
9

The Design and Implementation of a Rekeying-Aware Encrypted
Deduplication Storage System

CHUAN QIN, The Chinese University of Hong Kong
JINGWEI LI, Center for Cyber Security, University of Electronic Science and Technology of China
PATRICK P. C. LEE, The Chinese University of Hong Kong

Rekeying refers to an operation of replacing an existing key with a new key for encryption. It renews security
protection to protect against key compromise and enable dynamic access control in cryptographic storage.
However, it is non-trivial to realize efficient rekeying in encrypted deduplication storage systems, which use
deterministic content-derived encryption keys to allow deduplication on ciphertexts. We design and imple-
ment a rekeying-aware encrypted deduplication (REED) storage system. REED builds on a deterministic
version of all-or-nothing transform, such that it enables secure and lightweight rekeying, while preserving
the deduplication capability. We propose two REED encryption schemes that trade between performance and
security and extend REED for dynamic access control. We implement a REED prototype with various perfor-
mance optimization techniques and demonstrate how we can exploit similarity to mitigate key generation
overhead. Our trace-driven testbed evaluation shows that our REED prototype maintains high performance
and storage efficiency.

CCS Concepts: � Information systems → Cloud based storage; Deduplication; � Security and
privacy → Management and querying of encrypted data;

Additional Key Words and Phrases: Encryption, deduplication, rekeying, cloud storage

ACM Reference Format:
Chuan Qin, Jingwei Li, and Patrick P. C. Lee. 2017. The design and implementation of a rekeying-aware
encrypted deduplication storage system. ACM Trans. Storage 13, 1, Article 9 (February 2017), 30 pages.
DOI: http://dx.doi.org/10.1145/3032966

1. INTRODUCTION

The data explosion has raised a scalability challenge to cloud storage management. For
example, Aberdeen Research [Csaplar 2011] reports that the average size of backup
data for a medium-size enterprise is 285TB and, meanwhile, faces an annual growth

An earlier version of this article appeared in the 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2016) [Li et al. 2016]. In this journal version, we exploit similarity
to mitigate key generation overhead (Section 5) and revise our experiments to address this new feature
(Section 7). We also include one more real-world dataset (virtual machine images) in our experiments.
This work was supported in part by grants GRF CUHK413813 and CRF C7036-15G from HKRGC, Cisco
University Research Program Fund (CG#593822) from Silicon Valley Community Foundation, Fundamental
Research Funds for the Central Universities (ZYGX2016KYQD115), and National Natural Science Founda-
tion of China (61602092).
Authors’ addresses: C. Qin and P. P. C. Lee, Department of Computer Science and Engineering, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong; emails: {cqin, pclee}@cse.cuhk.edu.hk; J. Li
(Corresponding author), Center for Cyber Security, University of Electronic Science and Technology of China,
Chengdu, Sichuan, China; email: jwli@uestc.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1553-3077/2017/02-ART9 $15.00
DOI: http://dx.doi.org/10.1145/3032966

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

http://dx.doi.org/10.1145/3032966
http://dx.doi.org/10.1145/3032966

9:2 C. Qin et al.

rate of about 24–27%. Deduplication is one plausible solution that makes storage
management scalable. Its idea is to eliminate the storage of redundant messages that
have identical content by keeping only one message copy and referring other redundant
messages to the copy through small-size pointers. Deduplication is shown to effectively
reduce storage space for some workloads, such as backup data [Wallace et al. 2012].
It has also been deployed in today’s commercial cloud storage services (e.g., Dropbox,
Google Drive, Bitcasa, Mozy, and Memopal) for saving maintenance costs [Harnik et al.
2010].

To protect against content leakage of outsourced data, cloud users often want to
store encrypted data in the cloud. Traditional symmetric encryption is incompatible
with deduplication: It assumes that users encrypt messages with their own distinct
keys, and hence identical messages of different users will lead to distinct ciphertexts
and prohibit deduplication. Bellare et al. [2013b] define a cryptographic primitive called
message-locked encryption (MLE), which derives the encryption key from the message
itself through a uniform derivation function, so the same message deterministically
returns the same ciphertext through symmetric encryption. One well-known instan-
tiation of MLE is convergent encryption (CE) [Douceur et al. 2002], which uses the
cryptographic hash of the message content as the derivation function. Storage systems
that realize CE or MLE have been extensively studied and evaluated in the literature
(e.g., Adya et al. [2002], Cox et al. [2002], Storer et al. [2008], Wilcox-O’Hearn and
Warner [2008], Anderson and Zhang [2010], and Bellare et al. [2013a]). We collectively
refer to them as encrypted deduplication storage systems, which encrypt the stored
data while preserving the deduplication capability.

However, existing encrypted deduplication storage systems do not address rekeying,
an operation that replaces an existing key with a new key so as to renew security
protection. Rekeying is critical not only for protecting against key compromise that
has been witnessed in real-life accidents [Debian Security Advisory 2008; Kaminsky
2011; U.S. Computer Emergency Readiness Team 2014] but also for enabling dynamic
access control to revoke unauthorized users from accessing data in cryptographic stor-
age [Kallahall et al. 2003; Fu et al. 2006; Backes et al. 2006; Puttaswamy et al. 2011].
However, realizing efficient rekeying in encrypted deduplication storage is challeng-
ing. Since the encryption key of each message in MLE is obtained from a deterministic
derivation function (e.g., a hash function), if we renew the key by renewing the deriva-
tion function, any newly stored message encrypted by the new key can no longer be
deduplicated with the existing identical message; if we re-encrypt all existing mes-
sages with the new key obtained from the renewed derivation function, there will be
tremendous performance overheads for processing large quantities of messages.

This article presents a rekeying-aware encrypted deduplication (REED) storage sys-
tem that aims for secure and lightweight rekeying, while preserving identical content
for deduplication. REED augments MLE with the idea of all-or-nothing transform
(AONT) [Rivest 1997], which transforms a secret into a package, such that the secret
cannot be recovered without knowing the entire package. REED constructs a package
based on a deterministic variant of AONT [Li et al. 2015] and encrypts a small part of
the package with a key that is subject to rekeying, while the remaining large part of the
package still preserves identical content for deduplication. We show that this approach
enables secure and lightweight rekeying and simultaneously maintains deduplication
effectiveness. The contributions of this article are summarized as follows.

—We propose two encryption schemes for REED, namely basic and enhanced, that
trade between performance and security. Both schemes enable lightweight rekeying,
while the enhanced scheme is resilient against key leakage through a more expensive
encryption than the basic scheme.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:3

—We extend REED with dynamic access control. We demonstrate how REED integrates
existing primitives, namely ciphertext-policy attribute-based encryption (CP-ABE)
[Bethencourt et al. 2007] and key regression [Fu et al. 2006], to control the access
privileges to different files.

—We exploit the similarity property that is commonly found in backup workloads
[Bhagwat et al. 2009] to mitigate the overhead of MLE key generation, while pre-
serving deduplication effectiveness.

—We implement a proof-of-concept REED prototype. Our REED prototype leverages
various performance optimization techniques to mitigate both computational and
I/O overheads.

—We conduct extensive trace-driven evaluation on our REED prototype in a LAN
testbed. REED shows lightweight rekeying. It only takes 3.4s to re-encrypt an 8GB
file with a new key (in active revocation) and maintains high storage saving (e.g.,
higher than 97%) in real-world datasets. We also demonstrate the effectiveness of
exploiting similarity in mitigating key generation overhead.

The source code of our REED prototype is now available for download at the following
website: http://ansrlab.cse.cuhk.edu.hk/software/reed.

The remainder of the article proceeds as follows. Section 2 motivates the need of
rekeying for encrypted deduplication storage. Section 3 defines our threat model and
security goals. Section 4 presents the design of REED. Section 5 explains how we exploit
similarity in REED to mitigate MLE key generation overhead. Section 6 presents the
implementation details of REED. Section 7 presents our evaluation results. Section 8
reviews related work, and, finally, Section 9 concludes the article.

2. BACKGROUND AND MOTIVATION

2.1. Encrypted Deduplication Storage

Deduplication exploits content similarity to achieve storage efficiency. Each message
is identified by a fingerprint, computed as a cryptographic hash of the content of the
message. We assume that two messages are identical (distinct) if their fingerprints
are identical (distinct) and that the fingerprint collision of two distinct messages has
a negligible probability in practice [Black 2006]. Deduplication stores only one copy of
identical messages and refers any other identical message to the copy using a small-
size pointer. In this article, we focus on chunk-level deduplication, which divides file
data into fixed-size or variable-size chunks and removes duplicates at the granularity
of chunks. We use the terms “messages” and “chunks” interchangeably to refer to the
data units operated by deduplication.

