
1

NCScale: Toward Optimal Storage Scaling via
Network Coding

Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and Pan Zhou

Abstract—To adapt to the increasing storage demands and
varying storage redundancy requirements, practical distributed
storage systems need to support storage scaling by relocating
currently stored data to different storage nodes. However, the
scaling process inevitably transfers substantial data traffic over
the network. Thus, minimizing the bandwidth cost of the scaling
process is critical in distributed settings. In this paper, we
show that optimal storage scaling is achievable in erasure-coded
distributed storage based on network coding, by allowing storage
nodes to send encoded data during scaling. We formally prove the
information-theoretically minimum scaling bandwidth for both
scale-out and scale-in cases. Based on our theoretical findings, we
also build a distributed storage system prototype NCScale based
on Hadoop Distributed File System, so as to realize network-
coding-based scaling while preserving the necessary properties
for practical deployment. Experiments on Amazon EC2 show
that the scaling time can be reduced by up to 50% over the
state-of-the-art.

I. INTRODUCTION

Distributed storage systems provide a scalable platform for
storing massive data across a collection of storage nodes (or
servers). To provide reliability guarantees against node failures,
they commonly stripe data redundancy across nodes. Erasure
coding is one form of redundancy that significantly achieves
higher reliability than replication at the same storage overhead
[32], and has been widely adopted in production distributed
storage systems [11], [15], [29].

To accommodate the increasing storage demands, system
operators often regularly add new nodes to storage systems
to increase both storage space and service bandwidth. In this
case, storage systems need to re-distribute (erasure-coded) data
in existing storage nodes to maintain the balanced data layout
across all existing and newly added nodes, so as to exploit
the maximum possible parallelization among all nodes. Also,
system operators need to re-parameterize the right redundancy
level for erasure coding to adapt to different trade-offs of

An earlier version of this paper appeared at [44]. In this extended version,
we extend the design and analysis of NCScale for the scale-in case and
implement NCScale based on Hadoop Distributed File System. We also add
new evaluation results.

Y. Hu and X. Zhang are with the School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074,
China (e-mail: yuchonghu@hust.edu.cn, zhangxiaoyang1993@gmail.com).

P. Lee is with the Chinese University of Hong Kong, Shatin, Hong Kong,
China (e-mail: pclee@cse.cuhk.edu.hk).

P. Zhou is with the School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074, China (e-mail:
panzhou@hust.edu.cn).

This work was supported by National Natural Science Foundation of China
(61872414), Key Laboratory of Information Storage System Ministry of
Education of China, and the Research Grants Council of Hong Kong (AoE/P-
404/18). The corresponding author is P. Zhou.

storage efficiency, fault tolerance, access performance, and
management complexity. For example, the repair costs of
erasure-coded storage systems can be reduced by increasing
storage redundancy [8]. Storage systems may dynamically
switch between erasure codes of different redundancy levels
to balance between access performance and fault tolerance in
response to different access patterns of workloads [39], or to
balance between storage efficiency and fault tolerance as the
disk reliability varies over the disk lifetime [17].

This motivates us to study storage scaling, in which a storage
system relocates existing stored data to different nodes and
recomputes erasure-coded data based on the new data layout.
Since the scaling process inevitably triggers substantial data
transfers, we pose the following scaling problem, in which
we aim to minimize the scaling bandwidth (i.e., the amount
of transferred data during the scaling process). Note that the
scaling problem inherently differs from the classical repair
problem [8], which aims to minimize the amount of transferred
data for repairing lost data. Although both scaling and repair
problems aim to minimize bandwidth, scaling changes the
coding parameters and the number of storage nodes, while
repair keeps them unchanged. Thus, the scaling and repair
problems build on different problem settings that lead to
different analyses and findings. In this paper, we study the
scaling problem from both theoretical and applied perspectives.
Our contributions include:

• We prove the information-theoretically minimum scaling
bandwidth using the information flow graph model [6], [8];
in particular, we consider both scale-out and scale-in cases
(defined in Section II-B). To minimize the scaling bandwidth,
we leverage the information mixing nature of network coding
[6], by allowing storage nodes to send the combinations of
both uncoded and coded data that is currently being stored.
Note that existing scaling approaches (e.g., [16], [34], [35],
[38], [40]) cannot achieve the minimum scaling bandwidth.
To our knowledge, our work is the first formal study on
applying network coding to storage scaling.

• We design a distributed storage system called NCScale,
which realizes network-coding-based scaling by leveraging
the available computational resources of storage nodes.
NCScale aims to achieve the minimum scaling bandwidth
depending on the parameter settings, while preserving several
properties that are necessary for practical deployment (e.g.,
fault tolerance, balanced erasure-coded data layout, and
decentralized scaling).

• We have implemented a prototype of NCScale based on
Hadoop Distributed File System (HDFS) [30] and conducted

2

experiments on Amazon EC2. We show that NCScale reduces
the scaling time of Scale-RS [16], a state-of-the-art scaling
approach, by up to 50%. Also, the empirical performance
gain of NCScale is consistent with our theoretical findings.
The source code of our NCScale prototype is available for

download at: https://github.com/yuchonghu/ncscale.

II. PROBLEM

A. Erasure Coding Basics

Erasure coding is typically constructed by two configurable
parameters n and k, where k < n, as an (n,k) code as follows.
Specifically, we consider a distributed storage system (e.g.,
HDFS [30]) that organizes data as fixed-size units called blocks.
For every group of k blocks, called data blocks, the storage
system encodes them into additional n− k equal-size blocks,
called parity blocks, such that any k out of the n data and parity
blocks suffice to reconstruct the original k data blocks. We call
the collection of the n data and parity blocks a stripe, and the
n blocks are stored in n different nodes to tolerate any n− k
failures (either node failures or lost blocks). A storage system
contains multiple stripes, which are independently encoded.
The code construction has two properties: (i) maximum distance
separable (MDS), i.e., the fault tolerance is achieved through
minimum storage redundancy, and (ii) systematic, i.e., the k
data blocks are kept in a stripe for direct access. Reed-Solomon
(RS) codes [28] are one well-known example of erasure codes
that can achieve both MDS and systematic properties, and have
been adopted by production systems (e.g., [11], [22]).

Most practical erasure codes (e.g., RS codes) are linear codes,
in which each parity block is formed by a linear combination
of the data blocks in the same stripe based on Galois Field
arithmetic. In this paper, we focus on Vandermonde-based
RS codes [24], whose encoding operations are based on an
(n− k)× k Vandermonde matrix [Vi, j](n−k)×k, where 1 ≤ i ≤
n−k, 1≤ j ≤ k, and Vi, j = i j−1. For example, in a (4,2) code,
we can compute two parity blocks, denoted by P1 and P2,
through a linear combination of two data blocks, denoted by
D1 and D2, over the Galois Field as follows:[

P1
P2

]
=

[
1 1
1 2

][
D1
D2

]
. (1)

Suppose that we now scale from the (4,2) code to the (6,4)
code with two new data blocks D3 and D4. Then the two new
parity blocks, denoted by P′1 and P′2, can be computed as:

[
P′1
P′2

]
=

[
1 1 1 1
1 2 4 8

]D1
D2
D3
D4

=

[
P1
P2

]
+

[
1 1
4 8

][
D3
D4

]
. (2)

The Vandermonde matrix for the (4,2) code is a sub-matrix
of the Vandermonde matrix for the (6,4) code. Each new parity
block can be computed by adding an existing parity block with
a parity delta block, defined as the change between the existing
parity block and the new parity block. For example, when P1
is updated to P′1, we have P′1 = P1 +∆P1, where ∆P1 is the
parity delta block corresponding to existing parity block P1.
Note that the parity delta block can be expressed as a linear
combination of the new data blocks only (e.g., ∆P1 = D3 +D4

as in Equation (2)); this holds for Vandermonde-based RS
codes if we scale from an (n,k) code to an (n′,k′) code, where
n− k = n′− k′. We leverage this feature in our scaling design.

Note that systematic codes built on Vandermonde matrices
generally do not preserve the MDS property under finite fields
[18], [25]. Intel’s Intelligent Storage Acceleration Library
(ISA-L) [5] also supports Vandermonde-based RS codes (in
the function gf_gen_rs_matrix), and provides a program
called gen_rs_matrix_limits (since ISA-L version 2.19)
for finding the valid parameters that satisfy the MDS property
of RS codes under the Galois Field GF(28). If we focus on
small ranges of (n,k) and (n′,k′) (e.g., n,n′≤ 20 and n−k≤ 4),
the MDS property of the Vandermonde-based RS codes still
holds under GF(28) [2]. In practice, the parameters (n,k) in
real deployment often fall into this range [13].

While erasure coding incurs much less redundancy than
replication [32], it triggers a significant amount of transferred
data in failure repair. For example, RS codes retrieve k blocks
to repair a lost block. Thus, many studies focus on the repair
problem [9], which aims to minimize the repair bandwidth.
Regenerating codes [8] are special erasure codes that build on
network coding [6] and provably achieve the optimal trade-off
between repair bandwidth and storage redundancy, by allowing
non-failed nodes to encode their stored data during repair. In
contrast, our work applies network coding to storage scaling,
which fundamentally differs from the repair problem.

B. Scaling

We consider two types of scaling, namely scale-out, in which
new nodes are added to the storage system, and scale-in, in
which existing nodes are removed from the storage system:
• (n,k,s)-scaling (i.e., scale-out): For any s> 0, we transform
(n,k)-coded blocks in n nodes into (n+s,k+s)-coded blocks
that will be stored in n+ s nodes, including the n existing
nodes and s new nodes.

• (n,k,−s)-scaling (i.e., scale-in): For any s> 0, we transform
(n,k)-coded blocks in n nodes into (n−s,k−s)-coded blocks
that will be stored in the n− s surviving nodes.

Goal. Our goal is to minimize the scaling bandwidth, defined
as the amount of transferred data during the scaling operation,
while preserving all properties P1–P4 as stated below.
• P1 (MDS): The new coded stripe remains MDS, while

tolerating the same number of n− k failures as the original
(n,k)-coded stripe.

• P2 (Systematic): The original data blocks are kept in the
new coded stripe after scaling.

• P3 (Uniform data and parity distributions): The respec-
tive proportions of data and parity blocks across multiple
stripes are evenly distributed across nodes before and after
scaling.

• P4 (Decentralized scaling): The scaling operation can be
done without involving a centralized entity for coordination.
The scaling problem focuses on minimizing the scaling

bandwidth subject to the MDS property (i.e., P1), and includes
the properties P2–P4 in practical storage deployment with the
following implications: P2 always keeps original data blocks,
such that the read operations can directly access them without

https://github.com/yuchonghu/ncscale

3

D2

D6

D0

D3

D7

D1

Q1

Q2

Q0

D5

D10

D4

D2

D4

D0

D3

D5

D1

P1

P2

P0

D8

D10

D6

D9

D11

D7

P4

P5

P3

D8 D9 Q3 D11

X0 X1 X2 Y0

X0 X1 X2

(3
,2

,1
)-scalin

g

D2

D4

Q0

Q1

D5

D0

D3

Q2

D1

D11

D9

D8

D2

D4

P0

P1

D5

D0

D3

P2

D1

D8

D10

P3

P4

D11

D6

D9

P5

D7

D10 D6 D7 Q3

X0 X1 X2

X0 X1 X2 Y0

(a) Scale-RS (b) Network-coding-based scaling

Fig. 1. Scale-RS vs. network-coding-based scaling in (3,2,1)-scaling (i.e.,
from the (3,2) code to the (4,3) code). Scale-RS needs to transfer a total
of eight blocks to X2 and Y0, while network-coding-based scaling transfers
only four blocks to Y0. Note that blocks in each node need not be stored in a
contiguous manner in distributed storage systems.

encoding/decoding; P3 ensures that the parity updates are load-
balanced across nodes, assuming a uniform access pattern; P4
eliminates any single point of failure or bottleneck in scaling.

