone link in April 2016. The
original traces are one hour long, and we focus on the first five
minutes of the traces in our evaluation. We divide the traces
into five one-minute epochs and obtain the average results. We
measure IPv4 packets only. Each epoch contains 29 M packets,
1 M flows, and 6 M unique IPv4 addresses on average.
Methodology. We take the source/destination address pairs as
flow keys (64 bits long). For evaluation purposes, we generate
the ground truths by finding S and D, and hence the true heavy
flows, for different epochs. We use MurmurHash [3] as the
hash function in all sketches.

We compare MV-Sketch (MV) with state-of-the-art invertible
sketches, including Count-Min-Heap (CMH) [16], LD-Sketch
(LD) [26], Deltoid (DEL) [18], and Fast Sketch (FAST) [33].
We do not consider Reversible Sketch [40] and SeqHash [13]
(Section II-B) due to their high update costs (which increase
with the key length) and high enumeration costs in recovering
heavy flows.

We consider various memory sizes for each sketch in our
evaluation. We fix r = 4 and vary w according to the specified
memory size. By default, we choose the threshold that keeps
the number of heavy flows detected in each epoch as 80 on
average. For CMH, we allocate an extra 4 KB of memory for
its heap data structure to store heavy flows. For LD, since
it dynamically expands the associative arrays of its buckets
(Section II-B), we adjust its expansion parameter so that it has
comparable memory size to other sketches.
Metrics. We consider the following metrics.
• Precision: fraction of true heavy flows reported over all

reported flows;
• Recall: fraction of true heavy flows reported over all true

heavy flows;
• F1-score: 2×precision×recall

precision+recall ;

• Relative error: 1
|R| ∑x,x∈R

|S(x)−Ŝ(x)|
S(x) , where R is the set of true

heavy flows reported; and
• Update throughput: number of packets processed per second

(in units of pkts/s).
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Fig. 2. Experiment 1 (Accuracy for heavy hitter detection).
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Fig. 3. Experiment 2 (Accuracy for heavy changer detection).

Experiment 1 (Accuracy for heavy hitter detection). Fig-
ure 2 compares the accuracy of MV-Sketch with that of other
sketches in heavy hitter detection. Both DEL and FAST have
precision and recall near zero when the amount of memory
is 512 KB or less, as they need more memory to recover all
heavy hitters. Both CMH and LD have high accuracy except
when the memory size is only 64 KB, as they incur many false
positives in limited memory. Overall, MV-Sketch achieves high
accuracy; for example, its relative error is on average 55.8%
and 87.2% less than those of LD and CMH, respectively.
Experiment 2 (Accuracy for heavy changer detection).
Figure 3 compares the accuracy of MV-Sketch with that of
other sketches in heavy changer detection. Both DEL and
FAST again have almost zero precision and recall when the
memory size is 512 KB or less. We see that CMH has the
highest F1 score and smallest relative error among all sketches,
yet its recall is below one for almost all memory sizes. On
the other hand, MV-Sketch maintains a recall of one except
when the memory size is 64 KB, but its precision is low when
the memory size is 256 KB or less. The reason is that MV-
Sketch uses the estimated maximum change of a flow for
heavy changer detection, thereby having fewer false negatives
but more false positives; we view this as a design trade-off.
MV-Sketch achieves both higher precision and recall than LD
when the memory size is 128 KB or more.
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Fig. 4. Experiment 3 (Update throughput).

Experiment 3 (Update throughput). We now measure the
update throughput of all sketches in different settings. We
present averaged results over 10 runs. We omit the error bars
in our plots as the variances across runs are negligible.

Figure 4(a) shows the update throughput of various sketches
in heavy hitter detection. MV-Sketch achieves more than
3× throughput over LD, DEL, and FAST, and 24% higher
throughput than CMH when the memory size is 64 KB. Note
that MV-Sketch (and other sketches as well) sees a throughput
drop as the memory size increases, since it cannot be entirely
put in cache and the memory access latency increases. The
throughput of CMH is much lower than MV-Sketch, especially
when the memory size is 128 KB or less, as it sees many false
positives and incurs memory access overhead in its heap.