Message-locked encryption (MLE) [Bellare et al. 2013b] is a cryptographic primitive
that provides confidentiality guarantees for deduplication storage. It applies symmetric
encryption to encrypt a message with a key called the MLE key that is derived from the
message itself to produce a deterministic ciphertext. Two identical (distinct) messages
will lead to identical (distinct) ciphertexts, so deduplication remains plausible. A special
case of MLE is convergent encryption (CE) [Douceur et al. 2002], which directly uses
the message’s fingerprint as the MLE key.

However, MLE (including CE) is inherently vulnerable to brute-force attacks. Sup-
pose that a target message is known to be drawn from a finite space. Then an adversary
can sample all messages, derive the MLE key of each message, and compute the cor-
responding ciphertexts. If one of the computed ciphertexts equals the ciphertext of
the target message, then the adversary can deduce the target message. Thus, MLE
achieves security only for unpredictable messages [Bellare et al. 2013b], meaning that
the number of candidate messages is so large that the adversary cannot feasibly check
all messages against the ciphertexts.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

http://ansrlab.cse.cuhk.edu.hk/software/reed

9:4 C. Qin et al.

To address the unpredictability assumption, DupLESS [Bellare et al. 2013a] imple-
ments server-aided MLE. It uses a dedicated key manager to generate an MLE key
for a message based on two inputs: the message’s fingerprint and a systemwide secret
that is independent of the message content. If the key manager is secure, then the
ciphertexts appear to be encrypted with the keys that are derived from a random key
space. This provides confidentiality guarantees even for predictable messages. Even
if the key manager is compromised, DupLESS still achieves confidentiality for un-
predictable messages. To make MLE key generation robust, DupLESS introduces two
mechanisms. First, it uses the oblivious pseudo-random function (OPRF) [Goldwasser
and Bellare 2008] to “blind” a fingerprint to be processed by the key manager, such that
the key manager can return the MLE key without knowing the original fingerprint.
Second, the key manager rate-limits the key generation requests to protect against
online brute-force attacks.

In this work, we focus on encrypted deduplication storage based on server-aided
MLE. Like DupLESS, we deploy a dedicated key manager that is responsible for MLE
key generation to be secure against brute-force attacks.

2.2. Rekeying

We define rekeying as the generic process of updating an old key to a new key in
encrypted storage, such that the old key will be revoked, and all subsequently stored
files will be encrypted by the new key. We argue that rekeying is critical for renewing
security protection for encrypted deduplication storage in two aspects: key protection
and access revocation.

Key protection. There have been real-life cases that indicate how adversaries make
key compromise plausible through various system vulnerabilities, such as design flaws
[Debian Security Advisory 2008; Sotirov et al. 2008; Kaminsky 2011] and programming
errors [U.S. Computer Emergency Readiness Team 2014]. These threats also apply to
storage systems, since adversaries can compromise file encryption keys and recover
all encrypted files. In addition to key compromise, every cryptographic key in use
is associated with a lifetime and needs to be replaced once the key reaches the end
of its lifetime [Barker et al. 2012]. Rekeying is thus critical for key protection. By
immediately updating the compromised or expired keys, we ensure that the stored
files remain protected by the new keys.

Since deduplication implies the sharing of data across multiple files and users, rekey-
ing in encrypted deduplication storage is more critical than traditional encrypted stor-
age without deduplication. In particular, the security of a message depends on its MLE
key. The leakage of the MLE key may imply the compromise of multiple files that share
the corresponding message.

Access revocation. Organizations increasingly outsource large-scale projects to cloud
storage providers for efficient management. We consider a special case in genome re-
search. Genome researchers increasingly leverage cloud services for genome data stor-
age due to the huge volume of genome datasets [Stein 2010]. Some cloud services, such
as Google Genomics [Google 2016] and Amazon [Amazon 2014], have also set up spe-
cific platforms for organizing and analyzing genome information. With deduplication,
the storage of genome data can be significantly reduced, for example, by 83% in real
deployment [NetApp 2008]. However, some genome datasets, such as those produced by
disease sequencing projects, are potentially identifiable and must be protected. Thus,
dataset owners must properly protect the deduplicated genome data with encryption
and multiple dimensions of access control [National Institutes of Health 2015]. When
a researcher leaves a genome project, it is necessary to revoke the researcher’s access
privilege to the genome data.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:5

Rekeying can be used to revoke users’ access rights by re-encrypting ciphertexts
(e.g., the genome data in the previous example) with new keys and making old keys
inactive. There are two revocation approaches for existing stored data [Backes et al.
2006]: (i) lazy revocation, in which re-encryption of a stored file is deferred until the next
update to the file, and (ii) active revocation, in which the stored files are immediately
re-encrypted with the new key for up-to-date protection at the expense of incurring
additional performance overheads.

2.3. Challenges

Enabling rekeying in encrypted deduplication storage is a non-trivial issue. MLE keys
are often derived from messages via a global key derivation function, such as a hash
function in CE [Douceur et al. 2002] or a keyed pseudo-random function in DupLESS
[Bellare et al. 2013a]. A straightforward rekeying approach is to update the key deriva-
tion function directly. However, this approach compromises deduplication. Specifically,
a new message cannot be deduplicated with the existing identical message, because the
messages are now encrypted with different MLE keys that are derived from different
derivation functions. If we re-encrypt all existing messages with new MLE keys, then
the re-encryption overhead will be significant due to the high volume of stored data.

There are other possible rekeying approaches, but we argue that they have lim-
itations. One approach is based on layered encryption [Anderson and Zhang 2010;
Rahumed et al. 2011]. Each deduplicated message is first encrypted with its MLE key,
and the MLE key is further encrypted with a master key associated with each user. The
security now builds on the master key. Rekeying can simply be done by updating the
master key and re-encrypting the MLE key with the new master key. This approach
does not change the MLE key, so any new message can be deduplicated with the ex-
isting identical message. Its drawback is that every ciphertext remains encrypted by
the same MLE key. If an MLE key is leaked, then the corresponding message can be
identified. Another approach is proxy re-encryption [Ateniese et al. 2006], which trans-
forms a ciphertext encrypted with an old key into another ciphertext encrypted with a
new key. However, proxy re-encryption is a public-key primitive and is inefficient when
encrypting large-size messages.

3. OVERVIEW

REED is a rekeying-aware encrypted deduplication storage system designed for a
single enterprise or organization in which multiple users want to outsource storage to
a remote third-party cloud provider. It deploys a remote server to run deduplication
on the storage workloads and stores the unique data after deduplication in the cloud
provider. We target the workloads that have high content similarity, such as backup
or genome data (Section 2.2), so deduplication can effectively remove duplicates and
improve storage efficiency.

REED aims to achieve secure and lightweight rekeying, while preserving dedupli-
cation capability. In particular, it enables dynamic access control by controlling which
group of users can access a file. It supports both lazy and active revocations (Sec-
tion 2.2); for the latter, the stored files can be re-encrypted with low overhead.

3.1. Architecture

Figure 1 presents an overview of the architecture of REED. REED follows a client-
server architecture. It is composed of different entities, as described below.

Client. In each user machine, we deploy a REED client (or client for short) as a
software layer that provides a secure interface for a user to access and manage files in
remote storage. To perform an upload operation, the client takes a file (e.g., a snapshot

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:6 C. Qin et al.

Fig. 1. REED architecture.

of a file system folder) as an input from its co-located user machine. It divides the file
data into chunks, encrypts them, and uploads the encrypted chunks to the cloud. We
assume that the file has a sufficiently large size (e.g., GB scale) and can be divided into
a large number of chunks of small sizes (e.g., KB scale).

We support both fixed-size and variable-size chunking schemes. We implement
variable-size chunking using Rabin fingerprinting [Rabin 1981], which takes the min-
imum, maximum, and average chunk sizes as inputs. We fix the minimum and max-
imum chunk sizes at 2KB and 16KB, respectively, and vary the average chunk size
in our evaluation. In file downloads, the client reassembles collected chunks into the
original file.

Key manager. As in DupLESS [Bellare et al. 2013a], REED deploys a key manager
to provide an interface for a client to access MLE keys for encrypted storage. Each
client communicates with the key manager to perform necessary cryptographic opera-
tions. We implement server-aided MLE as in DupLESS to protect all chunks, including
predictable and unpredictable ones, as well as the OPRF-based MLE key generation
protocol (Section 2.1). We elaborate the key generation details in Section 5.1. Other ap-
proaches, such as blinded Boneh-Lynn-Shacham (BLS) signatures [Boneh et al. 2001],
can be used to implement MLE key generation. This work considers a single key
manager, while our design can be generalized to multiple key managers for improved
availability [Duan 2014].