We fix the number of tolerable failures (i.e., n− k) before
and after scaling, as in existing scaling approaches for RAID
(e.g., [34], [35], [40]) and distributed storage (e.g., [16], [38]),
and we do not consider the variants of the scaling problem for
varying n− k.

We address the scaling problem via network coding. We
motivate this via a scale-out example of (3,2,1)-scaling in
Figure 1. Let Xi be the ith existing node of a stripe before
scaling, where 0≤ i≤ n−1, and Yj be the jth new node after
scaling, where 0 ≤ j ≤ s− 1. Also, let D∗, P∗, and Q∗ be a
data block, a parity block before scaling, and a parity block
after scaling, respectively, for some index number ∗.

We first consider Scale-RS [16] (Figure 1(a)), which applies
scaling to RS codes for general (n,k). Scale-RS performs
scaling in two steps. The first step is data block migration,
which relocates some data blocks from existing nodes to new
nodes. For example, from Figure 1(a), the data blocks D4, D5,
D10, and D11 are relocated to the new node Y0.

The second step is parity block updates, which compute
parity delta blocks in the nodes that hold the relocated data
blocks and send them to the nodes that hold the parity
blocks for reconstructing new parity blocks. For example, from
Figure 1(a), the data blocks D4, D5, D10, and D11 are used
to compute the parity delta blocks, which are then sent to
node X2, where the parity blocks are stored. X2 forms the new
parity blocks Q0, Q1, Q2, and Q3, respectively. In this example,
Scale-RS needs to transfer eight blocks. Note that property
P3 is violated here, since the parity blocks are stored in a
dedicated node.

We now consider how network-coding-based scaling can
reduce the scaling bandwidth, as shown in Figure 1(b). Our
key idea is to couple the steps of both data block migration and
parity block updates, by allowing each existing node to perform
local computations before relocating blocks. Specifically, 1)
before scaling, each parity block is computed as the XOR
operations of the data blocks in the same row as in RAID-5

[23]; for example, P0 =D0⊕D1, where ⊕ is the XOR operator;
2) during scaling, X0 can locally compute the new parity block
Q0 = P0⊕D8. Similarly, X1 and X2 can compute the new parity
blocks Q1 = P1⊕D11 and Q2 = P2⊕D9, respectively. Also, X0
also locally computes Q3 = P3⊕D10. Now, the scaling process
relocates D8, D9, D11, and the locally computed Q3 to the new
node Y0. Thus, we now only need to transfer four blocks, and
this amount is provably minimum (Section III). In addition,
all properties P1–P4 are satisfied.

Our idea is that unlike Scale-RS, in which data blocks and
their encoded outputs (i.e., parity delta blocks) are transferred,
we now make existing storage nodes send the encoded outputs
of both data and parity blocks; this is feasible as each storage
node stores both data and parity blocks due to the property
of uniform data and parity distributions (i.e., P3). Since parity
blocks are linear combinations of data blocks, we now include
more information in the encoded outputs, thereby allowing less
scaling bandwidth without losing information. This follows the
information mixing nature of network coding [6]. In addition,
the decentralized scaling property (i.e., P4) lets each storage
node compute the encoded outputs without the help of a
centralized entity. This follows the relay-node-encoding feature
of network coding, and allows us to model the storage nodes as
relay nodes in the information flow graph analysis (Section III).

C. Discussion of Existing Work on Properties P1–P4

Table I shows how existing scaling approaches (see Sec-
tion IX for details) address the properties P1–P4. FastScale
[45], GSR [34], MDS-Frame [35], and RS6 [40] are designed
for RAID arrays rather than distributed storage systems. Thus,
for P1, they either provide no fault tolerance or are tolerable
against at most two failures; for P4, they rely on the RAID
controller to download all original data blocks for computing
the new parity blocks. Wu et al. [38] apply scaling to Cauchy
RS codes [7] and do not consider P4, as they use a centralized
node for controlling and downloading data blocks for parity
updates during scaling. Rai et al. [27] only provide functional
code constructions (i.e., all blocks are in coded form) in the
theoretical context, so both P2 and P3 are violated. Scale-RS
[16] only focuses on a RAID-4-like layout, in which the data
and parity blocks reside in dedicated nodes, so P3 is violated. In
particular, Scale-RS requires the nodes that store parity blocks
to download data blocks for computing new parity blocks,
thereby incurring substantial scaling bandwidth. In contrast,
NCScale satisfies all the properties P1–P4.

In addition, we compare the scaling bandwidth for different
schemes. FastScale [45] achieves the minimum scaling band-
width in RAID-0 (i.e., no parity blocks are involved). The
schemes that do not satisfy P4 (i.e., [34], [35], [38], [40])
need to upload and download data blocks for computing parity
blocks via the RAID controller or a centralized node, so they
incur at least twice the amount of transferred data (i.e., at
least twice the minimum scaling bandwidth). Rai et al. [27]
treat the scaling problem as the repair problem, but the two
problems are inherently different (Section I). The study [27]
does not formally prove the optimality of scaling or provide
the minimum scaling bandwidth (see Section IX for details).

4

TABLE I
COMPARISONS OF EXISTING SCALING PROPOSALS.

P1 P2 P3 P4 Scaling bandwidth
FastScale [45] No, RAID-0 Yes Yes No Optimal
GSR [34] Yes, only one failure tolerable Yes Yes No ≥ 2× optimal
MDS-Frame [35]
RS6 [40] Yes, only two failures tolerable Yes Yes No ≥ 2× optimal

Wu et al. [38] Yes, any n− k failures tolerable Yes Yes No ≥ 2× optimal
Rai et al. [27] Yes, any n− k failures tolerable No No Yes –
Scale-RS [16] Yes, any n− k failures tolerable Yes No Yes One more block per stripe than NCScale

NCScale Yes, any n− k failures tolerable Yes Yes Yes
Optimal when n− k = 1;
n− k−1 more blocks per stripe
than optimal when n− k > 1

Scale-RS [16] always transfers one more block per stripe
during scaling than NCScale (Section VII), while NCScale
achieves the minimum scaling bandwidth when n− k = 1 and
has n−k−1 more blocks per stripe than the minimum scaling
bandwidth when n− k > 1 (Corollary 3).

III. MODEL

We analyze both (n,k,s)-scaling and (n,k,−s)-scaling using
the information flow graph model [6], [8]. We derive their
respective lower bounds of scaling bandwidth, and show that
the lower bounds are tight by proving that there exist random
linear codes whose scaling bandwidth matches the respective
lower bounds for general (n,k,s) and (n,k,−s). Note that
random linear codes are non-systematic (i.e., P2 is violated).
In Sections IV and V, we address all P1–P4 in our design.

A. Model for (n,k,s)-scaling

We first consider (n,k,s)-scaling. To comply with the
information flow graph model in the literature (e.g., [8]),
we assume that erasure coding operates on a per-file basis.
Specifically, in order to encode a data file of size M, we divide
it into k blocks of size M

k each, encode the k blocks into n
blocks of the same size, and distribute the n blocks across n
nodes. Then the (n,k,s)-scaling process for the data file can
be decomposed into four steps:
1) Each existing node Xi (0 ≤ i ≤ n− 1) encodes its stored

data of size M
k into some encoded data.

2) Each new node Yj (0≤ j ≤ s−1) downloads the encoded
data from each Xi (0≤ i≤ n−1).

3) Each existing node Xi (0 ≤ i ≤ n− 1) removes M
k −

M
k+s

units of its stored data and only stores data of size M
k+s .

4) Each new node Yj (0≤ j≤ s−1) encodes all its downloaded
data into the stored data of size M

k+s .
Let β denote the bandwidth between any existing node Xi

to any new node Yj; in other words, each Yj downloads at
most β units of encoded data from Xi. To minimize the scaling
bandwidth, our goal is to minimize β , while ensuring that the
data file can be reconstructed from any k+ s nodes.

We construct an information flow graph G for (n,k,s)-scaling
as follows (Figure 2(a)):
Nodes in G:
• We add a virtual source S and a data collector T as the

source and destination nodes of G, respectively.

• Each existing storage node Xi (0≤ i≤ n−1) is represented by
(i) an input node X in

i , (ii) a middle node Xmid
i , (iii) an output

node Xout
i , (iv) a directed edge X in

i → Xmid
i with capacity

M
k , i.e., the amount of data stored in Xi before scaling, and

(v) a directed edge Xmid
i → Xout

i with capacity M
k+s , i.e., the

amount of data stored in Xi after scaling.
• Each new storage node Yj (0≤ j ≤ s−1) is represented by

(i) an input node Y in
j , (ii) an output node Y out

j , and (iii) a
directed edge Y in

j →Y out
j with capacity M

k+s , i.e., the amount
of data stored in node Yj.

Edges in G:
• We add a directed edge S→ X in

i for every i (0≤ i≤ n−1)
with an infinite capacity for data distribution.

• We add a directed edge Xmid
i →Y in

j for every i (0≤ i≤ n−1)
and j (0≤ j ≤ s−1) with capacity β .

• We select any k+ s output nodes and add a directed edge
from each of them to T with an infinite capacity for data
reconstruction.
The following lemma states the necessary condition of the

lower bound of β .

Lemma 1. For (n,k,s)-scaling, β must be at least M
n(k+s) .

Proof: Clearly, each new storage node Yj (0≤ j ≤ s−1) must
receive at least M

k+s units of data from all existing storage nodes
Xi’s (0≤ i≤ n−1) over the links with capacity β each. Thus,
we have nβ ≥ M

k+s . The lemma follows.
To show the lower bound in Lemma 1 is tight, we first

analyze the capacities of all possible min-cuts of G. A cut is
a set of directed edges, such that any path from S to T must
have at least one edge in the cut. A min-cut is the cut that has
the minimum sum of capacities of all its edges. Due to the
MDS property, there are

(n+s
k+s

)
possible data collectors. Thus,

the number of variants of G, and hence the number of possible
min-cuts, are also

(n+s
k+s

)
.

Lemma 2. For (n,k,s)-scaling, suppose that β is equal to its
lower bound M

n(k+s) . Then the capacity of each possible min-cut
of G is at least M.

Proof: Let (C, C̄) be some cut of G, where S ∈ C and T ∈ C̄.
Here, we do not consider the cuts that have an edge directed
either from S or to T , since such an edge has an infinite
capacity. For the remaining cuts, we can classify the storage
nodes into four types based on the nodes in C̄:
• Type 1: Both Xmid

i and Xout
i are in C̄ for some i ∈ [0,n−1];

5

M/(k+s)

∞ M/k

Xin

Xin

M/k'

...

M/k'

...
...

cut

Xin

Xin

Xin

t2

t1

S

Virtual

source
T Data

collector

Existing node

New node

S

Xmid
Xin Xout

Yin
Yout

T

t3

...
...

...

Type 1

Type 2

Type 3

Type 4

t4

Xmid

Xmid

Xmid

Xmid

Xmid

Xout

Xout

Xout

Xout

Xout

Yin

Yin

Yin

Yout

Yout

Yin Yout

Yout

Yin Yout

(a) (n,k,s)-scaling

...
...

...

cut

t2

t1

S Virtual

source
T Data

collector

Surviving

node

Removed

node

S

 Xin

Yin

T

Type 1

Type 2

M/k

Xin

Xin

Xin

Xin

Xin

Yin
...

Yin

Yout

Yout

Xmid

Xmid

Xmid

Xmid

Xmid Xout

Xout

Xout

Xout

Xout

Xout
Xmid

Yout

(b) (n,k,−s)-scaling

Fig. 2. Information flow graphs for (n,k,s)-scaling and (n,k,−s)-scaling.