Figure 4(b) shows the update throughput of various sketches
in heavy changer detection. MV-Sketch has the highest through-
put, which is 1.34–2.05× and 2.98–3.38× over CMH and other
sketches, respectively. Note that CMH has lower throughput
than in Figure 4(a) although we keep the same number (i.e.,
80) of heavy flows in both cases. The reason is that compared
to heavy hitter detection, CMH needs to keep more candidates
in the heap to guarantee that all heavy changers can be found,
thereby incurring higher memory access overhead.

Figure 4(c) shows the impact of the fractional threshold φ on
the update throughput. Here, we focus on heavy hitter detection
and fix the memory size as 64 KB. MV-Sketch maintains high
and stable throughput (above 9.8 M pkts/s) regardless of the
threshold value. CMH has slower throughput for smaller φ

(i.e., more heavy hitters to be detected). For example, when
φ = 0.0005, the throughput of CMH is 3.7M pkts/s only. The
reason is that the overhead of maintaining the heap increases
with the number of heavy flows being tracked.

Figure 4(d) shows the impact of the key length on the update
throughput, by setting the flow keys as source addresses (32
bits), source/destination address pairs (64 bits), and 5-tuples
(104 bits). We again focus on heavy hitter detection and fix the
memory size as 64 KB. As the key length increases from 32
bits to 104 bits, the throughput drops of MV-Sketch, CMH, and
LD are 15-21%, while those of DEL and FAST are 55-80%.
The reason is that the numbers of counters in DEL and FAST
increase with the key length, thereby incurring much higher
memory access overhead.
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Fig. 5. Experiment 4 (Accuracy for scalable detection).
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Fig. 6. Experiment 5 (Accuracy for network-wide detection).

Experiment 4 (Accuracy for scalable detection). Figure 5
shows the precision and recall for scalable heavy flow detection,
in which we set d = 3 and q = 5. We observe similar results as
in Experiments 1 and 2. Note that we also conduct experiments
with different combinations of different settings of d and q,
and the results show similar trends.
Experiment 5 (Accuracy for network-wide detection). We
compare the accuracy of all sketches in network-wide detection
by varying the memory usage in detectors. We randomly
partition the 5-minute trace to six detectors, such that the
traffic of a flow is distributed in any non-empty subset of the
six detectors. Deltoid and Fast Sketch support network-wide
detection inherently due to their linear property, in which the
counters of different sketch instances with the same index can
be added together. For Count-Min-Heap and LD-Sketch, we
obtain the estimated sum of each tracked flow key in every
detector and aggregate the estimated sums of each flow key.
We then use the aggregates for heavy flow detection.

Figure 6 shows the results. Again, we observe similar results
as in Experiments 1 and 2. Note that the recall of MV-Sketch
is one in all memory sizes for both the heavy hitter and heavy
changer detection.
Experiment 6 (Performance optimizations of MV-Sketch).
We make a case that MV-Sketch can use SIMD instructions
to process multiple data units in parallel and achieve further
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Fig. 7. Experiment 6 (Performance optimizations of MV-Sketch).

performance gains. Such performance optimizations enable
MV-Sketch to address the need of fast network measurement
in software packet processing [25], [32], [34].

Here, we optimize the performance of the update operation
(Algorithm 1). Specifically, we divide a hash value into r
parts (where r = 4 in our case). We use SIMD instructions to
compute the bucket indices of all r rows, load the r candidate
heavy flow keys to a register array, and compare the flow key
with the r candidate heavy flow keys in parallel. Based on the
comparison results, we update the buckets (Algorithm 1). For
64-bit keys, we use the AVX2 instruction set to manipulate
256 bits (i.e., four 64-bit keys) in parallel.

Figure 7 compares the original and optimized implemen-
tations of MV-Sketch. The optimized version achieves 75%
higher throughput than the original version on average. Its
throughput is above 14.88M pkts/s in most cases, implying
that it can match the 10 Gb/s line rate (Section I).