Server. REED performs server-side deduplication. In the cloud, we deploy a REED
server (or server for short) for storage management. The server maintains a fingerprint
index that keeps track of all chunks that have been uploaded to the cloud. For a given
received chunk, the server checks by fingerprint if the chunk has already been uploaded
by the same or a different client. If the chunk is new, then it stores the chunk and inserts
the chunk fingerprint to the index. We can deploy multiple servers for scalability.

Storage backend. Finally, the server stores the encrypted chunks and metadata in
the storage backend of the cloud. For example, if we choose Amazon’s cloud services,
we can rent an EC2 virtual machine for a REED server, and use S3 as the storage
backend.

3.2. Threat Model

We consider an honest-but-curious adversary that aims to learn the content of the
files in outsourced storage. The adversary can take the following actions. First, it can
compromise the cloud (including any hosted server and the storage backend) to have full
access to all stored chunks and keys. Also, it can collude with a subset of unauthorized
or revoked clients and attempt to learn the files that are beyond the access scope of the

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:7

colluded clients. Furthermore, it can monitor the activities of the clients, identify the
MLE keys returned by the key manager, and attempt to extract the files owned by the
monitored clients.

Our threat model makes the following assumptions. We assume the communication
between a client and the key manager is encrypted and authenticated (e.g., using
SSL/TLS) to defend against any eavesdropping activity in the network. Each client
and the key manager adopt oblivious key generation [Bellare et al. 2013a], so the
key manager cannot infer the fingerprint information and learn the message content.
We also assume that the key manager is deployed in a fully protected zone, and an
adversary cannot compromise or gain access to the key manager.

We do not consider the threat in which an adversary launches online brute-force
attacks from a compromised client against the key manager, since the key manager can
rate-limit the query rate of each client [Bellare et al. 2013a]. REED can be deployed
in conjunction with remote data checking [Ateniese et al. 2007; Juels and Kaliski
2007] to efficiently check the integrity of outsourced files against malicious corruptions.
REED performs server-side deduplication to protect against the side-channel attacks
mentioned in Harnik et al. [2010] and Halevi et al. [2011].

3.3. Design Goals

Given the threat model, REED focuses on the following design goals.

—Confidentiality: REED protects outsourced chunks, such that the chunk contents
are kept secret against any honest-but-curious adversary (e.g., any unauthorized
user or cloud). In addition, REED prevents revoked users from accessing any new
file or update.

—Integrity: REED ensures chunk-level integrity of outsourced files. When a client
downloads a chunk, it can check if the chunk is intact or corrupted.

—Practical rekeying: REED enables rekeying and dynamic access control, such that
it can control which group of users can access a file. It supports both lazy and active
revocations with low overhead; for the latter, the stored files can be efficiently re-
encrypted. REED also allows an unlimited number of rekeying operations.

—High storage efficiency: REED achieves storage efficiency by deduplication. In
addition, it introduces small storage overhead due to keys or metadata.

—High encryption performance: REED introduces limited encryption overhead
when compared to the network transmission via the cloud.

4. REED DESIGN

We now present the design details of REED. We propose two encryption schemes that
trade between performance and security. We also demonstrate how REED realizes
dynamic access control using existing primitives. Finally, we analyze the security of
REED. In this section, we focus on the essential features of REED that support secure
and lightweight rekeying, without considering workload characteristics; in Section 5,
we exploit similarity for performance improvements.

4.1. Main Idea

REED builds security simultaneously on two types of symmetric keys: a file-level secret
key per file (or file key for short) and a chunk-level MLE key for each chunk (or MLE
key for short). During rekeying, REED only needs to renew the file key, while the MLE
keys of all chunks remain unchanged.

REED uses AONT [Rivest 1997] as the underlying cryptographic primitive. AONT is
an unkeyed, randomized encryption mode that transforms a message into a ciphertext
called the package, which has the property that it is computationally infeasible to be

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:8 C. Qin et al.

reverted back to the original message without knowing the entire package. The original
AONT design prohibits deduplication, since its transformation takes a random key as
an input to construct a package. Thus, REED uses convergent AONT (CAONT) [Li
et al. 2015], which replaces the random key with a deterministic message-derived key
to construct a package. This ensures that identical messages always lead to the same
package.

REED augments CAONT to enable rekeying. Our insight is to achieve security by
sacrificing a slight degradation of storage efficiency. The idea of REED is based on
AONT-based secure deletion [Peterson et al. 2005], which makes the entire package
unrecoverable by securely removing a small part of a package. REED extends the idea
to make it applicable for rekeying. Specifically, REED generates a CAONT package
with the MLE key as an input, and encrypts a small part of the package, called the
stub [Peterson et al. 2005], with the file key. Thus, the entire package is now protected
by both the file key and the MLE key. The stub size is small; for example, our im-
plementation sets it as 64 bytes, equivalent to 0.78% for an 8KB chunk. In addition,
we can still apply deduplication to the remaining large part of the package, called the
trimmed package, to maintain storage efficiency.

In the following, we first design two rekeying-aware encryption schemes on a per-
chunk basis (Section 4.2), followed by enabling REED with dynamic access control on
a per-file basis.

4.2. Encryption Schemes

We propose the basic and enhanced encryption schemes for REED. The basic scheme
is more efficient but is vulnerable to the leakage of an MLE key. On the other hand,
the enhanced scheme protects against the leakage of an MLE key, while introducing
an additional encryption step. In the following, we first explain the basics of AONT
[Rivest 1997] and its variant CAONT [Li et al. 2015] followed by how the basic and
enhanced encryption schemes build on CAONT.

All-or-nothing transform. AONT [Rivest 1997] works as follows. It transforms a
message M to a package denoted by (C, t), where C and t are called the head and
tail, respectively. Specifically, it first selects a random encryption key K and generates
a pseudo-random mask G(K) = E(K, S), where E(·) denotes a symmetric key encryption
function (e.g., AES-256) and S is a publicly known block with the same size as M. It
then computes C = M ⊕ G(K), where “⊕” is the XOR operator, and also computes
t = H(C) ⊕ K, where H(·) is the hash function (e.g., SHA-256). Note that the resulting
package has a larger size than the original message M by the size of t. To recover the
original message M, suppose that the whole package (C, t) is known. We first compute
K = H(C) ⊕ t, followed by computing M = C ⊕ E(K, S).

CAONT [Li et al. 2015] follows the same paradigm of AONT but replaces the ran-
dom encryption key K by a deterministic cryptographic hash h = H(M) derived from
the message M. This ensures that packages generated by identical messages remain
identical, and hence the packages can still be deduplicated. Another feature of CAONT
is that it allows integrity checking without padding. Specifically, after the package is
reverted, the integrity can be verified by computing the hash value of M and checking
if it equals h.

Basic encryption. The basic encryption scheme leverages CAONT [Li et al. 2015] to
generate both the trimmed package and the stub, as shown in Figure 2. In particular, we
make two modifications to CAONT. The first modification is to replace the cryptographic
hash key in CAONT [Li et al. 2015] by the corresponding MLE key KM generated by
the key manager. The rationale is that we use the MLE key to achieve security even
for predictable chunks through server-aided MLE [Bellare et al. 2013a] (Section 2.1).

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:9

Fig. 2. Basic encryption of REED.

However, we now cannot use the hash key for integrity checking as in CAONT. Thus, the
second modification is to append a publicly known, fixed-size canary c to M [Resch and
Plank 2011] for CAONT, so the integrity of M can be checked. In our implementation,
we set the fixed-size canary c to be 32 bytes of zeroes.

The basic encryption scheme is detailed as follows. We first concatenate an input
chunk M with the canary c to form (M||c) and compute the pseudo-random mask
G(KM) = E(KM, S), where KM is the MLE key obtained from the key manager and
S is the publicly known block with the same size of (M||c). We compute the package
head C = (M||c) ⊕ G(KM) and the package tail t = KM ⊕ H(C). We generate the stub
by trimming the last few bytes (e.g., 64 bytes) from the package (C, t) and leave the
remaining part as the trimmed package. Finally, we encrypt the stub with the file key.
Reconstruction of a message works reversely, and we omit details here.

We briefly comment on the security guarantees of the basic encryption scheme. The
security of each chunk builds on both the file key and the MLE key. If both the file key
and the MLE key are secure, then, given both the trimmed package and the encrypted
stub of a chunk, it is computationally infeasible to revert them to the original chunk.
In addition, if the file key is renewed, it is also computationally infeasible to restore the
stub (which is now protected by the new file key) and hence the original chunk using
the old file key.

One limitation of the basic encryption scheme is that it is vulnerable to the compro-
mise of the MLE key. Specifically, an adversary can monitor the MLE keys generated
by the key manager at a compromised client (Section 3.3). If an MLE key is revealed,
then the adversary can recover the pseudo-random mask and XOR the mask with the
trimmed package to extract a majority part of the chunk.