• Type 2: Only Xout
i is in C̄ for some i ∈ [0,n−1];

• Type 3: Only Y out
j is in C̄ for some j ∈ [0,s−1]; and

• Type 4: Both Y in
j and Y out

j are in C̄ for some j ∈ [0,s−1].
We now derive the capacity of each possible cut for each

data collector. Suppose that T connects to ti nodes of Type i,
where 1≤ i≤ 4, for data reconstruction, such that:

t1 + t2 + t3 + t4 = k+ s. (3)

Let Λ(t1, t2, t3, t4) denote the capacity of a cut. We derive Λ

as follows:
• Each storage node of Type 1 contributes M

k to Λ;
• Each storage node of Type 2 contributes M

k+s to Λ;
• Each storage node of Type 3 contributes M

k+s to Λ; and
• Each storage node of Type 4 contributes (n− t1)β to Λ.
Figure 2(a) illustrates the details. Thus, we have:

Λ = t1 ·
M
k
+ t2 ·

M
k+ s

+ t3 ·
M

k+ s
+ t4 · (n− t1)β . (4)

By Lemma 1 and Equation (3), we reduce Equation (4) to:

Λ ≥ M+M · t1 · (n · s− k · t4)
k(k+ s)n

. (5)

Since n > k and s≥ t4 (Type 4 only has new storage nodes),
the right hand side of Equation (5) must be at least M. The
lemma holds.

Lemma 3 ([8]). If the capacity of each possible min-cut of
the flow graph is at least the original file size M, there exists a
random linear network coding scheme guaranteeing that T can
reconstruct the original file for any connection choice, with a
probability that can be driven arbitrarily high by increasing
the field size.

Theorem 1. For (n,k,s)-scaling and an original file of size
M, there exists an optimal functional scaling scheme, such that
β is minimized at M

n(k+s) while the MDS property of tolerating
any n− k failures is preserved.

Proof: It follows from immediately Lemmas 2 and 3.
Theorem 1 implies that the minimum scaling bandwidth per

new stripe is n · s ·β = s·M
k+s , i.e., optimal scaling occurs when

the amount of transferred data to the new nodes is equal to the
size of the data being stored in the s new nodes. Since each
new node stores one block, optimal scaling requires s blocks

6

for each stripe of size being scaled from n blocks to n+ s
blocks during (n,k,s)-scaling. We have the following corollary.

Corollary 1. For distributed storage systems that organize
data in fixed-size blocks, the minimum scaling bandwidth is s
blocks per new (n+ s,k+ s)-coded stripe for (n,k,s)-scaling.

Note that the above corollary presents the scaling bandwidth
per stripe instead of the total scaling bandwidth, so as to show
easily whether a scaling design is optimal and support fair
comparisons in our numerical analysis (Section VII).

B. Model for (n,k,−s)-scaling

For (n,k,−s)-scaling, we also start with an (n,k)-coded data
file of size M as in Section III-A. The main difference here is
that scale-in transfers data among removed nodes and surviving
nodes, while scale-out transfers data between existing nodes
and new nodes. Let Xi be the ith surviving node of a stripe,
where 0≤ i≤ n− s−1, and Yj be the jth removed node of a
stripe, where 0≤ j ≤ s−1. Then the (n,k,−s)-scaling process
for the data file can be decomposed into four steps:
1) Each removed node Yj (0 ≤ j ≤ s−1) encodes its stored

data of size M
k into some encoded data.

2) Each surviving node Xi (0≤ i≤ n− s−1) downloads the
encoded data from each Yj (0≤ j ≤ s−1).

3) Each removed node Yj (0 ≤ j ≤ s− 1) removes all of its
stored data.

4) Each surviving node Xi (0≤ i≤ n−s−1) encodes its stored
data before scaling and its downloaded data during scaling
into the stored data of size M

k−s after scaling.
Let β denote the bandwidth between any removed node Yj

to any surviving node Xi; in other words, each Xi downloads at
most β units of encoded data from Yj. To minimize the scaling
bandwidth, our goal is to minimize β , while ensuring that the
data file can be reconstructed from any k− s nodes.

We now construct an information flow graph G for (n,k,−s)-
scaling (Figure 2(b)). Note that scale-in transfers data between
removed nodes and surviving nodes, so we add a directed edge
Y out

j → Xmid
i for every i (0≤ i≤ n−s−1) and j (0≤ j≤ s−1)

with capacity β . The following lemma states the necessary
condition of the lower bound of β .

Lemma 4. For (n,k,−s)-scaling, β must be at least M
k(k−s) .

Proof: Similar to Lemma 1, each surviving storage node Xi
(0≤ i≤ n− s−1) must receive at least M

k−s −
M
k units of data

from all removed storage nodes Yj’s (0≤ j ≤ s−1) over the
links with capacity β each. Thus, we have sβ ≥ Ms

k(k−s) . The
lemma follows.

Similar to the scale-out case, the lower bound in Lemma 4 is
tight, achievable by random linear network coding (Lemma 3).
We can deduce the following theorem.

Theorem 2. For (n,k,−s)-scaling and an original file of size
M, there exists an optimal functional scaling scheme, such that
β is minimized at M

k(k−s) while the MDS property of tolerating
any n− k failures is preserved.

Theorem 2 implies that optimal scaling occurs when the
amount of transferred data to the surviving nodes is equal to

the size of the data being removed of the s removed nodes.
Thus, we have the following corollary.

Corollary 2. For distributed storage systems that organize
data in fixed-size blocks, the minimum scaling bandwidth is s
blocks per new (n,k)-coded stripe for (n,k,−s)-scaling.

C. Discussion
We discuss the relevance of our analysis in this section

with the properties P1–P4. Theorems 1 and 2 ensure that the
scaling process under random linear coding maintains the MDS
property (i.e., P1 is satisfied) and can be performed without a
centralized entity (i.e., P4 is satisfied). However, random linear
coding does not keep the original data blocks, so both P2 and
P3 are violated. Thus, we proceed to design explicit coding
schemes (Sections IV and V) that aim to minimize the scaling
bandwidth, while satisfying P1–P4.

IV. NCSCALE: SCALE-OUT

We present NCScale, a distributed storage system that
realizes network-coding-based storage scaling for both scale-
out and scale-in cases. In this section, we focus on scale-out in
NCScale, which satisfies P1–P4 (Section II-B) with the goal
of achieving the minimum scaling bandwidth (Section III-A).

A. Main Idea
NCScale operates on (systematic) RS codes [28], such that

all blocks before and after scaling are still encoded by RS codes.
Before scaling, each existing node independently computes
parity delta blocks, which are then merged with existing parity
blocks to form new parity blocks for the new stripes after
scaling. Finally, NCScale sends some of the data blocks and
new parity blocks to the new nodes, while ensuring that the
new stripes have uniform distributions of data and parity blocks
across nodes.

NCScale can achieve the minimum scaling bandwidth when
n−k = 1 (i.e., each stripe has one parity block). In this case, the
new parity block of each stripe can be computed locally from
the parity delta block generated from the same node. In other
words, the blocks that are sent over the network by NCScale
are only those that will be stored in the new nodes. From
Corollary 1, the scaling bandwidth of NCScale matches the
optimal point. Figure 3(a) shows an example of (3,2,1)-scaling
in NCScale.

On the other hand, NCScale cannot achieve the optimal
point for n− k > 1 (i.e., each stripe has more than one parity
block). Each existing node now not only generates a parity
delta block for locally computing a new parity block, but also
sends parity delta blocks for computing new parity blocks of
the same stripe in different nodes. Nevertheless, the number
of parity delta blocks that are sent to other nodes remains
limited, as we only use one parity delta block to update each
new parity block (Section IV-C for details). Figure 3(b) shows
an example of (4,2,2)-scaling in NCScale.

One constraint of NCScale is that its current algorithmic
design requires s≤ n

n−k−1 ; if n− k = 1, s can be of any value
(Section IV-C). Nevertheless, we believe that the range of s is
sufficiently large in practice, as n is often much larger than
n− k to limit the amount of storage redundancy.

7

D

D

D

DQ
Q

Q D D

X 1X 0 X 2

D

D

D

D

DQ
Q

Q D D

X 1X 0 X 2

D D

D

D

D

D

D

X 1X 0 X 2

PG

P D D

D D P
PG

DG

P
P

X 1X 0 X 2

P

D

DP
P

P D D

Send

Before scaling

Prepare

X 1X 0 X 2

D

D

D

D

D

D

D

Compute

D

D

D

Y 0

D

D

D

DD

D

D D D

X 1X 0 X 2

D

D

D

D

DQ
Q

Q D D

X 1X 0 X 2

D D

Send

Q
Q

Q
Y 0

D P D

DG

P D D

D D P
D P D

D D

Ꚛ Ꚛ
Ꚛ

(a) (3,2,1)-scaling

Q
D
D

D
QQ
Q

Q Q D
X 1X 0 X 2

D
Q

D

D D Q

X 3

Q
D
D

D
D

D
QQ
Q

Q Q D
X 1X 0 X 2

D
Q

D

D D Q

D

D
D
D

D DP

D
D

D

D
D
D

D D

D
D

D
D

X 1X 0 X 2

PG

P P D

D D P
PG

DG

P
P

P

X 1X 0 X 2

P

Ꚛ

D
PP
P

P P D

Send

Before scaling

Prepare

X 1X 0 X 2

D D
D

P
P
D

X 3

D

P

D
P

D
X 3

D D P

D

D
D
D

D D

D
D

P

X 3

P

D
D

Ꚛ

Ꚛ
Ꚛ

Ꚛ
Ꚛ Ꚛ

Ꚛ
Compute

X 3

D
D

D
D
D

D

D D

Y 0 Y 1

Q
D
D

D
QD
D

D Q D
X 1X 0 X 2

D
Q

D

D D D

X 3

Q
D
D

D
D

D
QQ
Q

Q Q D
X 1X 0 X 2

D
Q

D

D D Q

D

D
D
D

D D Send

X 3

D
Q

Q
Q
D

D

D Q

Y 0 Y 1

D P P D

P D D P

DG

P P D

D D P

D

P
D P P D

P D D P
1,1

1,2

0,1

0,0

2,3

2,2

3,3

3,0

(b) (4,2,2)-scaling

Fig. 3. Scale-out in NCScale. Note that (3,2,1)-scaling achieves the minimum scaling bandwidth (Corollary 1), while (4,2,2)-scaling does not.

B. Preliminaries

We now provide definitions for NCScale in (n,k,s)-scaling
and summarize the steps of NCScale. We also present the
scaling bandwidth of NCScale.

To perform scaling, NCScale operates on a collection of
n(k+s)(n+s) stripes in n nodes that have nk(k+s)(n+s) data
blocks in total. We assume that the nodes that hold the parity
blocks in a stripe are circularly rotated across stripes [26], so
as to keep the uniform distributions of data and parity blocks
over the n nodes; formally, the n− k parity blocks of the wth

stripe are stored in Xi, · · ·X(i+n−k−1) mod n for some w≥ 0 and
i = w mod n. After scaling, NCScale forms nk(n+ s) stripes
over n+ s nodes, with the same number of nk(k+ s)(n+ s)
data blocks in total.

NCScale classifies the above n(k+ s)(n+ s) stripes into two
groups. The first group is denoted by PG. It contains the first
nk(n+ s) stripes, whose parity blocks will be updated to new
parity blocks based on parity delta blocks. The second group
is denoted by DG. It contains the remaining ns(n+ s) stripes,
whose data blocks will be used to generate parity delta blocks
for updating the parity blocks in the first group PG. Note that
the number of stripes in PG is also equal to the number of
stripes after scaling.

Parity delta blocks are formed by the linear combinations
of the new data blocks in a stripe based on a Vandermonde
matrix (Section II-A). Let ∆i, j be a parity delta block generated
from an existing node Xi for updating a parity block in an
existing node X j, where 0≤ i, j ≤ n−1 (when i = j, the new
parity block is computed locally). NCScale ensures that for
each of the nk(n+ s) stripes in PG, the n− k parity blocks of
the new stripe can be computed from parity delta blocks that
are all generated by the same node. One of the parity blocks

can retrieve a parity delta block locally, while the remaining
n− k− 1 parity blocks need to retrieve a total of n− k− 1
parity delta blocks over the network. In other words, there will
be a total of nk(n+s)(n−k−1) parity delta blocks transferred
over the network.