B. Evaluation in Hardware

We prototype MV-Sketch in P4 [10] and compile it to the
Barefoot Tofino chipset [45].
Testbed. Our testbed consists of two servers and a Barefoot
Tofino switch. Each server has two 12-core 2.2 GHz CPUs,
32 GB RAM, and a 40 Gbps NIC, while the switch has 32
100 Gb ports. The two servers are connected via the switch,
where the traffic from one server is directly forwarded to the
other via the switch.
Methodology. We compare MV-Sketch with PRECISION [7],
which is designed for heavy hitter detection in programmable
switches. PRECISION tracks heavy hitters by probabilistically
recirculating a small fraction of packets. We compare MV-
Sketch and PRECISION for both packet counting and size
counting. We use the same CAIDA trace as in Section VI-A.

We fix MV-Sketch as r = 1 row and 2,048 buckets. Our
software evaluation (Section VI-A) shows that with such a
configuration, MV-Sketch achieves an accuracy of above 0.9
for various epoch lengths. We configure PRECISION with
2-way associativity to balance between the accuracy and the
number of pipelined stages, and fix its memory usage to be the
same as that of MV-Sketch. By default, we use source IPv4
addresses as flow keys.

We use the built-in hash function CRC32 [19] in our switch
as the hash function in sketches. We find that both MurmurHash
[3] (used in our software evaluation) and CRC32 have nearly
identical accuracy results in our evaluation, yet MurmurHash
has much higher update throughput than CRC32. Thus, we use
MurmurHash in software evaluation, while using CRC32 here
in hardware evaluation.
Experiment 7 (Switch resource usage). We measure the
switch resource usage of MV-Sketch and PRECISION. We
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TABLE II
EXPERIMENT 7: SWITCH RESOURCE USAGE (PERCENTAGES IN BRACKETS

ARE FRACTIONS OF TOTAL RESOURCE USAGE).
MVFULL MVSC MVPC PRECISION

SRAM (KiB) 144 (0.94%) 80 (0.52%) 80 (0.52%) 192 (1.25%)
No. stages 4 (33.33%) 2 (16.67%) 1 (1.33%) 8 (66.67%)
No. actions 10 5 3 15
No. ALUs 3 (6.25%) 2 (4.17%) 2 (4.17%) 6 (12.5%)

PHV (bytes) 133 (17.32%) 108 (14.06%) 102 (13.28%) 137 (17.84%)
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Fig. 8. Experiment 8 (Switch throughput analysis). Here, we show the
percentage of packets being recirculated to the second pass of the switch
pipeline.

prototype PRECISION and each version of MV-Sketch (i.e.,
Algorithm 4 for 5-tuple flow keys (MVFULL) and Algorithm 5
for size counting on 32-bit flow keys (MVSC), and Algorithm 6
for packet counting on 32-bit flow keys (MVPC)). Note that
PRECISION considers only 32-bit flow keys.

Table II shows the switch resource usage in terms of SRAM
usage (which measures memory usage), the numbers of physical
stages, actions, and stateful ALUs (all of which measure
computational resources), as well as the PHV size (which
measures the message size across stages). All the MV-Sketch
implementations achieve less resource usage than PRECISION.
Experiment 8 (Switch throughput analysis). We study the
throughput of MV-Sketch and PRECISION. We split the trace
into one-second epochs and randomly select 50 epochs. We
replay each epoch in one server with Pktgen-DPDK [38] and
compute the average receiving rate in another server with the
DPDK programs. We consider two implementation approaches
of recirculating packets within the switch pipeline: (i) using the
recirculate primitive to recirculate packets via the dedicated
recirculation ports of the switch, and (ii) using the resubmit
primitive to recirculate packets within the ingress pipeline
via normal ports. For the first approach, both MV-Sketch and
PRECISION achieve the line rate in all cases. For the second
approach, MV-Sketch achieves the line rate for packet counting
and 95% of the line rate in size counting, while PRECISION
achieves around 98% of the line rate for both packet counting
and size counting (not shown in figures).