Enhanced encryption. We propose the enhanced encryption scheme, which protects
against the compromise of its MLE key. Figure 3 shows the workflow of the enhanced
encryption, which first applies MLE to form a ciphertext, followed by applying CAONT
[Li et al. 2015] to the MLE ciphertext. The rationale is that even if an adversary obtains
the MLE key, it still cannot recover original chunk because the MLE ciphertext is now
protected by CAONT.

The enhanced encryption scheme is detailed as follows. First, we encrypt an input
chunk M with the MLE key KM as in traditional MLE and obtain the ciphertext C1.
We then transform the concatenation C1||KM based on the original CAONT [Li et al.
2015]. We can now use the hash key h = H(C1||KM), instead of the MLE key used in
the basic encryption scheme, to transform the package. This eliminates the security
dependence on the MLE key. Formally, we compute the hash key h = H(C1||KM) and

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:10 C. Qin et al.

Fig. 3. Enhanced encryption of REED.

the pseudo-random mask G(h) = E(h, S), where S is a publicly known block with the
same size as C1||KM, and compute the package head C2 = (C1||KM) ⊕ G(h).

Since the hash key h allows integrity checking [Li et al. 2015], we can generate the
tail t with a self-XOR operation for efficiency [Peterson et al. 2005], instead of using
the cryptographic hash as in the basic encryption scheme (Figure 2). Specifically, we
evenly divide C2 into a set of fixed-size pieces, each with the same size as h. We then
XOR all the pieces as well as h to compute the tail t. Note that the self-XOR result
cannot be predicted without knowing the entire content of C2. Finally, we obtain the
trimmed package and the stub from (C2, t).

To reconstruct M, we first reconstruct (C2, t) from the trimmed package and the stub.
We evenly divide C2 into fixed-size pieces, each with the same size as t, and compute
h by XOR-ing the pieces and t. We then recover C1||KM = C2 ⊕ G(h), and check the
integrity by comparing H(C1||KM) and h. We finally compute M = D(KM, C1), where
D(·) is the decryption function.

We now briefly comment on the security guarantees of the enhanced encryption
scheme. As in basic encryption, the enhanced encryption scheme ensures that each
chunk remains secure if both the file key and the MLE key are secure. If the MLE key
is leaked, then the adversary can recover the original chunk from the MLE ciphertext
(i.e., the input to CAONT), yet the original chunk remains secure if the unpredictability
assumption still holds (see Section 2.1). We present a more detailed security analysis
in Section 4.5.

4.3. Dynamic Access Control

REED supports dynamic access control by associating each file with a policy, which
provides a specification of which users are authorized or revoked to access the file.
Our policy-based design builds on two well-known cryptographic primitives: CP-ABE
[Bethencourt et al. 2007] and key regression [Fu et al. 2006]. REED integrates both
primitives to generate the corresponding file key, as shown in Figure 4. Note that our
goal here is not to propose new designs for CP-ABE and key regression; instead, we
demonstrate how REED can work seamlessly with them to provide advanced security
functionalities for rekeying. In the following, we elaborate how REED integrates the
two primitives.

Access control. REED defines policies based on CP-ABE [Bethencourt et al. 2007].
In CP-ABE, a message is encrypted based on a specific policy that describes which
users can decrypt the message. Each policy is represented in the form of an access tree,
in which each non-leaf node represents a Boolean gate (e.g., AND or OR), while each

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:11

Fig. 4. REED generates a file key from the hash of a key state. The key state is derived from key regression.
Its access is protected by CP-ABE.

leaf node represents an attribute that defines or classifies some user property (e.g., the
department that a user belongs to, the employee rank, the contract duration, etc.). Each
user is given a private key that corresponds to a set of attributes. If a user’s attributes
satisfy the access tree, then his or her private key can decrypt the ciphertext.

Our current design of REED treats each attribute as a unique identifier for each
user. We issue each user with a CP-ABE private key, called the private access key,
related to the identifier. We define the policy of each file as an access tree that connects
the identifiers of all authorized users with an OR gate. Thus, any authorized user can
decrypt the ciphertext, which we use to protect the file key (see the rekeying discussion
below). Note that we can define more attributes and a more sophisticated access tree
structure for better access control.

Rekeying. REED supports both lazy and active revocations for rekeying. In lazy
revocation, REED builds on key regression [Fu et al. 2006], which is a serial key
derivation scheme for generating different versions of keys. Specifically, key regression
introduces a sequence of key states, such that the current key state can derive the
previous key states, but it cannot derive any future key state. Thus, an authorized user
can access all previous key states, and the corresponding files, by using only the current
key state; meanwhile, a user revoked from the current key state cannot access any new
file that is protected by a future key state. REED implements lazy revocation using the
RSA-based key regression scheme [Fu et al. 2006]. We assign each user with a unique
pair of public-private keys called the derivation keys, such that the private derivation
key is used to generate new key states for the files owned by the user, while the public
derivation key is used to derive the previous key states. The file key will be obtained
by generating a cryptographic hash of the current key state. Each key state refers to
a policy, and it will be encrypted by CP-ABE associated with the authorized users. In
other words, any authorized user can retrieve the current key state, and hence the file
key, with his private access key.

REED implements active revocation following the same paradigm as in lazy revoca-
tion, except that the files affected by active revocation are immediately re-encrypted
with the new file key.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:12 C. Qin et al.

4.4. Operations

We now summarize the interactions among a client, a server, the key manager, and
the storage backend in REED operations. We focus on three basic operations, including
upload, download, and rekeying.

Upload. To upload a file F, the client first picks a random key state SF and hashes
it into a symmetric file key κF . It splits F into a set of chunks {M}, computes their
fingerprints, and runs the OPRF protocol [Bellare et al. 2013a] with the key manager
to obtain the MLE keys {KM} of these chunks (Section 3.1). For each M, it uses KM
to transform a chunk into a trimmed package and a stub, using either the basic or
enhanced encryption scheme (Section 4.2). The client writes the stubs of all the chunks
of the same file into a separate stub file for storage, and the stub file will be encrypted
by the file key κF . In addition, the client generates a file recipe, which includes the
file information such as the file pathname, file size, and the total number of chunks.
Furthermore, the client encrypts SF using CP-ABE based on the policy of the file.
Finally, the client uploads the following information to the REED server: (i) the trimmed
packages and encrypted stubs for all chunks, (ii) file recipe, and (iii) the encrypted key
state SF and the metadata that includes the policy information. Note that we do not
need to upload MLE keys, as they are not used in decryption (Section 4.2). The server
performs deduplication on the received trimmed packages. All information will be
stored at the storage backend.

Download. To download a file F, the client first retrieves the encrypted key state SF
and decrypts it with the private access key. It then hashes SF to recover the file key κF .
In addition, it downloads all trimmed packages and encrypted stubs from the storage
backend, with the help of the REED server and the file recipe. It decrypts the stubs
via κF and, finally, reconstructs all chunks for F. Note that if the client detects any
tampered chunk, the reconstruction operation will abort.

Rekeying. To rekey F with new access privileges, the client (on behalf of the owner of
F) retrieves SF and its metadata and decrypts SF with the private access key. It then
generates a new key state S′

F based on key regression (Section 4.3). It encrypts S′
F via

CP-ABE based on a new policy (e.g., with a new group of users). It finally uploads the
encrypted S′

F as well as its metadata that describes the new policy information. For
active revocation, the client also downloads the stubs of F, re-encrypts them with a
new file key obtained by hashing S′

F , and, finally, uploads the re-encrypted stubs.

4.5. Security Analysis

We now analyze the security of REED based on our security goals.

Confidentiality. We show how REED achieves confidentiality at three levels. First, an
adversary can access all trimmed packages, encrypted stubs, and encrypted key states
from a compromised server. Since the adversary cannot compromise any private access
key and private derivation key, all trimmed packages and encrypted stubs cannot be
reverted. Thus, REED achieves the same level of confidentiality like DupLESS [Bellare
et al. 2013a] (Section 2.1).

Second, an adversary can collude with revoked or unauthorized clients, through
which the adversary can learn a set of private derivation keys and private access keys.
Due to the protection of CP-ABE and key regression, these compromised private keys
cannot be used to decrypt the file key ciphertexts beyond their access scopes. Without
proper file keys, the adversary cannot infer anything about the underlying chunks. One
special note is that a client may keep the MLE key (in basic encryption) or the hash
key (in enhanced encryption) of a chunk in CAONT (Figures 2 and 3, respectively) to

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:13

make the chunk accessible even after being revoked. However, if the chunk is updated,
then the revoked client cannot learn any information from the updated chunk because
CAONT will use a new MLE key or hash key to transform the updated chunk, making
the old one useless.