In addition, NCScale sends nk(n+ s)× s blocks to the s new
nodes. In general, the scaling bandwidth of NCScale per new
stripe formed after scaling is:

nk(n+ s)(n− k−1+ s)
nk(n+ s)

= n− k−1+ s. (6)

C. Algorithmic Details

We now present the algorithmic details of (n,k,s)-scaling
in NCScale. Figure 3 illustrates the algorithmic steps.
• Prepare: NCScale prepares the sets of data and parity blocks
to be processed in the scaling process, as shown in Algorithm 1.
It first identifies the groups PG and DG (lines 1-2). It then
divides the data blocks in DG into different sets Dw’s, where
0≤ w≤ nk(n+ s)−1 (lines 3-5), by collecting and adding s
data blocks from X0 to Xn−1 into Dw in a round-robin fashion.
Specifically, DG has ns(n+ s) stripes, and hence nsk(n+ s)
data blocks, in total. We divide the data blocks of each existing
node Xi (0≤ i≤ n−1) in DG into k(n+s) sets of s data blocks,
and add the w′th set of s data blocks of each existing node
Xw mod n into Dw, where “ mod ” denotes the modulo operator
and w′ = dw

n e (line 4).
• Compute, Send, and Delete: After preparation, NCScale
computes new parity blocks for the new stripes, sends blocks
to the s new nodes, and deletes obsolete blocks in existing
nodes. Algorithm 2 shows the details. NCScale operates across
all nk(n+ s) stripes in PG. To compute the new parity blocks,

8

Algorithm 1 Prepare
1: PG = first nk(n+ s) stripes
2: DG = next ns(n+ s) stripes
3: for w = 0 to nk(n+ s)−1 do
4: Dw = w′th set of s data blocks of Xw mod n in DG, where

w′ = dw
n e

5: end for

Algorithm 2 Compute, Send, and Delete
1: for w = 0 to nk(n+ s)−1 do
2: i = w mod n
3: for j = 0 to n− k−1 do
4: j′ = (j+w) mod n
5: Xi generates ∆i, j′ from the s data blocks in Dw for the jth

parity block in the wth stripe of PG
6: Xi sends ∆i, j′ to X j′ , which adds ∆i, j′ to the jth parity

block in the wth stripe of PG
7: end for
8: if w≤ nk(n− s(n− k−1))−1 then
9: Xi sends all s data blocks in Dw to the s new nodes

10: else
11: Xi sends the locally updated parity block and any

s−1 data blocks in Dw to the s new nodes
12: end if
13: Xi deletes all obsolete blocks
14: end for

each existing node Xi (0≤ i≤ n−1) operates on the wth stripe
for i = w mod n (line 2). Recall that the parity blocks are
stored in Xi, · · · ,X(i+n−k−1) mod n. For 0 ≤ j ≤ n− k− 1 and
j′ = (j+w) mod n, Xi computes a parity delta block ∆i, j′ and
sends it to X j′ , which adds ∆i, j′ to the jth parity block of the
wth stripe in PG (lines 3-7). Note that when j = 0, Xi updates
the parity block locally.

After computing the new parity blocks, NCScale sends
blocks to the new nodes (lines 8-12). We find that if w ≤
nk(n− s(n− k− 1))− 1, Xi sends all s data blocks in Dw to
the s new nodes; otherwise, Xi sends the locally updated parity
block and any s−1 data blocks in Dw to the s new nodes (we
assume that the parity block is rotated over the s nodes across
different stripes to evenly place the parity blocks). For example,
Figure 3 shows that the last step of scaling is split into two cases.
Finally, Xi deletes all obsolete blocks, including the blocks
that are sent to the new nodes and the parity blocks in DG
(line 13). By doing so, we can guarantee uniform distributions
of data and parity blocks after scaling (Section IV-D).
Remark: Algorithm 2 requires s ≤ n

n−k−1 , so that the right
side of the inequality in line 8 is a positive number.

D. Proof of Correctness

Theorem 3. NCScale preserves P1–P4 after scaling.

Proof: See Appendix A in the digital supplementary file.

Corollary 3. In (n,k,s)-scaling, when n− k = 1, NCScale
achieves the lower bound in Corollary 1; when n− k > 1, the
gap between the lower bound and NCScale is n−k−1 blocks
per new stripe.

X 1X 0 X 2

P D D

D

Y 0

P D

D D Q

Ꚛ
Ꚛ

D

D
Q

Ꚛ

D

D

X 1X 0 X 2 Y 0

D D P

D D P

Ꚛ

D D Q
Ꚛ

(a) (b)

Fig. 4. Steps for (4,3,-1)-scaling: (a) scaling of stripes that have only data
blocks in the removed node; (b) scaling of stripes that have parity blocks in
the removed node.

V. NCSCALE: SCALE-IN

We extend NCScale for scale-in, in which the generation
of parity blocks for the new stripes is different from that in
scale-out. We focus on two cases in scale-in: n− k = 1 and
n− k > 1. Both cases still satisfy P1–P4 (Section II-B), with
the goal of achieving minimum scaling bandwidth for n−k = 1
(Section III-B).

A. Scale-in for n− k = 1

When n− k = 1, each stripe has one parity block, so it is
easy to update the existing parity block of a stripe locally by
transferring the removed data blocks of the stripe to the node
where the parity block resides, while preserving P3 (uniform
data and parity distributions). Figure 4 depicts the scale-in
steps for (4,3,-1)-scaling. In particular, NCScale classifies the
stripes involved in the scaling process into two cases:
• Stripes that have only data blocks in the removed node

(Figure 4(a)): NCScale first generates new parity blocks for
the new stripes from the data blocks in the removed node
(step 1). It then sends these data blocks and their generated
parity blocks to the surviving nodes as the new stripes, while
these data blocks are transferred to the nodes that have parity
blocks within the same existing stripe (step 2). It uses these
data blocks to locally update the parity blocks in the existing
stripes (step 3).

• Stripes that have parity blocks in the removed node
(Figure 4(b)): NCScale first sends the existing parity blocks
to surviving nodes, in which the data blocks within the
existing stripe update these parity blocks locally (step 1). It
then generates the new parity blocks for the new stripes by
collecting these data blocks that are used to update existing
parity blocks (step 2).
NCScale can reduce the scaling bandwidth when n− k = 1

significantly. For the stripes in the first case, the new parity
block of each new stripe is sent as a coded block that is
generated by the data blocks from the same removed node,
and the existing parity block of each existing stripe can be
updated locally. In other words, the blocks that are sent over
the network by NCScale are only those that will be added to
the surviving nodes. From Corollary 2, the scaling bandwidth
of NCScale matches the optimal point. For the stripes in the
second case, the existing parity block of each existing stripe
can also be updated locally, but the new parity block of each
new stripe is generated from the data blocks residing in other
surviving nodes. Nevertheless, the number of data blocks that
are transferred for the generation of the new parity blocks

9

X 1X 0 X 2 Y 0X 3

Q

Q

D

D D

D

Q
Q

D

D

Q
Q

Y 1

Q

Q

D

D

D

D

P

P

D

D

P

P

1,1

1,0

Ꚛ

Ꚛ

0,0

0,1

Ꚛ

Ꚛ

(a)

Ꚛ

X 1X 0 X 2 Y 0X 3

Q

Q

D

D P

P

P

P

Y 1

Q

Q

D

D

D

D

D

D

D

D

D

D

Q
QD

D Q
QD

D

X 1X 0 X 2 X 3

Q
Q

D
D

Q
Q

D
D

D
D

P
P

D
D

P
P

0,0

0,1

Ꚛ

Ꚛ

1,1

1,0

Ꚛ

Update

(b)

Fig. 5. Steps of (6,4,-2)-scaling: (a) scaling of stripes that have only data
blocks in the removed nodes; (b) scaling of stripes that have parity blocks in
the removed nodes.

remains limited, since the parity blocks only occupy 1
n of all

blocks of the stripes in the second case.
Appendix B (see the digital supplementary file) elaborates the

scale-in process for n−k = 1. We can derive the corresponding
scaling bandwidth of NCScale per new stripe as:

s((n− s)(n+1)−2)
nk

. (7)

B. Scale-in for n− k > 1

When n−k > 1, each stripe has more than one parity block,
so it becomes difficult for scale-in to update each existing parity
block locally while preserving P3. NCScale incurs additional
scaling bandwidth to maintain P3, such that some of the existing
parity blocks can be updated locally, while the remaining
existing parity blocks need to be updated via the parity delta
blocks generated from other surviving nodes. Figure 5 depicts
the scale-in steps for (6,4,-2)-scaling.

Before scaling, NCScale identifies the stripes with the same
parity layout (i.e., the parity blocks reside in the same nodes),
and then performs scale-in operations in a set of stripes with
the same parity layout. It classifies the stripes into the following
two cases:
• Stripes that have only data blocks in the removed nodes

(Figure 5(a)): The scaling steps of this case are similar to
the first case in scale-in for n− k = 1.

• Stripes that have parity blocks in the removed nodes
(Figure 5(b)): NCScale first sends the existing parity blocks
to the surviving nodes (step 1). In the surviving nodes, it
uses the data blocks that are to be replaced by the parity
blocks to generate new parity blocks for the new stripes
(step 2). It sends these data blocks and their generated parity
blocks to the surviving nodes as new stripes (step 3). Finally,

NameNode

...

DataNode

Scaling

Calculation

DataNode

Scaling

Calculation

DataNode

Scaling

Calculation

RaidNode

Placement

Manager

Scaling

Manager

Fig. 6. Architecture of HDFS-RAID integrated with NCScale.

it generates parity delta blocks from these data blocks to
update the existing parity blocks in the existing stripes.

Appendix C (see the digital supplementary file) elaborates
the scaling-in process for n− k > 1. We can derive the
corresponding scaling bandwidth of NCScale per new stripe
as:
(n−s)((n−k)(nk+sk−2s2−s)+sk(n−s)−2)−min(n−k,k−s)((n−s)(k−s)+n)

nk(n−s) .
(8)

Similar to Section IV-D, we also provide the following
corollary on the tightness of NCScale in (n,k,−s)-scaling.

Corollary 4. In (n,k,−s)-scaling, when n − k = 1, the
gap between the lower bound in Corollary 2 and NC-
Scale is s((n−s)(n+1)−nk−2)

nk blocks per new stripe; when n−
k > 1, the gap between the lower bound and NCScale is
(n−s)((n−k)(nk+sk−2s2−s)−ks2−2)−min(n−k,k−s)((n−s)(k−s)+n)

nk(n−s) blocks
per new stripe.

VI. IMPLEMENTATION

We have implemented a prototype of NCScale based on
HDFS [30]. In this section, we first provide an overview of
HDFS and its extension, called HDFS-RAID [4], for erasure
coding. We then describe how we integrate NCScale into HDFS-
RAID to support storage scaling for erasure-coded storage.

A. HDFS Overview

HDFS [30] is a widely used distributed storage system in
both industrial and academic deployments. It provides reliable
storage for massive volumes of data across multiple nodes
in a large cluster. It stores each file in units of fixed-size
blocks that are replicated for fault tolerance. It consists of two
types of nodes: a single NameNode that stores metadata and
coordinates storage operations, and multiple DataNodes that
provide actual data storage. HDFS-RAID [4] is an extension of
HDFS and employs erasure coding to provide low-redundancy
fault tolerance. It introduces a RaidNode to perform erasure
coding operations, such as encoding, decoding, and repair. To
perform encoding for a stripe, the RaidNode first obtains the
metadata of k data blocks from the NameNode, and uses the
metadata to collect the k data blocks from k different DataNodes
to generate the parity blocks that are then written to HDFS.