To further examine the recirculation costs of MV-Sketch
and PRECISION in size counting (denoted by MVSC and
PRESC, respectively) and packet counting (denoted by MVPC
and PREPC, respectively), we conduct software simulation
that measures the percentage of packets that are recirculated
to the second pass of the switch pipeline in an epoch for each
approach. Figure 8 shows the results for different epoch lengths;
since the variance of the percentage for each approach is small,
we omit the error bars here. MV-Sketch has zero percentage
for packet counting by design. Also, it has a higher percentage
than PRECISION in size counting, yet the percentage is below
5% in all cases and shows a downward trend as the epoch
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Fig. 9. Experiment 9 (Accuracy comparisons between MV-Sketch and
PRECISION).

length increases. The percentage of PRECISION in both packet
counting and size counting is below 2% in almost all cases.
Experiment 9 (Accuracy comparisons between MV-Sketch
and PRECISION). We study the accuracy of MV-Sketch and
PRECISION for heavy hitter detection in software simulation
by varying the epoch lengths. Figure 9 shows the results. MV-
Sketch achieves higher accuracy than PRECISION in size
counting for all epochs (in F1-score and relative errors), and
has a comparable F1-score with PRECISION in packet counting.
The relative error of MV-Sketch is higher than PRECISION in
packet counting, yet the difference is small as the highest error
of MV-Sketch is less than 1.6% in our evaluation. PRECISION
performs much better in packet counting than in size counting.
The reason is that the counter value of each flow in size
counting is much larger than that in packet counting, and
hence leads to a smaller recirculating probability and causes
PRECISION to miss more packets in size counting.

VII. RELATED WORK

Invertible sketches. In Section II-B, we review several invert-
ible sketches for heavy flow detection and their limitations.
Another related work extends the Bloom filter [9] with
invertibility [20], [22]. In particular, the Invertible Bloom
Lookup Table (IBLT) [22] tracks three variables in each bucket:
the number of keys, the sum of keys, and the sum of values
for all keys hashed to the bucket. To recover all hashed keys, it
iteratively recovers from the buckets with only one hashed key
and deletes the hashed key of all its associated buckets (so that
some buckets now have one hashed key remaining). FlowRadar
[32] builds on IBLT for heavy flow detection. However, IBLT
is sensitive to hash collisions: if multiple keys are hashed to
the same bucket, it fails to recover the keys in the bucket.

A closely related work to ours is AMON [29], which applies
MJRTY in heavy hitter detection. However, AMON and MV-
Sketch have different designs: AMON splits a packet stream
into multiple sub-streams and tracks the candidate heavy flow
for each sub-stream using MJRTY, while MV-Sketch maps
each packet to the buckets in different rows in a sketch data
structure. MV-Sketch addresses the following issues that are
not considered by AMON: (i) providing theoretical guarantees
on the trade-offs across memory usage, update/detection
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performance, and detection accuracy; and (ii) addressing heavy
changer detection and network-wide detection.
Sketch-based network-wide measurement. Recent studies
[25], [27], [32], [34], [36], [46], [48] propose sketch-based
network-wide measurement systems for general measurement
tasks, including heavy flow detection. Such systems leverage a
centralized control plane to analyze measurement results from
multiple sketches in the data plane. Our work focuses on a
compact invertible sketch design that targets both heavy hitter
and heavy changer detection.
Counter-based algorithms. Some approaches [5], [6], [30],
[35], [43], [47] track the most frequent flows in counter-based
data structures (e.g., heaps and associative arrays), which
dynamically admit or evict flows based on estimated flow
sizes. They target heavy hitter detection, but do not consider
heavy changer detection and network-wide detection.
Measurement in programmable switches. Recent work fo-
cuses on pushing measurement algorithms from end hosts to
programmable switches [7], [24], [28], [39], [42], [43], subject
to the switch hardware constraints. Our work demonstrates
that MV-Sketch can be feasibly deployed in programmable
switches to detect heavy flows with limited resource overhead.

VIII. CONCLUSION

MV-Sketch is an invertible sketch designed for fast and
accurate heavy flow detection. It builds on the majority vote
algorithm to enhance memory management in two aspects:
(i) small and static memory allocation, and (ii) lightweight
memory access in both update and detection operations. It
can also be generalized for both scalable and network-wide
detection. Trace-driven evaluation in software demonstrates the
throughput and accuracy gains of MV-Sketch. We also show
how the update performance of MV-Sketch can be boosted
via SIMD instructions. Evaluation in hardware demonstrates
that MV-Sketch can be feasibly implemented in programmable
switches with limited resource overhead.
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