Finally, an adversary can monitor a subset of clients and identify the MLE keys
requested by them. The enhanced encryption scheme of REED ensures confidentiality
for unpredictable chunks, even though the victim clients are authorized to access these
chunks. Specifically, the enhanced encryption scheme builds an additional security
layer with the file key. As long as the file key is secure, it is computationally infeasible
to restore the MLE ciphertext (i.e., the input to CAONT) due to the protection of
CAONT. Note that the adversary may restore the MLE ciphertext by launching a brute-
force attack to check if the MLE ciphertext is transformed into the trimmed package
through CAONT, but it is computationally infeasible if chunks are unpredictable (see
Section 4.2). Thus, identifying an MLE key does not help recover the original chunk,
and hence the original chunk remains secure.

Integrity. Both the basic and enhanced encryption schemes of REED ensure chunk-
level integrity, such that any modification of the trimmed package or the stub of a
chunk can be detected. In the basic encryption scheme, the MLE key can be reverted
as KM = H(C) ⊕ t (Section 4.2). Since H(C) depends on every bit of C [Webster and
Tavares 1985], the modification of any part of the package will lead to an incorrect KM.
Thus, the client can easily detect the modification by checking the canary padded with
the reverted chunk.

Using similar reasonings, the enhanced encryption scheme also ensures the integrity
of a chunk, such that a client performs integrity checking by comparing if H(C1||KM)
equals h (Section 4.2). One special note regarding the enhanced scheme is that its
use of the self-XOR operation may return a correct hash key h even if the package is
tampered. For example, an intelligent adversary can divide C2 into fixed-size pieces
and flip the same bit position for an even number of the pieces. On the other hand, a
tampered package will be reverted to a wrong input even with the correct hash key,
and its integrity violation can be caught by comparing it with h.

4.6. Discussion

We present some open issues of our current REED design.

Fault tolerance. In this work, we do not explicitly address fault tolerance. To improve
fault tolerance of stored data, we can distribute both trimmed packages and stubs
across multiple cloud providers via deduplication-aware secret sharing [Li et al. 2015].

Metadata management. We currently focus on the encryption and rekeying for file
chunks, while we do not address those for file metadata (e.g., file recipe). We can
obfuscate sensitive metadata information, such as the file pathname, by encoding it
via a salted hash function.

Group-based file management. We currently perform rekeying on a per-file basis. We
can generalize rekeying for file group with multiple files. This makes file management
more flexible. On the other hand, we need to define new metadata to describe the file
group information.

5. EXPLOITING SIMILARITY

REED builds on server-aided MLE key generation [Bellare et al. 2013a], in which the
key manager generates an MLE key for each message (or chunk in our case). In this
section, we argue that MLE key generation is expensive and significantly degrades

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:14 C. Qin et al.

Table I. Performance Breakdown of MLE Key
Generation for an 8KB Chunk

Steps Latency (μs)

Blind (performed by the client) 46.3
Sign (performed by the key manager) 537.2
Unblind (performed by the client) 246.9

Round-trip transmission 294.9

the overall performance of REED. In view of this, we propose to exploit the similarity
feature that is commonly found in backup workloads to mitigate the performance
overhead of REED.

5.1. Overhead of MLE Key Generation

Recall that REED realizes the OPRF protocol to “blind” MLE key generation as in
DupLESS [Bellare et al. 2013a]. In our design, we configure the key manager with a
systemwide public/private key pair, based on 1024bit RSA in our case. Let e and d be
the public and private keys, respectively, and N be the modulus. For each chunk to be
uploaded, a client performs MLE key generation in the following steps (note that all
arithmetic is performed in modulo N).

—Blind: the client selects a random number r, raises it to power e, and multiplies re

with the fingerprint. It sends the blinded fingerprint to the key manager.
—Sign: the key manager computes an RSA signature by raising the blinded fingerprint

to power d. It returns the result to the client. Note that the key manager does not
know the original fingerprint, which is “blinded” by the random number r.

—Unblind: the client multiplies the received result with the inverse of r. It also hashes
the unblinded result to form the MLE key.

OPRF-based MLE key generation is expensive, especially when it operates on small-
size chunks. Its overhead comes from two aspects. First, if a client sends individual
per-chunk MLE key generation requests to the key manager, there will be substantial
transmission overhead. Also, since the OPRF protocol for key generation is based
on public key cryptography, there will be substantial computational overhead due to
modular exponentiation.

Table I provides a performance breakdown (in terms of latency) of MLE key genera-
tion for an 8KB chunk. We obtain average results over 10 runs from our experimental
testbed (Section 7). If we implement all the steps serially, then the total latency for MLE
key generation is 1125.3μs, or, equivalently, the throughput is only 8KB

1125.3μs ≈ 6.9MB/s.
If we deploy REED in a Gigabit LAN (our experimental testbed), then MLE key genera-
tion easily becomes a performance bottleneck of REED. In particular, the sign operation
occupies 48% of the total latency, and it cannot be trivially parallelized for performance
improvement.

5.2. Limitations of Simple Optimizations

To mitigate MLE key generation overhead, our conference article [Li et al. 2016] uses
two optimization approaches: (i) batching per-chunk MLE key generation requests and
(ii) caching the most recently generated MLE keys in the client’s local key cache. While
both approaches can mitigate key generation overhead based on evaluation results,
they still have the following limitations.

Batching per-chunk MLE key generation requests aims to reduce round-trip trans-
mission overhead, but it does not reduce computational overhead (see Table I). As
shown in our conference article [Li et al. 2016], batching 256 per-chunk key generation

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:15

requests for 8KB chunks can only achieve a key generation speed of 17.64MB/s, which
is still much smaller than the network speed in a Gigabit LAN.

Caching the MLE keys is effective in mitigating key generation overhead, based on
the observation that the adjacent uploads of a client often share high content similarity;
for example, backup snapshots for a file system are highly similar if there are only
small changes to the file system. As shown in our conference article [Li et al. 2016],
we can eliminate most key generation requests for the uploads of subsequent backups
after the first one, so the upload speeds for subsequent backups are almost network
bound (around 100MB/s). However, the caching approach has few limitations. First, it
is only effective for uploads that are largely duplicated with the previous one (e.g., it is
ineffective for the first backup [Li et al. 2016]). Second, its required local cache space
is not scalable; for example, it needs 4GB of cache space per 1TB of storage, assuming
that we configure 8KB chunks and 256-bit MLE keys. Finally, it is unreliable due to
the volatile nature of cache.

5.3. Similarity-Based Approach

We propose a similarity-based approach for MLE key generation, such that we can miti-
gate MLE key generation overhead, while preserving deduplication effectiveness. First,
we adopt coarse-grained MLE key generation on a larger data unit called segment,
which comprises multiple adjacent chunks and has a size on the order of megabytes
(e.g., 1MB by default in our case). To form a segment, we implement the variable-size
segmentation scheme in Lillibridge et al. [2009] that operates directly on chunk fin-
gerprints and is configured by the minimum, average, and maximum segment sizes.
Specifically, we traverse the stream of chunks and place a segment boundary after the
chunk if the chunk fingerprint modulo a pre-defined divisor is equal to a fixed constant
(which we set to −1 as in Lillibridge et al. [2009]). Here, the divisor is configured by
the average segment size to specify the expected number of chunks between adjacent
segment boundaries. We ensure that the segment size is at least the minimum seg-
ment size, and we always place a boundary after the chunk whose inclusion makes the
segment size larger than the maximum segment size. In our implementation, we vary
the average segment size, and fix the minimum segment size and maximum segment
size as half and double of the average segment size, respectively.

Clearly, per-segment MLE key generation incurs much fewer key generation requests
than the per-chunk one, thereby significantly mitigating the overall performance over-
head. On the other hand, segment-level MLE key generation can introduce different
segment-level MLE keys for different segments (and hence ciphertexts), even though
the segments share a large portion of identical chunks. This compromises deduplication
effectiveness.

Thus, our similarity-based approach aims to maximize deduplication effectiveness
by carefully generating segment-level MLE keys. Our insight is to assign “similar”
segments with the same MLE key and encrypt every chunk of a segment with the
corresponding segment-level MLE key. If two “similar” segments share a large number
of identical chunks, then the identical chunks are still encrypted with the same key
and hence deduplicated.

In this work, we borrow the Extreme Binning approach [Bhagwat et al. 2009] to
identify similar segments. Specifically, for each segment that contains multiple chunks,
a client selects the chunk (called the representative chunk) whose fingerprint value is
the minimum. It uses the minimum fingerprint to request the key manager for the
segment-level MLE key. It then encrypts each chunk (via either basic or enhanced
encryption of REED) with the received MLE key. The rationale is that if two segments
share a large number of identical chunks, there is a high probability that both segments
share the same representative chunk (due to Border’s Theorem [Broder 1997]).

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:16 C. Qin et al.

Fig. 5. Example of similarity-based MLE key generation.