10

B. Integration of NCScale into HDFS-RAID
We implement a NCScale prototype atop Facebook’s HDFS-

RAID [3]. Figure 6 depicts the HDFS-RAID architecture with
NCScale. Our NCScale prototype is written in Java, with around
7.5K LoC. Specifically, we implement NCScale as four distinct
modules, as described below.
Placement manager module: We implement this module
to manage block placements, in which the distributions of
data blocks and parity blocks are uniform before scaling
(Section IV-B). Since the original HDFS-RAID only supports
random distributions of data and parity blocks, we realize the
placement algorithms for RS codes in the placement manager
module, which is now added to the RaidNode. When the data
blocks are encoded into parity blocks, the RaidNode will call
the placement manager module to choose a specific DataNode
for each block, which is then sent to the DataNode. Thus, the
placement manager module ensures a uniform placement for
the scaling operation.
Scaling manager module: We implement this module in
the RaidNode to manage scaling operations. When a scaling
operation is triggered, the scaling manager module chooses the
corresponding scaling algorithm based on different parameter
settings. It then obtains metadata from the NameNode for the
collection of blocks that are involved in a scaling operation
from NameNode. It sends the metadata and the scaling type
to the DataNodes via sockets, such that all the DataNodes can
perform the scaling operation in parallel.
Scaling module: We implement this module in each DataNode
to perform a scaling operation. It uses the metadata from the
RaidNode to read the locally stored blocks, and then uses these
blocks to perform the scaling operation. The scaling module
exports three APIs for a scaling operation: (i) Compute,
which computes new parity blocks or parity delta blocks from
its locally stored data blocks and received data blocks by
calling the calculation module (see below); (ii) Send, which
sends data blocks, parity blocks, and parity delta blocks to
another DataNode via sockets; and (iii) Delete, which deletes
all obsolete blocks. After a scaling operation, the scaling
module updates the metadata of the NameNode and notifies
the RaidNode of the completion of the scaling operation.
Calculation module: We implement this module in each
DataNode to perform encoding and decoding operations.
We realize the calculation module in C++ based on Intel’s
Intelligent Storage Acceleration Library (ISA-L) [5]. We
link the calculation module with HDFS (written in Java)
via the Java Native Interface. We mainly use two ISA-L
APIs: ec_init_tables to initialize coding coefficients, and
ec_encode_data to execute coding operations.

VII. NUMERICAL ANALYSIS

We present numerical analysis results of NCScale. We
compare it with Scale-RS [16], which represents the state-
of-the-art scaling scheme for RS codes in distributed storage
systems. In our numerical analysis, we calculate the scaling
bandwidth as the total number of blocks transferred during
scaling normalized to the total number of stripes after scaling.
Scale-out: We first consider the scale-out case. Specifically,
we consider the scaling bandwidth of three different schemes.

1 1 1 1 1 1 1 1 1 1

2

3

2

4

3

2

5

4

3

2

1

2

1

3

2

1

4

3

2

1

0

2

4

6

(3,2,1) (4,2,1) (4,3,1) (5,2,1) (5,3,1) (5,4,1) (6,2,1) (6,3,1) (6,4,1) (6,5,1)

S
ca

lin
g

ba
nd

w
id

th
 (

bl
oc

ks
)

Optimal Scale-RS NCScale

(a) (n,k,s), where s = 1

2 2 2 2 2 2 2 2 2 2

3

4

3

5

4

3

6

5

4

3

2

3

2

4

3

2

5

4

3

2

0

2

4

6

8

(3,2,2) (4,2,2) (4,3,2) (5,2,2) (5,3,2) (5,4,2) (6,2,2) (6,3,2) (6,4,2) (6,5,2)

S
ca

lin
g

ba
nd

w
id

th
 (

bl
oc

ks
)

Optimal Scale-RS NCScale

(b) (n,k,s), where s = 2

Fig. 7. Scale-out: numerical results of scaling bandwidth (in units of blocks)
per new stripe formed after scaling.

• Optimal: The information-theoretically minimum scaling
bandwidth is given by s blocks (per new stripe) for any (n,k)
(Corollary 1).

• Scale-RS: To form a new stripe after scaling, Scale-RS first
sends s data blocks from existing nodes to s new nodes for
data block migration, followed by n− k parity delta blocks
for parity block updates (e.g., Figure 1(a)). Thus, the scaling
bandwidth of Scale-RS is s+n− k blocks (per new stripe).

• NCScale: From Equation (6), the scaling bandwidth of
NCScale is s+n− k−1 blocks (per new stripe).
Figure 7 shows the numerical results of scaling bandwidth

(in units of blocks) per new stripe formed after scaling. Here,
we focus on s = 1 and s = 2, and vary (n,k). In summary,
the percentage reduction of scaling bandwidth of NCScale
over Scale-RS is higher for smaller n− k or smaller s. For
example, for (6,5,1), the reduction is 50%, while for (6,4,1)
and (6,5,2), the reduction is 33.3%. NCScale matches the
optimal point when n− k = 1, and deviates more from the
optimal point when n−k increases (e.g., by three blocks more
for (6,2,2)). Nevertheless, NCScale always has less scaling
bandwidth than Scale-RS by one block (per new stripe).
Scale-in: We now consider the scale-in case. Similar to scale-
out, we consider the optimal scheme, Scale-RS, and NCScale
as follows.
• Optimal: Since there will be M

k−s new stripes after scaling for
a data file of size M, the information-theoretically minimum
scaling bandwidth is given by s(n−s)

k blocks (per new stripe)
for any (n,k) (Corollary 2).

• Scale-RS: From the Scale-RS [16], we derive the scaling
bandwidth as follows. To form k new stripes after scaling,
Scale-RS first sends s(n− s) data blocks and new parity
blocks from s removed nodes to n− s surviving nodes as
new stripes, followed by (k− s)(n− k) parity delta blocks
for parity block updates. Thus, the scaling bandwidth of
Scale-RS is s(n−s)+(k−s)(n−k)

k blocks (per new stripe).
• NCScale: From Equations (7) and (8), the scaling

bandwidth of NCScale per new stripe is: (i)
s((n−s)(n+1)−2)

nk blocks for n − k = 1, and (ii)

11

1.7

2.7

1.8

3.7

2.8

1.8

4.7

3.8

2.8

1.8

1.1

2.2

1.1

3.4

2.5

1.1

4.5

3.4

2.6

1.11
1.3

1

1.7
1.3

1

2
1.5

1.2 1

0

2

4

6

(4,3,-1) (5,3,-1) (5,4,-1) (6,3,-1) (6,4,-1) (6,5,-1) (7,3,-1) (7,4,-1) (7,5,-1) (7,6,-1)

S
ca

lin
g

ba
nd

w
id

th
 (

bl
oc

ks
)

Optimal Scale-RS NCScale

(a) (n,k,−s), where s = 1

2.7
3

2.2

4

3.2

2.3

5

4.2

3.3

2.42.4
2.8

1.7

3.9

3.1

1.8

5

4.1

3.3

1.92 2
1.6

2.5
2

1.7

3
2.4

2
1.7

0

2

4

6

(5,3,-2) (6,4,-2) (6,5,-2) (7,4,-2) (7,5,-2) (7,6,-2) (8,4,-2) (8,5,-2) (8,6,-2) (8,7,-2)

S
ca

lin
g

ba
nd

w
id

th
 (

bl
oc

ks
)

Optimal Scale-RS NCScale

(b) (n,k,−s), where s = 2

Fig. 8. Scale-in: numerical results of scaling bandwidth (in units of blocks)
per new stripe formed after scaling.

(n−s)((n−k)(nk+sk−2s2−s)+sk(n−s)−2)−min(n−k,k−s)((n−s)(k−s)+n)
nk(n−s)

blocks for n− k > 1.
Figure 8 shows the numerical results of scaling bandwidth

(in units of blocks) per new stripe formed after scaling. Here,
we focus on s = 1 and s = 2, and vary (n,k). In summary, the
percentage reduction of scaling bandwidth of NCScale over
Scale-RS is higher for n− k = 1 and small s. For example,
for (7,6,−1), the reduction is 38.9%, while for (7,5,−1)
and (7,6,−2), the reduction is 7.1% and 21.7%, respectively.
NCScale nears the optimal point when n−k = 1. Nevertheless,
NCScale always has less scaling bandwidth than Scale-RS.

VIII. PERFORMANCE EVALUATION

In this section, we present performance evaluation results
of NCScale. We aim to address two key questions: (i) Can
NCScale improve the scaling performance by mitigating
the scaling bandwidth? (ii) Is the empirical performance of
NCScale consistent with the numerical results?

A. Setup

We implemented NCScale as an extension to HDFS-RAID
[4] (Section VI) and evaluated its scaling performance in real-
world environments. We also implemented Scale-RS as an
extension to HDFS-RAID for fair comparisons under the same
implementation settings. In both of our NCScale and Scale-RS
implementations, the storage nodes perform the scaling steps
independently and in parallel.

Note that for the scale-out in Scale-RS, the parity nodes do
not participate in the scale-out process, and hence Scale-RS
cannot fully utilize the resources of all nodes. Thus, we rotate
the parity placements for the scale-out of Scale-RS to involve
all nodes in the scale-out process. For the scale-in of Scale-RS,
it cannot handle the situation in which the parity blocks reside
in the removed nodes. Thus, we follow the original Scale-RS
[16] to organize all data blocks and parity blocks in a RAID-4-
like layout (i.e., all the parity blocks reside in dedicated nodes),
and require that the removed nodes must be the nodes that

TABLE II
EXPERIMENT 1: TIME BREAKDOWN OF NCSCALE FOR (n,k,s) = (6,4,2)

(SCALE-OUT) AND (n,k,−s) = (8,6,−2) (SCALE-IN); BLOCK SIZE IS 64 MB.

(n,k,s) = (6,4,2) (n,k,−s) = (8,6,−2)
Compute Send Delete Compute Send Delete

200 Mb/s 14.99s 1654.15s 1.34s 31.70s 2568.07s 1.29s
500 Mb/s 14.96s 694.39s 1.34s 32.04s 1104.63s 1.32s

1 Gb/s 14.43s 378.43s 1.32s 31.92s 620.77s 1.31s
2 Gb/s 14.31s 222.70s 1.33s 33.98s 390.82s 1.32s

hold data blocks. However, the RAID-4-like layout reduces
the scale-in performance of Scale-RS (see Experiment 2).
Testbed: We conduct our experiments on Amazon EC2 [1]. We
configure a number of m4.4xlarge instances located in the
US East (North Virginia) region. The number of instances varies
across experiments (see details below), and the maximum is 14.
For scale-out, each instance represents an existing storage node
(before scaling) or a new storage node (after scaling), while
for scale-in, each instance represents a surviving node or a
removed node. To evaluate the impact of bandwidth on scaling,
we configure a dedicated instance that acts a gateway, such
that any traffic between every pair of instances must traverse
the gateway. We then use the Linux traffic control command
tc to control the outgoing bandwidth of the gateway. In our
experiments, we vary the gateway bandwidth from 200 Mb/s
up to 2 Gb/s.
Methodology: We measure the scaling time per 1 GB of data
blocks (64 MB each by default). Recall that NCScale operates
on collections of n(k+s)(n+s) stripes (Section IV-B). In each
run of experiments, depending on the values of (n,k,s), we
generate around 1,000 data blocks (and the corresponding parity
blocks), so as to obtain a sufficient number of collections of
stripes for stable scaling performance. We report the average
results of each experiment over five runs. We do not plot the
deviations, as they are very small across different runs.

B. Results

Experiment 1 (Time breakdown): We provide a breakdown
of the scaling time and identify the bottlenecked step in scaling.
We decompose a scaling operation into three steps that are
carried out by existing nodes: (i) compute, which refers to
the computation of new parity blocks or parity delta blocks,
(ii) send, which refers to the transfers of blocks during the
scaling process, and (iii) delete, which describes the deletion of
obsolete blocks after scaling. Since all existing nodes perform
scaling in parallel, we pick the one that finishes last and obtain
its time breakdown. We fix the block size as 64 MB and vary
the gateway bandwidth from 200 Mb/s to 2 Gb/s.

Table II shows the breakdown results. We first consider
scale-out, and focus on (6,4,2)-scaling. We observe that the
send time dominates (over 93% of the overall time), especially
when the available network bandwidth is limited (while the
compute and delete times stay fairly constant). This justifies
our goal of minimizing the scaling bandwidth to improve the
overall scaling performance. We next consider scale-in, and
focus on (8,6,−2)-scaling. We again observe that the send
time also dominates (over 91% of the overall time), especially
under limited available network bandwidth.

12

32.62

23.82

18.7117.23

12.35
9.72

0

10

20

30

40

(3,2,1) (4,3,1) (5,4,1)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

15.64

10.53

8.258.35

5.81
4.43

0

5

10

15

20

(3,2,1) (4,3,1) (5,4,1)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

10.06

6.24

4.84
5.49

3.61
2.68

0

5

10

(3,2,1) (4,3,1) (5,4,1)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

7.93

4.37

3.14
3.98

2.5
1.78

0

3

6

9

(3,2,1) (4,3,1) (5,4,1)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

(a) 200 Mb/s, s = 1 (b) 500 Mb/s, s = 1 (c) 1 Gb/s, s = 1 (d) 2 Gb/s, s = 1

47.44

37.29

30.49
35.34

27.77
23.21

0

20

40

60

(4,2,2) (5,3,2) (6,4,2)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

20.88

16.18

13.07

15.65

12.01
9.86

0

10

20

(4,2,2) (5,3,2) (6,4,2)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

12.84

9.15

7.32

9.18

6.8
5.48

0

4

8

12

16

(4,2,2) (5,3,2) (6,4,2)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

8.82

5.94

4.35

6.06

4.24
3.31

0

3

6

9

12

(4,2,2) (5,3,2) (6,4,2)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

(e) 200 Mb/s, s = 2 (f) 500 Mb/s, s = 2 (g) 1 Gb/s, s = 2 (h) 2 Gb/s, s = 2

Fig. 9. Experiment 2 (Scale-out): Scaling time (per GB of data blocks), in seconds/GB, under different gateway bandwidth settings.

55.69

39.49

32.22
28.06

18.73
14.05

0

20

40

60

(4,3,-1) (5,4,-1) (6,5,-1)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

25.84

17.98
15.69

13.9

9.23
6.92

0

10

20

30

(4,3,-1) (5,4,-1) (6,5,-1)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

16.14

11.48

8.44
9.72

6.37
4.79

0

5

10

15

20

(4,3,-1) (5,4,-1) (6,5,-1)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

13.88

8.4

5.96

8.1

5.28
3.95

0

5

10

15

20

(4,3,-1) (5,4,-1) (6,5,-1)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

(a) 200 Mb/s, s = 1 (b) 500 Mb/s, s = 1 (c) 1 Gb/s, s = 1 (d) 2 Gb/s, s = 1

86.59

63.25

47.74

62.75

45.81
36.12

0

30

60

90

120

(6,4,-2) (7,5,-2) (8,6,-2)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

37.73

26.42

20.98

27.84

20.04
15.78

0

10

20

30

40

50

(6,4,-2) (7,5,-2) (8,6,-2)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

22.46

14.97

11.59

16.03

11.55
9.07

0

10

20

30

(6,4,-2) (7,5,-2) (8,6,-2)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

15

10.02

7.37

10.64

7.48
5.9

0

5

10

15

20

(6,4,-2) (7,5,-2) (8,6,-2)
S

ca
lin

g
tim

e
(s

/G
B

)

Scale-RS NCScale

(e) 200 Mb/s, s = 2 (f) 500 Mb/s, s = 2 (g) 1 Gb/s, s = 2 (h) 2 Gb/s, s = 2

Fig. 10. Experiment 2 (Scale-in): Scaling time (per GB of data blocks), in seconds/GB, under different gateway bandwidth settings.

Experiment 2 (Impact of bandwidth): We compare NCScale
and Scale-RS under different gateway bandwidth settings. We
first consider scale-out. Figure 9 shows the scaling time results,
in which the block size is fixed as 64 MB. We find that
the empirical results are consistent with the numerical ones
(Figure 7) in all cases, mainly because the scaling performance
is dominated by the send time. Take (6,4,2)-scaling for
example. From the numerical results (Figure 7), NCScale incurs
25.0% less scaling bandwidth than Scale-RS (i.e., three versus
four blocks, respectively), while in our experiment, Scale-RS
incurs 23.88%, 24.56%, 25.14%, and 23.90% more scaling
time than NCScale when the gateway bandwidth is 200 Mb/s,
500 Mb/s, 1 Gb/s, and 2 Gb/s, respectively (Figures 9(e)-9(h)).
Note that the scaling time increases with the redundancy n

k (e.g.,
(3,2,1) has higher scaling time than (4,3,1) and (5,4,1)). The
reason is that the number of stripes per GB of data blocks also
increases with the amount of redundancy, so more blocks are
transferred during scaling.

We also compare NCScale and Scale-RS in scale-in. Fig-
ure 10 shows the scaling time results, in which the block size
is fixed as 64 MB. Unlike scale-out, whose empirical results

are consistent with the numerical ones, the empirical results of
scale-in are higher than the numerical ones (Figure 8) in all
cases. In particular, the scale-in of Scale-RS is implemented
in a RAID-4-like layout where the parity nodes of Scale-
RS do not participate the scaling process (Section VIII-A),
thereby leading to performance drops. Take (8,6,−2)-scaling
for example. From the numerical results (Figure 8), NCScale
has almost identical scaling bandwidth to Scale-RS, while
our experiment shows that Scale-RS incurs 24.34%, 24.79%,
21.74%, and 19.95% more scaling time than NCScale when the
gateway bandwidth is 200 Mb/s, 500 Mb/s, 1 Gb/s, and 2 Gb/s,
respectively (Figures 10(e)-10(h)). Similar to scale-out, the
scaling time increases with the redundancy n

k (e.g., (4,3,−1)
has higher scaling time than (5,4,−1) and (6,5,−1)). The
reason is that the number of stripes per GB of data blocks also
increases with the amount of redundancy, so more blocks are
transferred during scaling.
Experiment 3 (Impact of block size): We study the scaling
time versus the block size. We fix the gateway bandwidth as
1 Gb/s and vary the block size from 1 MB to 64 MB.

Figures 11(a) and 11(b) show the results for scale-out. We

13

0.0

2.5

5.0

7.5

10.0

1 2 4 8 16 32 64
Block size (MB)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS(3,2,1) NCScale(3,2,1)

Scale-RS(4,3,1) NCScale(4,3,1)

Scale-RS(5,4,1) NCScale(5,4,1)

0

5

10

15

1 2 4 8 16 32 64
Block size (MB)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS(4,2,2) NCScale(4,2,2)

Scale-RS(5,3,2) NCScale(5,3,2)

Scale-RS(6,4,2) NCScale(6,4,2)

0

5

10

15

20

1 2 4 8 16 32 64
Block size (MB)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS(4,3,-1) NCScale(4,3,-1)

Scale-RS(5,4,-1) NCScale(5,4,-1)

Scale-RS(6,5,-1) NCScale(6,5,-1)

0

5

10

15

20

25

1 2 4 8 16 32 64
Block size (MB)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS(6,4,-2) NCScale(6,4,-2)

Scale-RS(7,5,-2) NCScale(7,5,-2)

Scale-RS(8,6,-2) NCScale(8,6,-2)

(a) Scale-out, s = 1 (b) Scale-out, s = 2 (c) Scale-in, s = 1 (d) Scale-in, s = 2
Fig. 11. Experiment 3: Scaling time (per GB of data blocks), in seconds/GB, versus block size.

5.64
6.18

6.72
7.06

4.37
4.99

5.51
5.91

0.0

2.5

5.0

7.5

(9,6,1) (9,6,2) (9,6,3) (9,6,4)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

11.2

14.42

18.87

26.01

8.97
11.63

15.46

21.42

0

10

20

30

(9,6,1) (9,6,2) (9,6,3) (9,6,4)

S
ca

lin
g

tim
e

(s
/G

B
)

Scale-RS NCScale

(a) Scale-out (b) Scale-in

Fig. 12. Experiment 4: Scaling time (per GB of data blocks), in seconds/GB,
versus s.

see that the scaling times of NCScale and Scale-RS are fairly
stable across different block sizes, and NCScale still shows
performance gains over Scale-RS. Figures 11(c) and 11(d)
show the results for scale-in. The observations are similar as
in scale-out.
Experiment 4 (Impact of s): Finally, we study the scaling
time versus s (the number of new nodes). We fix the gateway
bandwidth as 1 Gb/s and the block size as 64 MB. We also fix
(n,k) = (9,6), which is a default setting in production [22].

Figure 12(a) shows the results for scale-out. Both NCScale
and Scale-RS need to transfer more blocks as s increases,
and the difference of their scaling times decreases. Overall,
NCScale reduces the scaling time of Scale-RS by 16.3-
22.5%. Figure 12(b) shows the results for scale-in. Again, the
performance trends are similar as in scale-out, and NCScale
reduces the scaling time of Scale-RS by 17.65-19.91%.

IX. RELATED WORK

Scaling approaches have been proposed for RAID arrays,
including RAID-0 (i.e., no fault tolerance) [41], [45], RAID-5
(i.e., single fault tolerance) [12], [34], [42], [43], and RAID-
6 [35], [36], [40] (i.e., double fault tolerance). Such scaling
approaches focus on minimizing data block migration and
parity block updates (e.g., GSR [34] for RAID-5, and MDS-
Frame [35] and RS6 [40] for RAID-6), while keeping the same
RAID configuration and tolerating the same number of failures.
However, they are tailored for RAID arrays and cannot tolerate
more than two failures.

The most closely related work to ours is Scale-RS [16],
which addresses the scaling problem in distributed storage
systems that employ RS codes [28] to provide tolerance against
a general number of failures. Wu et al. [38] apply scaling for
Cauchy RS codes [7], but use a centralized node to coordinate
the scaling process. In contrast, both Scale-RS and NCScale
perform scaling in a decentralized manner. However, existing

RAID scaling approaches and Scale-RS cannot minimize the
scaling bandwidth.

Some studies address the efficient transitions between
redundancy schemes. AutoRAID [33] leverages access patterns
to switch between replication for hot data and RAID-5 for cold
data. DiskReduce [10] and EAR [19] address the transition
replication to erasure coding in HDFS [30]. HACFS [39]
extends HDFS to support switching between two erasure codes
to trade between storage redundancy and access performance.
Ring [31] and Elastic RS codes [37] address the transitions
between redundancy schemes for in-memory key-value stores,
and mitigate I/O costs by decoupling block-to-node mappings.

On the theoretical side, Rai et al. [27] present adaptive
erasure codes for switching between the erasure coding
parameters (n,k), and attempt to apply network coding to
storage scaling. However, the study [27] does not provide any
formal information flow graph analysis. Instead, it treats the
scaling problem as the repair problem and solves the scaling
problem with regenerating codes [8] (which achieve optimal
repair). However, both the repair and scaling problems are
different, as the scaling problem changes the erasure coding
parameters (e.g., k increases for scale-out and decreases for
scale-in), while the repair problem keeps the erasure coding
parameters unchanged. Thus, the amount of stored data in
each node (i.e., M/k) changes after scaling, but remains
unchanged after repair. This fundamental difference implies
that the optimal scaling problem cannot be directly mapped
to the optimal repair problem as in [27]. In contrast, our
work is the first formal study on applying network coding
to storage scaling and presents the formal information flow
graph analysis on the minimum scaling bandwidth that is
achievable by random linear codes. Furthermore, NCScale
addresses the practical perspective by presenting systematic
code constructions and prototype evaluation, both of which are
not addressed in [27]. Maturana et al. [20], [21] study code
conversion, which is a similar problem that involves changing
n and k in a distributed storage system. The studies [20], [21]
focus on access optimality that minimizes disk accesses, while
we focus on minimizing network bandwidth.