Figure 5 shows an example of our similarity-based approach. Consider three seg-
ments Seg1, Seg2, and Seg3 that have four chunks each, and suppose that their rep-
resentative chunks are A, D, and A, respectively. Since both segments Seg1 and Seg3
share the same MLE key, their identical chunks (i.e., A, B, and C) in these similar seg-
ments can be deduplicated. Note that the approach cannot achieve exact deduplication;
for example, chunk D in segments Seg2 and Seg3 cannot be deduplicated due to the
different segment-level MLE keys. Nevertheless, since similarity is common in backup
workloads [Bhagwat et al. 2009], we expect that our similarity-based approach achieves
high deduplication effectiveness, as also validated in our evaluation (Section 7).

5.4. Security Analysis

We now analyze the security impact of the similarity-based MLE key generation on
both the basic and enhanced encryption schemes. Unfortunately, our similarity-based
key generation cannot preserve the confidentiality of chunks in the basic scheme. The
reason is that it uses a segment-level MLE key (derived from the minimum fingerprint
of a segment) as an input to CAONT to transform all chunks in a segment. This creates
the same pseudo-random mask G(.) for all chunks in the same segment. This allows an
adversary to apply an XOR operation to any two of the resulting trimmed packages to
remove the mask and learn a majority part of the XOR result of original chunks.

Nevertheless, we emphasize that the similarity-based MLE key generation does not
introduce new security risks in the enhanced scheme. The reason is that the pseudo-
random mask is generated from both the MLE key and the MLE ciphertext (i.e., C1
in Figure 3). As a result, different chunks lead to different pseudo-random masks,
which are infeasible to be removed without the knowledge of the file key. Although
the similarity-based MLE key generation allows an adversary to narrow down the
attack space of the online brute-force attack by requesting the MLE keys for potential
minimum fingerprints, the key manager can lower the rate limit for key generation
requests [Bellare et al. 2013a]. Since segment-level key generation has already reduced
the number of key generation requests, lowering the rate limit has no impact on normal
users. Thus, the enhanced encryption scheme can benefit from similarity-based MLE
key generation for performance gains and achieve similar performance to the basic
encryption scheme based on our evaluation (see Section 7.1).

5.5. Summary

We summarize the benefits of our similarity-based MLE key generation over the simple
optimizations in Section 5.2. First, it operates on a per-segment basis, and it inherently
reduces the number of MLE key generation requests, independent of the amount of

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:17

Fig. 6. Implementation of the REED prototype.

duplicates in the workloads. Also, it does not need to locally cache MLE keys, and
hence it eliminates the concerns of maintaining a large cache space. Finally, it exploits
similarity to remove duplicate chunks to maintain deduplication effectiveness.

6. IMPLEMENTATION

We implement a REED prototype in C++ based on our previously built system CD-
Store [Li et al. 2015]. We follow the modular approach as in CDStore to implement
REED, and Figure 6 shows how the modules of REED are organized. We mainly ex-
tend CDStore to support rekeying, with the addition of a key manager, the basic and
enhanced encryption schemes (Section 4.2), dynamic access control (Section 4.3), and
the similarity-based key generation approach (Section 5.3). We also use OpenSSL 1.0.2a
[OpenSSL 2015] and CP-ABE toolkit 0.11 [Bethencourt et al. 2011] to implement the
cryptographic operations in REED. The current REED prototype, including the original
CDStore modules, contains around 11,000 lines of code.

Client. Like CDStore, a client divides an input file into fixed-size or variable-size (via
Rabin fingerprinting [Rabin 1981]) chunks in the chunk module. It can also reassemble
collected chunks into the original file during file download. We currently use SHA-256
to compute chunk fingerprints.

In the key module, the client runs the OPRF protocol with the key manager for gen-
erating either chunk-based or segment-level MLE keys (see Section 5.3). In addition,
it implements RSA-based key regression [Fu et al. 2006] for generating new key states
during rekeying and protects each key state using CP-ABE [Bethencourt et al. 2007]
(via the CP-ABE toolkit [Bethencourt et al. 2011]).

In the encryption module, the client implements both basic and enhanced encryption
schemes (and the corresponding decryption schemes). In both encryption schemes, the
client transforms a chunk into a trimmed package and a stub through CAONT, in
which we implement G(.) via AES-256 and the hash function H(.) via SHA-256 (see
Section 4.2). To resist brute-force attacks on the stub yet preserving storage efficiency,
we configure the stub size as 64 bytes for each chunk. To enable integrity checking on
reconstructed chunks, we set the fixed-size canary c in both schemes to be 32 and zero
bytes. The client encrypts each stub file (that consists of stubs of the same file) with a
file key hashed from the corresponding key state via SHA-256.

The communication module is similar to that in CDStore. In this module, the client
uploads (respectively, downloads) all stored data to (respectively, from) the server,

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:18 C. Qin et al.

including the trimmed packages, the encrypted stub file, the file metadata, the en-
crypted key state, and the public derivation key.

Key manager. A key manager authenticates clients’ connections via SSL/TLS. It
implements the OPRF protocol based on 1024bit RSA and computes an RSA signature
on each incoming blinded fingerprint.

Server. A server can receive file data from multiple clients via the communication
module. It performs deduplication on the trimmed packages via the dedup module and
only stores unique trimmed packages in the storage backend. Since a file may have
a large number of trimmed packages, the server packs them in units of containers to
make storage and retrieval efficient via the container module. Like CDStore, we cap
the container size at 4MB by default.

In the index module, the server keeps track of indexing information, including the fin-
gerprints of all trimmed packages for deduplication, and the references to all trimmed
packages and file recipes in the storage backend for file retrieval.

Storage backend. We separate the storage into file data and key information for
better management. Specifically, we create two stores at the storage backend: (i) the
data store, which stores the file data such as file recipes, trimmed packages, stub files,
and all related file metadata, and (ii) the key store, which stores the key information
such as encrypted key states. Separating the storage management of key information
and file data gives flexibility, for example, by leveraging a more robust platform for
encryption key management [Musthaler 2013].

Optimization. To achieve reasonable performance, REED batches I/O requests and
also parallelizes the encryption (respectively, decryption) operations of uploaded (re-
spectively, downloaded) chunks via multi-threading. Here, we only configure two
threads for encryption/decryption, as our evaluation results indicate that two threads
are sufficient for achieving the required performance.

7. EVALUATION

We evaluate REED on a LAN testbed composed of multiple machines, each of which is
equipped with a quad-core 3.4GHz Intel Core i5-3570, 7200RPM SATA hard disk, and
8GB RAM and installed with 64-bit Ubuntu 12.04.2 LTS. All machines are connected
via a 1Gb/s switch.

Our default setting of REED is as follows. We run one REED client, one key manager,
and five REED servers in different machines. We use multiple REED servers for im-
proved scalability. In particular, four of the five servers manage the data store, and the
remaining one server manages the key store. In practice, both the data store and the
key store should be deployed in a shared storage backend (e.g., cloud storage); however,
to remove the I/O overhead of accessing the shared storage backend in our evaluation,
we simply have each server store information in its local hard disk. In addition to the
default setting, we describe additional specific settings in each experiment and also
consider the case where multiple clients are involved. We compile our programs with
g++ 4.8.1 with the -O3 option. For performance tests, we present the average results
over 10 runs. We do not include the variance results in our plots, as they are generally
very small in our evaluation. In the following, we use a synthetic dataset and two
real-world datasets for our evaluation.

7.1. Synthetic Data

We evaluate different REED operations through synthetic data. In particular, we evalu-
ate how segment-level MLE key generation mitigates overhead (Section 5). Specifically,
we generate a 2GB file of synthetic data with globally unique chunks (i.e., the chunks

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:19

Fig. 7. Experiment A.1 (MLE key generation performance).

have no duplicate content). Before each experiment, we load the synthetic data into
memory to avoid generating any disk I/O overhead.

Experiment A.1 (MLE key generation performance). We first measure the performance
of MLE key generation between a client and the key manager. The client creates chunks
of the input 2GB file using variable-size chunking based on Rabin fingerprinting with
a specified average chunk size. We also group the chunks into variable-size segments
with a specified average segment size (Section 5). The client computes the minimum
fingerprint of each segment and requests for segment-level MLE keys from the key
manager. We measure the MLE key generation speed, defined as the ratio of the file
size (i.e., 2GB), to the total time starting from when the client creates the input file
until it obtains all segment-level MLE keys from the key manager.

Figure 7(a) shows the MLE key generation speed versus the average chunk size, in
which we fix the average segment size as 1MB. We observe that the speed increases
with the average chunk size, mainly because we process fewer chunks to find the
minimum fingerprint for each segment. When the average chunk size is at least 8KB,
the key generation speed becomes steady at around 168MB/s, since the key manager is
now saturated by segment-level key generation requests and the speed is bounded by
the computation of the key manager. For comparison, our conference article [Li et al.
2016] shows a per-chunk key generation speed is below 20MB/s.