To summarize, we show how network coding can help
achieve the optimality of storage scaling in terms of network
bandwidth, using both analysis and implementation. Our follow-
up work [14] extends the theoretical analysis of the paper for
more parameters by generalizing (n′,k′) from the condition
n′−k′ = n−k (in this work) to any (n′,k′) (in [14]). Realizing
the findings of [14] in NCScale is our future work.

14

X. CONCLUSIONS

We study how network coding is applied to storage scaling
from both theoretical and applied perspectives. We prove
the minimum scaling bandwidth via the information flow
graph model. We further build NCScale, which implements
network-coding-based scaling for distributed storage. Both
numerical analysis and cloud experiments demonstrate the
scaling efficiency of NCScale.

REFERENCES

[1] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.
[2] corrupted fragment on decode #10. https://github.com/intel/isa-l/issues/

10.
[3] Facebook’s Hadoop 20. https://github.com/facebookarchive/hadoop-20.
[4] HDFS RAID. http://wiki.apache.org/hadoop/HDFS-RAID.
[5] Intel ISA-L. https://github.com/intel/isa-l.
[6] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung. Network information

flow. IEEE Trans. on Information Theory, 46(4):1204–1216, 2000.
[7] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zucker-

man. An XOR-based erasure-resilient coding scheme. Technical Report
TR-95-048, International Computer Science Institute, UC Berkeley, Aug
1995.

[8] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. IEEE Trans. on
Information Theory, 56(9):4539–4551, Sep 2010.

[9] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on network
codes for distributed storage. Proceedings of the IEEE, 99(3):476–489,
Mar 2011.

[10] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. DiskReduce: RAID for
data-intensive scalable computing. In Proc. of ACM PDSW, Nov 2009.

[11] D. Ford, F. Labelle, F. I. Popovici, M. Stokel, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In Proc. of USENIX OSDI, Oct 2010.

[12] S. R. Hetzler. Data storage array scaling method and system with minimal
data movement, Aug. 7 2012. US Patent 8,239,622.

[13] Y. Hu, L. Cheng, Q. Yao, P. P. C. Lee, W. Wang, and W. Chen. Exploiting
combined locality for wide-stripe erasure coding in distributed storage.
In Proc. of USENIX FAST, 2021.

[14] Y. Hu, X. Zhang, P. P. C. Lee, and P. Zhou. Generalized optimal storage
scaling via network coding. In Proc. of IEEE ISIT, 2018.

[15] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure coding in Windows Azure Storage. In Proc. of
USENIX ATC, Jun 2012.

[16] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie. Scale-RS: An efficient
scaling scheme for rs-coded storage clusters. IEEE Trans. on Parallel
and Distributed Systems, 26(6):1704–1717, 2015.

[17] S. Kadekodi, K. Rashmi, and G. R. Ganger. Cluster storage systems gotta
have HeART: Improving storage efficiency by exploiting disk-reliability
heterogeneity. In Proc. of USENIX FAST, 2019.

[18] J. Lacan and J. Fimes. Systematic MDS erasure codes based on
vandermonde matrices. IEEE Communications Letters, 8(9):570–572,
Sep 2004.

[19] R. Li, Y. Hu, and P. P. C. Lee. Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems. In Proc. of
IEEE/IFIP DSN, 2015.

[20] F. Maturana, C. Mukka, and K. V. Rashmi. Access-optimal linear MDS
convertible codes for all parameters. In Proc. of IEEE ISIT, 2020.

[21] F. Maturana and K. V. Rashmi. Convertible codes: New class of codes
for efficient conversion of coded data in distributed storage. In Proc. of
ITCS, 2020.

[22] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly. The
Quantcast File System. In Proceedings of the VLDB Endowment, 2013.

[23] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays
of inexpensive disks (RAID). In Proc. of ACM SIGMOD, 1988.

[24] J. S. Plank. A tutorial on reed-solomon coding for fault-tolerance in
RAID-like systems. Software - Practice & Experience, 27(9):995–1012,
Sep 1997.

[25] J. S. Plank and C. Huang. Tutorial: Erasure coding for storage
applications. Slides presented at FAST-2013: 11th Usenix Conference
on File and Storage Technologies, Feb 2013.

[26] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. OHearn. A performance
evaluation and examination of open-source erasure coding libraries for
storage. In Proc. of USENIX FAST, 2009.

[27] B. K. Rai, V. Dhoorjati, L. Saini, and A. K. Jha. On adaptive distributed
storage systems. In Proc. of IEEE ISIT, 2015.

[28] I. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 1960.

[29] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing elephants: Novel erasure
codes for big data. In Proceedings of the VLDB Endowment, pages
325–336, 2013.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proc. of IEEE MSST, May 2010.

[31] K. Taranov, G. Alonso, and T. Hoefler. Fast and strongly-consistent
per-item resilience in key-value stores. In Proc. of ACM EuroSys, 2018.

[32] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison. In Proc. of IPTPS, Mar 2002.

[33] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
hierarchical storage system. ACM Trans. on Computer Systems, 14(1):108–
136, Feb 1996.

[34] C. Wu and X. He. GSR: A global stripe-based redistribution approach
to accelerate RAID-5 scaling. In Proc. of IEEE ICPP, 2012.

[35] C. Wu and X. He. A flexible framework to enhance RAID-6 scalability
via exploiting the similarities among MDS codes. In Proc. of IEEE
ICPP, 2013.

[36] C. Wu, X. He, J. Han, H. Tan, and C. Xie. SDM: A stripe-based data
migration scheme to improve the scalability of RAID-6. In Proc. of
IEEE CLUSTER, 2012.

[37] S. Wu, Z. Shen, and P. P. C. Lee. Enabling i/o-efficient redundancy
transitioning in erasure-coded KV stores via elastic Reed-Solomon codes.
In Proc. of IEEE SRDS, 2020.

[38] S. Wu, Y. Xu, Y. Li, and Z. Yang. I/O-efficient scaling schemes for
distributed storage systems with CRS codes. IEEE Trans. on Parallel
and Distributed Systems, 27(9):2639–2652, Sep 2016.

[39] M. Xia, M. Saxena, M. Blaum, and D. A. Pease. A tale of two erasure
codes in HDFS. In Proc. of USENIX FAST, 2015.

[40] G. Zhang, K. Li, J. Wang, and W. Zheng. Accelerate RDP RAID-6
scaling by reducing disk I/Os and XOR operations. IEEE Trans. on
Computers, 64(1):32–44, 2015.

[41] G. Zhang, J. Shu, W. Xue, and W. Zheng. SLAS: An efficient approach
to scaling round-robin striped volumes. ACM Trans. on Storage, 3(1):3,
2007.

[42] G. Zhang, W. Zheng, and K. Li. Rethinking RAID-5 data layout for
better scalability. IEEE Trans. on Computers, 63(11):2816–2828, 2014.

[43] G. Zhang, W. Zheng, and J. Shu. ALV: A new data redistribution
approach to raid-5 scaling. IEEE Trans. on Computers, 59(3):345–357,
2010.

[44] X. Zhang, Y. Hu, P. P. Lee, and P. Zhou. Toward optimal storage
scaling via network coding: From theory to practice. In Proc. of IEEE
INFOCOM, 2018.

[45] W. Zheng and G. Zhang. FastScale: Accelerate RAID scaling by
minimizing data migration. In Proc. of USENIX FAST, 2011.

Yuchong Hu received the Ph.D. degree in Computer Software and Theory
from University of Science and Technology of China in 2010. He is now a
Professor of the School of Computer Science and Technology at Huazhong
University of Science and Technology. His research interests are dependability
in distributed systems, including cloud computing and data centers.

Xiaoyang Zhang received the Ph.D. degree in Computer Science and
Technology from Huazhong University of Science and Technology in 2020.
He is now a senior engineer of Huawei Technology Co., Ltd. His research
interests include erasure codes, storage scaling and network coding.

Patrick P. C. Lee received the Ph.D. degree in Computer Science from
Columbia University in 2008. He is now an Associate Professor of the
Department of Computer Science and Engineering at the Chinese University
of Hong Kong. His research interests are in various applied/systems topics
including storage systems, distributed systems and networks, and cloud
computing.

Pan Zhou received the Ph.D. degree from the School of Electrical and
Computer Engineering, Georgia Institute of Technology in 2011. He is now
a Professor of the School of Cyber Science and Engineering at Huazhong
University of Science and Technology. His research interests are security and
privacy, big data analytics, machine learning, and information networks.

http://aws.amazon.com/ec2/
https://github.com/intel/isa-l/issues/10
https://github.com/intel/isa-l/issues/10
https://github.com/facebookarchive/hadoop-20
http://wiki.apache.org/hadoop/HDFS-RAID
https://github.com/intel/isa-l

15

APPENDIX

A. Proof of Theorem 3

We present the details of the proof of Theorem 3.
Consider P1 and P2. According to Algorithm 2, the k+ s

data blocks in the wth new stripe, where 0≤ w≤ nk(n+ s)−1,
are composed of the k data blocks of the wth existing stripe
in PG and s data blocks in Dw. Each new parity block is
computed by adding (i) the existing parity block of the wth

stripe and (ii) the parity delta block that is formed by the linear
combinations of the s data blocks in Dw. Due to the property of
the Vandermonde matrix (Section II-A), the new parity blocks
become encoded by Vandermonde-based RS codes over k+ s
data blocks. Thus, both MDS and systematic properties are
maintained. P1 and P2 hold.

Consider P3. We count the number of parity blocks stored in
each node after scaling. Algorithm 2 moves nk(n+ s)−nk(n−
s(n−k−1)) = nks(n−k) parity blocks from existing nodes to
the s new nodes (line 11). Thus, each of the s new nodes has
1
s · nks(n− k) = nk(n− k) parity blocks, while each of the n
existing nodes has 1

n ·(nk(n+s)(n−k)−nks(n−k))= nk(n−k)
parity blocks. Thus, all n+ s nodes have the same number of
parity blocks (and hence data blocks). P3 holds.

Consider P4. According to Algorithm 2, each existing node
Xi can independently generate and send parity delta blocks of
the wth stripe, simply by checking if i is equal to w mod n. No
centralized coordination across all existing nodes is necessary.
P4 holds.

Based on the above analysis, we provide the following
corollary on the tightness of NCScale in (n,k,s)-scaling.

B. Scale-in for n− k = 1

We summarize the steps of NCScale in (n,k,−s)-scaling for
n− k = 1 and present the scaling bandwidth of NCScale.

For n− k = 1, similar to scale-out (Section IV), NCScale
operates on a collection of n(k−s)(n−s) stripes in n nodes that
have nk(k− s)(n− s) data blocks in total, and forms nk(n− s)
stripes over n−s nodes, with the same number of nk(k−s)(n−
s) data blocks in total.