Figure 7(b) shows the MLE key generation speed versus the average segment size,
in which we fix the average chunk size as 8KB. The speed increases with the average
segment size, as a larger segment size implies fewer MLE keys to be generated. When
the segment size is at least 512KB, the key generation speed is above 130MB/s, which
is higher than the network speed in our LAN testbed (i.e., 1Gb/s).

Experiment A.2 (Encryption performance). We measure the performance of both basic
and enhanced encryption schemes. Suppose that the client has created chunks with
variable-size chunking and obtained MLE keys from the key manager. Here, we mea-
sure the encryption speed, defined as the ratio of the file size (i.e., 2GB) to the total
time of encrypting all chunks into trimmed packages and stubs.

Figure 8 shows the speeds of both basic and enhanced encryption schemes versus the
average chunk size (note that the average segment size has no impact on the encryption
speed). The throughput of both encryption schemes increases with the average chunk
size, mainly because fewer chunks need to be processed. The basic scheme is faster than
the enhanced scheme, as the enhanced scheme introduces an additional encryption
(see Section 4.2). For example, for the average chunk size 8KB, the basic scheme has
203MB/s, 24% faster than 155MB/s in the enhanced scheme. We observe that the

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:20 C. Qin et al.

Fig. 8. Experiment A.2 (Encryption performance).

encryption speeds of both schemes are higher than the network speed (i.e., 1Gb/s), and
hence the encryption speed is not the performance bottleneck in REED. We further
justify this claim in Experiment A.3.

Experiment A.3 (Upload and download performance). We now measure the upload
and download performance of REED. For performance comparisons, we also include
the basic encryption scheme, although it is shown to be insecure in similarity-based
MLE key generation (see Section 5.4). We first consider the case of a single client. The
client first uploads a 2GB file of unique data, followed by downloading the 2GB file. We
measure the upload speed as the ratio of the file size to the total time of sending all
file data to the servers (including the chunking, key generation, encryption, and data
transfer) and the download speed as the ratio of the file size to the total time starting
from when the client issues a download request until all original data are recovered.

Figure 9(a) shows the upload speeds under both encryption schemes versus the
average chunk size, in which we fix the average segment size as 1MB. We see that the
upload speeds increase with the average chunk size and become close to the effective
network speed in our LAN testbed. For example, when the average chunk size is 16KB,
the upload speeds for the basic and enhanced schemes are 107.6MB/s and 106.9MB/s,
respectively. Both encryption schemes have only minor performance differences.

Figure 9(b) shows the upload speeds under both encryption schemes versus the
average segment size, in which we fix the average chunk size as 8KB. Similarly to
Figure 9(a), the upload speeds grow with the average segment size and are finally
bounded by the network speed. For example, when the average segment size is 1MB,
the upload speeds for the basic and enhanced schemes are 106.9MB/s and 106.4MB/s,
respectively.

Figure 9(c) shows the download speeds under both encryption schemes versus the
average chunk size. When the average chunk size goes beyond 8KB, the download
speeds of both encryption schemes (e.g., 108.0MB/s for basic encryption and 106.6MB/s
for enhanced encryption) approximate the effective network speed.

We also consider the case with multiple REED clients. We vary the number of clients
from one to eight, and each client runs on a different machine. Here, we focus on the
aggregate upload performance under the enhanced encryption scheme, such that each
client uploads a 2GB file of unique data simultaneously. We measure the aggregate
upload speed, defined as the ratio of the total amount of file data (i.e., 2GB times the
number of clients) to the total time when all uploads are finished. Figure 9(d) shows
the aggregate upload speed versus the number of clients, in which we fix the average
chunk size as 8KB and average segment size as 1MB. We see that the speed increases

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:21

Fig. 9. Experiment A.3 (Upload and download performance).

with the number of clients and is finally bounded by the network bandwidth. When
there are eight clients, the aggregate upload speed reaches 373.3MB/s.

Experiment A.4 (Rekeying performance). We measure the rekeying performance in
both lazy and active revocation schemes. Recall that the rekeying operation of REED
requires a CP-ABE decryption with the original policy and another CP-ABE encryption
with a new policy. REED treats each policy as an access tree with an OR gate connecting
all the authorized user identifiers (see Section 4.3). This implies that the CP-ABE
decryption time is constant [Bethencourt et al. 2007], while its encryption time grows
with the number of authorized users in the new policy. Thus, we focus on evaluating
the impact of three parameters in the rekeying operation: (i) total number of users,
that is, the number of authorized users in the original policy; (ii) revocation ratio, the
percentage of the number of users to be revoked and removed from the access tree;
and (iii) file size, the size of the rekeyed file. We measure the rekeying delay, defined as
the total time of performing all rekeying steps including downloading and decrypting
a key state, deriving a new key state, encrypting and uploading the new key state, and
re-encrypting the stub file (for active revocation only).

Figure 10(a) shows the rekeying delay versus the total number of users, while we
fix the rekeyed file size at 2GB and the revocation ratio at 20%. The rekeying delays
of both revocation schemes increase with the total number of users, mainly because
the CP-ABE encryption overhead increases with a larger access tree. Nevertheless, the
rekeying delays are within 3s in both revocation schemes. In particular, lazy revocation
is faster than active revocation by about 0.6s, as it defers re-encryption process to the
next file update.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:22 C. Qin et al.

Fig. 10. Experiment A.4 (Rekeying performance).

Figure 10(b) shows the rekeying delay versus the revocation ratio, while we fix the
rekeyed file size at 2GB and the total number of users at 500. With a larger revocation
ratio, the new policy has fewer authorized users, thereby reducing the revocation time.
When the revocation ratio is 50%, the rekeying delays of the lazy and active revocation
schemes are 1.44s and 2s, respectively.

Figure 10(c) shows the rekeying delay versus the size of the rekeyed file, while we
fix the total number of users at 500 and the revocation ratio at 20%. The rekeyed file
size has no impact on lazy revocation, in which the rekeying delay is kept at 2.25s.
For active revocation, as the file size increases, it spends more time for transferring
and re-encrypting the stub file. Thus, the rekeying delay increases, for example, to 3.4s
for an 8GB file. Nevertheless, if we compare the rekeying delay of active revocation
with the time of transferring a whole file in the network (e.g., at least 64s in a 1Gb/s
network), the rekeying delay is insignificant. Thus, the rekeying operation in REED is
lightweight in general.

7.2. Real-World Data

We now consider two real-world datasets to drive our evaluations.

—FSL: This dataset is collected by the File systems and Storage Lab (FSL) at Stony
Brook University [File systems and Storage Lab 2014; Sun et al. 2016]. The original
FSL dataset contains daily backups of the home directories of various users in a
shared file system. We focus on the Fslhomes dataset in 2013, which comprises 147

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:23

daily snapshots from January 22 to June 17, 2013. Each snapshot represents a daily
backup, represented by a collection of 48-bit fingerprints of variable-size chunks with
an average 8KB chunk size. The dataset we consider accounts for a total of 56.20TB
of pre-deduplicated data.

—VM: This dataset consists of virtual machine (VM) image snapshots and is collected
by ourselves. We have 156 VMs for students enrolling in a university programming
course in Spring 2014. We take 26 full image daily snapshots for each VM spanning
over three months. Each image snapshot is of size 10GB, and the complete dataset
contains 39.61TB of data. Each daily snapshot is represented in SHA-1 fingerprints
on 4KB fixed-size chunks. We remove all zero-filled chunks that are known to domi-
nate in VM images [Jin and Miller 2009], and the size reduces to 18.24TB. A subset
of the same dataset is also used in the prior work [Li et al. 2015].

In our evaluation, we construct variable-size segments with the average segment size
1MB by grouping the chunks specified in the datasets (i.e., the variable-size chunks in
FSL and the fixed-size chunks in VM), based on variable-size segmentation [Lillibridge
et al. 2009] described in Section 5.

Experiment B.1 (Storage overhead). We first measure the storage overhead due to
REED. Our goal is to show that REED still maintains storage efficiency via dedupli-
cation, even though it can only deduplicate part of a chunk (i.e., trimmed package).
We define three types of data: (i) logical data, the original data before any encryption
or deduplication; (ii) stub data, the encrypted stub files being stored; and (iii) physical
data, the trimmed packages being stored after deduplication. We aggregate the data
from all users and measure the total size of each data type.

Figure 11(a) shows the cumulative data sizes over the number of days of storing
FSL daily backups of all users. Each FSL daily backup contains 290–680GB of logical
data for all users, yet the physical and stub data that REED actually stores after
deduplication accounts for only 6.56GB per day on average. After 147 days, there is a
total of 57,548GB of logical data, and REED generates only 964.4GB of physical and
stub data after deduplication. It achieves a total saving of 98.3%. This shows that we
still maintain high storage efficiency through deduplication.