Unlike scale-out, NCScale classifies the n(k − s)(n− s)
stripes into two groups. The first group, denoted by DG′,
contains n−s

n · n(k− s)(n− s) stripes, in which these stripes
have only data blocks in the removed nodes. NCScale uses
each k− s of (k− s)(n− s)2 data blocks in each removed node
to generate a new parity block. Then, NCScale sends these
data blocks and the generated parity block to the surviving
nodes. NCScale also uses these data blocks to update the
existing parity blocks in the surviving nodes locally. In other
words, there will be a total of s(k−s)(n−s)2+s(n−s)2 blocks
transferred over the network in DG′. The second group, denoted
by PG′, contains the remaining s

n ·n(k− s)(n− s) stripes, in
which their parity blocks are in the removed nodes. These
s(k− s)(n− s) parity blocks are sent to the surviving nodes
and are updated by s(k− s)(n− s) data blocks in the surviving
nodes, and every k− s of these s(k− s)(n− s) data blocks are
then sent to a specific surviving node to generate new parity
blocks. The remaining (s−1) · s(k− s)(n− s) data blocks in
the removed nodes are the same as the data blocks scaling

Algorithm 3 Prepare for Scale-in when n− k = 1
1: DG′ = n−s

n · n(k− s)(n− s) stripes in which these stripes have
only data blocks in Y ′1,Y

′
2, . . . ,Y

′
s

2: PG′ = s
n ·n(k− s)(n− s) stripes in which their parity blocks are

in Y ′0,Y
′
1, . . . ,Y

′
s−1

3: for j = 0 to s−1 do
4: D j = all data blocks in each Y ′j
5: end for

in DG′, and send (s− 1) · s(k− s)(n− s) + (s− 1) · s(n− s)
blocks to surviving nodes. In other words, there will be a total
of 2s(k− s)(n− s)+ (s−1) · s(k− s)(n− s)+ (s−1) · s(n− s)
blocks transferred over the network in PG′.

NCScale ensures that for each of the n(k− s)(n− s) existing
stripes, all the existing parity blocks can be updated from data
blocks in the same node. In general, the scaling bandwidth of
NCScale per nk(n− s) new stripes formed after scaling is:

s(n− s)((n− s)(n+1)−2). (9)

Algorithmic details: We present the algorithmic details of
(n,k,−s)-scaling (n− k = 1) in NCScale.
• Prepare: NCScale prepares the sets of data and parity blocks
to be processed in the scaling process, as shown in Algorithm 3.
It identifies the groups DG′ and PG′ (lines 1-2), where DG′
contains n−s

n ·n(k− s)(n− s) stripes who have only data blocks
in the removed nodes, and PG′ contains the remaining s

n ·n(k−
s)(n− s) stripes whose parity blocks are in the removed nodes.
In addition, we let all data blocks of each removed node be in
D′j (lines 3-5).
• Compute, Send, and Update: After preparation, NCScale
computes new parity blocks for the new stripes, sends blocks
to the n− s surviving nodes, and removes obsolete blocks in
s removed nodes. Algorithm 4 shows the details. NCScale
generates new parity blocks for the new stripes from the data
blocks in the removed node (lines 1-2), sends these data blocks
and their generated parity blocks to the surviving nodes who
have parity blocks within the same existing stripe (line 3),
and uses these data blocks to locally update the parity blocks
in the existing stripes (lines 4-5). Next, NCScale sends the
existing parity blocks to the surviving nodes whose data blocks
within the existing stripe update these parity blocks locally
(lines 6-7), generates the new parity blocks for the new stripes
by collecting these data blocks that are used to update existing
parity blocks (lines 8-9). Finally, each Y ′j (0≤ j≤ s−1) deletes
all its blocks (lines 10-12).

C. Scale-in for n− k > 1

We summarize the steps of NCScale in (n,k,−s)-scaling for
n− k > 1 and present the scaling bandwidth of NCScale.

For n−k > 1, NCScale also operates on a collection of n(k−
s)(n− s) stripes in n nodes and forms nk(n− s) stripes over
n−s nodes. Different from the n−k = 1, NCScale classifies the
n(k− s)(n− s) stripes into n groups, each of which is denoted
by Gv (0≤ v≤ n−1). Each of groups contains (k− s)(n− s)
stripes with the same layout (i.e., the parity blocks are in
the same collection of nodes), and the stripes of a group can
be divided into n− s sets, each of which has k− s stripes

16

Algorithm 4 Compute, Send, and Update for Scale-in when
n− k = 1

1: for j = 0 to s−1 do
2: Y ′j generates new parity blocks from D j in DG′

3: Y ′j sends the generated parity blocks and D j in DG′ to
n− s surviving nodes within the same existing stripe

4: X0,X1, . . . ,Xn−s−1 update parity blocks from D j in DG′
5: end for
6: for j = 0 to s−1 do
7: Y ′j sends the parity blocks in PG′ to n− s surviving nodes
8: X0,X1, . . . ,Xn−s−1 generates new parity blocks by D j in

DG′
9: end for

10: for j = 0 to s−1 do
11: Y ′j deletes all its blocks
12: end for

and is denoted by Su (0≤ u≤ n(n− s)−1). Each of sets can
independently complete the scaling process, which scales from
k− s stripes with k(k− s) data blocks to k stripes with the
same number of k(k− s) data blocks.

For the k(k−s)(n−s) data blocks of each removed node, the
k− s data blocks of each set Su (0≤ u≤ n(n− s)−1) generate
n−k new parity blocks, which are then distributed across n−s
surviving nodes along with these data blocks as a new stripe.
Such that, there will be s · (k(k− s)(n− s)+ k(n− k)(n− s))
blocks transferred over the network.

NCScale sends the remaining (n− k)(k− s)(n− s) parity
blocks of each removed node to n− s surviving nodes, while
ensures the uniform data and parity distributions. Specifically,
for each set of the removed node, NCScale sends k− s parity
blocks to a specific surviving node, which has k− s data
blocks in the same set called replaced-blocks. These k− s
replaced-blocks generate n− k new parity blocks, which are
then distributed across n− s surviving nodes along with these
data blocks as a new stripe. Note that, due to the parity
blocks are generated in a surviving node, there has one block
needs not to be sent for each new stripe. So there will be
s · (n− k)(k− s)(n− s) + s · (n− k)(n− s)(n− s− 1) blocks
transferred over the network.

NCScale also needs to transfer parity delta blocks to update
existing parity blocks. In the n(k− s)(n− s) stripes before
scaling, there are (n−k) ·n(k− s)(n− s) existing parity blocks
in total, which means that NCScale needs to transfer (n−
k) ·n(k− s)(n− s) parity delta blocks to update these existing
parity blocks. Note that, the removed nodes in the first k−
s+ 1 groups only have data blocks. So we can adjust the
placements of data blocks in new stripes, and generate parity
delta blocks to update the existing parity blocks locally. There
are min(n− k,k− s) parity blocks of each set can be update
locally from the parity delta blocks generated from the same
node. For the remaining n− k+ s− 1 groups, we adjust the
placements of data and parity blocks in new stripes to maintain
the uniform data and parity distributions. We find that there
are at least n− s and n− s+ s ·min(n−k,k− s) existing parity
blocks in the first and the last surviving node can be locally
updated. In other words, there will be min(n−k,k− s)(k− s+
1)(n− s)+2(n− s)+ s ·min(n− k,k− s) parity blocks which
can be locally updated in total. Such that, there will be at

Algorithm 5 Prepare for Scale-in when n− k > 1
1: for w = 0 to n(k− s)(n− s)−1 do
2: u = w mod n+nb w

n(k−s)c
3: wth stripe is put into set Su
4: end for

most (n− k) ·n(k− s)(n− s)−min(n− k,k− s)(k− s+1)(n−
s)−2(n− s)− s ·min(n− k,k+ s) blocks transferred over the
network.

In general, the scaling bandwidth of NCScale per nk(n− s)
new stripes formed after scaling is:

(n− s)((n− k)(nk+ sk−2s2− s)+ sk(n− s)−2)
−min(n− k,k− s)((n− s)(k− s)+n).

(10)

Algorithmic details: We present the algorithmic details of
(n,k,−s)-scaling (n− k > 1) in NCScale.
• Prepare: NCScale prepares the sets of data and parity blocks
to be processed in the scaling process and identifies the sets
Su (0≤ u≤ n(n+ s)−1), as shown in Algorithm 5.
• Compute, Send, and Update: After preparation, NCScale
computes new parity blocks for the new stripes, sends blocks
to the n− s surviving nodes, and removes obsolete blocks in
s removed nodes. Algorithm 6 shows the details. To compute
the new parity blocks, each removed node uses the k− s data
blocks of each Su (0≤ u≤ n(n− s)−1) to compute n−k new
parity blocks (line 3).

After computing the new parity blocks, NCScale sends
blocks to the surviving nodes (lines 4-34) as follows. First,
for each Su while 0 ≤ (u mod n) ≤ (n− s− 1), each Y ′j
(0≤ j≤ s−1) sends all k−s data blocks in Su to k−s surviving
nodes and sends all n− k generated new parity blocks to the
remaining n−k surviving nodes (lines 4-20). Then, for each Su
while (n− s)≤ (u mod n)≤ n−1, each Y ′j (0≤ j≤ s−1) first
sends all its parity blocks to the n− s surviving nodes while
maintaining the uniform data and parity block distribution; the
k− s parity blocks of each surviving node have k− s replaced
blocks, and these replaced blocks are used to compute n− k
new parity blocks. The replaced blocks and the generated
parity blocks are then distributed across the n− s surviving
nodes (lines 21-30). Next, the n− k existing parity blocks
of each existing stripe can be computed from parity delta
blocks that are all generated by the same node, so for each Su
(0≤ u≤ n(n−s)−1), each of the k−s surviving nodes (which
receive data blocks) computes n− k parity delta blocks by s
received data blocks which are sent from the same existing
stripe (lines 31-33). Finally, each Y ′j (0≤ j ≤ s−1) deletes all
its blocks (lines 34-36).

17

Algorithm 6 Compute, Send, and Update for Scale-in when
n− k > 1

1: for j = 0 to s−1 do
2: for u = 0 to n(n− s)−1 do
3: Y ′j generates n−k new parity blocks from k−s data blocks

in Su
4: for i′ = 0 to k− s−1 do
5: if (u mod n)≤ n− s−1 then
6: i = (u+ i′) mod (n− s)
7: else
8: i = (u+ i′+ b x

n c) mod (n− s)
9: end if

10: Y ′j sends i′th data block in Su to X ′i
11: end for
12: for i′ = 0 to n− k−1 do
13: if (u mod n)≤ n− s−1 then
14: i = (u+ k+ s+ i′) mod (n− s)
15: else
16: i = (u+ k− s+ i′+ b x

n c) mod (n− s)
17: end if
18: Y ′j sends i′th generated new parity block to X ′i
19: end for
20: end for
21: for u′ = 0 to (n− k)(n− s)−1 do
22: if b u′

n−k c ≤ (k− s−1) then
23: i = (u′ mod (n− k)+ b u′

n−k c) mod (n− s)
24: else
25: i = ((u′ − (b u′

n−k c − (k − s − 1))) mod (n − k) +
b u′

n−k c) mod (n+ s)
26: end if
27: Y ′j sends u′th set of parity blocks to X ′i
28: Y ′j generates n− k new parity blocks from k− s replaced

blocks, and sends new parity blocks and replaced blocks across
n− s surviving nodes.

29: end for
30: end for
31: for i = 0 to n− s−1 do
32: X ′i generates n− k parity delta blocks from k− s data blocks

in each set, and sends parity delta blocks to surviving nodes for
updating existing parity blocks

33: end for
34: for j = 0 to s−1 do
35: Y ′j deletes all its blocks
36: end for

	Introduction
	Problem
	Erasure Coding Basics
	Scaling
	Discussion of Existing Work on Properties P1–P4

	Model
	Model for (n,k,s)-scaling
	Model for (n,k,-s)-scaling
	Discussion

	NCScale: Scale-out
	Main Idea
	Preliminaries
	Algorithmic Details
	Proof of Correctness

	NCScale: Scale-in
	Scale-in for n - k = 1
	Scale-in for n - k > 1

	Implementation
	HDFS Overview
	Integration of NCScale into HDFS-RAID

	Numerical Analysis
	Performance Evaluation
	Setup
	Results

	Related Work
	Conclusions
	References
	Biographies
	Yuchong Hu
	Xiaoyang Zhang
	Patrick P. C. Lee
	Pan Zhou

	Appendix
	Proof of Theorem 3
	Scale-in for n-k=1
	Scale-in for n-k>1