Figure 11(b) compares the cumulative sizes of physical and stub data after dedupli-
cation. The cumulative size of stub data increases over days. After 147 days, there are
584.3GB of physical data due to the unique trimmed packages. There is also 380.1GB
of stub data. Note that the stub data cannot be deduplicated as it is encrypted by a
renewable file key. Nevertheless, deduplication effectively reduces the overall storage
space according to Figure 11(a).

We now switch to the VM dataset. Figure 11(c) compares the size of logical data with
the sizes of physical and stub data. After 26 daily backups, we have a total of 18,681GB
of logical data. Deduplication reduces the space to 539.8GB for both physical data and
stub data. The storage saving is 97.1%. Figure 11(d) presents a breakdown. We observe
that the size of stub data grows linearly with the number of daily backups. The reason
is that the stub data size depends on the number of logical chunks, yet each VM daily
backup has a similar number of logical chunks (excluding the zero-filled chunks). After
26 days, REED stores 247.9GB of physical data and 291.9GB of stub data. The findings
are similar to those for the FSL dataset.

We further compare the storage overhead of our similarity-based approach with that
of the original chunk-based approach, which performs deduplication at the granularity
of chunks (8KB for FSL and 4KB for VM). Table II shows the sizes of the physical
and stub data, as well as the storage savings over the original size of logical data. Our
similarity-based approach mitigates the MLE key generation overhead of the chunk-
based approach, while incurring 35.3% and 45.8% more size of physical data. Note that

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:24 C. Qin et al.

Fig. 11. Experiment B.1 (Storage overhead).

Table II. Sizes of Physical and Stub Data Using
Different Deduplication Approaches

Data Chunk-based Similarity-based

FSL
Physical 431.9GB 584.3GB

Stub 380.1GB
Storage saving 98.6% 98.3%

VM
Physical 170.0GB 247.9GB

Stub 291.9GB
Storage saving 97.5% 97.1%

deduplication does not change the total number of logical chunks, so both approaches
have the same size of stub data for each dataset. Nevertheless, the similarity-based
approach still achieves almost identical storage savings for both datasets as the chunk-
based approach.

REED focuses on maintaining high storage savings for logical data via deduplication,
yet we observe that stub data become dominant in physical storage as more backups are
stored (or, more generally, for workloads with high deduplication savings). To mitigate
the storage overhead of the stub data, one option is to increase the chunk size; in
fact, it has been shown that a larger chunk size may achieve higher effective storage
savings by reducing metadata overhead [Sun et al. 2016]. We pose this issue as future
work.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:25

Fig. 12. Experiment B.2 (Trace-driven upload and download performance).

Experiment B.2 (Trace-driven upload and download performance). We evaluate up-
load and download speeds of a single REED client using both real-world datasets, as
opposed to synthetic dataset in Experiment A.3. Since both FSL and VM datasets
only include chunk fingerprints and chunk sizes, we reconstruct a chunk by repeatedly
writing its fingerprint to a spare chunk until reaching the specified chunk size; this en-
sures that the same (respectively, distinct) fingerprint returns the same (respectively,
distinct) chunk. The reconstructed chunk is treated as the output of chunking module
of the REED client. Thus, we do not include the chunking time in this experiment.

The client uploads all daily backups (on behalf of all users), followed by downloading
them. Due to the large dataset, we only run part of the dataset to reduce the evalu-
ation time. Specifically, for the FSL dataset, we choose seven consecutive daily back-
ups for nine users, totaling 3.64TB of data before deduplication; for the VM dataset,
we choose four daily backups for all users, totaling 2.78TB of data before deduplica-
tion. We use the same setting as in Experiment A.3 and use the enhanced encryption
scheme.

Figure 12 shows the upload and download speeds of REED over days. Both the
upload and download speeds of all days are almost network bound (around 105MB/s
for both datasets) due to our segment-level MLE key generation. We highlight that
for our original implementation in the conference article [Li et al. 2016] the upload
speed of the first day is as low as 13.1MB/s, since it lacks cached MLE keys and has
to request MLE keys for each chunk from the key manager. Our similarity-based MLE
key generation does not have this limitation.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:26 C. Qin et al.

8. RELATED WORK

Encrypted deduplication storage. Section 2 reviews MLE [Bellare et al. 2013b] and
DupLESS [Bellare et al. 2013a], which address the theoretical and applied aspects of
encrypted deduplication storage, respectively. Bellare et al. [2013b] propose a theoret-
ical framework of MLE and provide formal definitions of privacy and tag consistency.
The follow-up studies [Bellare and Keelveedhi 2015; Abadi et al. 2013] further examine
message correlation and parameter dependency of MLE.

On the applied side, convergent encryption (CE) [Douceur et al. 2002] has been im-
plemented and experimented in various storage systems (e.g., Anderson and Zhang
[2010], Wilcox-O’Hearn and Warner [2008], Storer et al. [2008], Adya et al. [2002], Cox
et al. [2002], and Shah and So [2015]). DupLESS [Bellare et al. 2013a] implements
server-aided MLE. Duan [2014] improves the robustness of key management in Dup-
LESS via threshold signature [Shoup 2000]. Zheng et al. [2015] propose a layer-level
strategy specifically for video deduplication. Liu et al. [2015] propose a password-
authenticated key exchange protocol for MLE key generation. ClearBox [Armknecht
et al. 2015] enables clients to verify the effective storage space that their data occupy
after deduplication. SecDep [Zhou et al. 2015] leverages cross-user file-level deduplica-
tion on the client side to mitigate the key generation overhead, but it is susceptible to
side-channel attacks, in which a malicious user can infer the existence of files through
the deduplication pattern [Harnik et al. 2010; Halevi et al. 2011; Li et al. 2015]. CD-
Store [Li et al. 2015] realizes CE in existing secret sharing algorithms by replacing
the embedded random seed with a message-derived hash to construct shares. REED
focuses on the applied aspect and complements the above designs by enabling rekeying
in encrypted deduplication storage.

Rekeying. Abdalla and Bellare [2000] rigorously analyze key-derivation methods, in
which a sequence of subkeys is derived from a shared master key to extend the lifetime
of the master key for secure communication. Follow-up studies examine key derivation
(in either key rotation or key regression) in content distribution networks [Fu et al.
2006; Backes et al. 2006; Kallahall et al. 2003] and cloud storage [Puttaswamy et al.
2011]. A recent work [Watanabe and Yoshino 2013] examines ciphertext re-encryption
using an approach similar to REED, in that it performs AONT on files and updates
a small piece from the AONT package, yet it does not consider deduplication and
has no prototype that demonstrates the applicability. REED differs from the above
approaches by addressing the rekeying problem in encrypted deduplication storage.
REED also uses the key regression scheme [Fu et al. 2006] in key derivation to enable
lazy revocation.

REED is related to secure deletion (see detailed surveys [Diesburg and Wang 2010;
Reardon et al. 2013]), which ensures that securely deleted data are permanently in-
accessible by anyone. Secure deletion can be achieved through cryptographic deletion
(e.g., Boneh and Lipton [1996] and Peterson et al. [2005]), which securely erases keys
in order to make encrypted data unrecoverable. REED builds on the AONT-based cryp-
tographic deletion [Peterson et al. 2005] and preserves deduplication effectiveness. It
further allows efficient dynamic access control.

Access control. Cryptographic primitives have been proposed for enabling access
control on encrypted storage, such as broadcast encryption [Boneh et al. 2005], proxy
re-encryption [Ateniese et al. 2006], and ABE [Goyal et al. 2006]. REED builds on CP-
ABE [Bethencourt et al. 2007] to implement fine-grained access control for encrypted
deduplication storage.

Exploiting workload characteristics. Some studies address deduplication perfor-
mance by exploiting workload characteristics, including chunk locality [Zhu et al. 2008;

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

The Design and Implementation of a REED Storage System 9:27

Kruus et al. 2010], similarity [Lillibridge et al. 2009; Bhagwat et al. 2009; Dong et al.
2011; Fu et al. 2012], and a combination of both [Xia et al. 2011]. REED is motivated
from a security perspective and uses the similarity-based approach in Extreme Binning
[Bhagwat et al. 2009] to mitigate MLE key generation overhead.

9. CONCLUSION

We present REED, an encrypted deduplication storage system that aims for secure and
lightweight rekeying. The core rekeying design of REED is to renew a key of a determin-
istic AONT package. We propose two encryption schemes for REED: the basic scheme
has higher encryption performance, while the enhanced scheme is resilient against key
leakage. We extend REED with dynamic access control by integrating both CP-ABE
and key regression primitives. We show the confidentiality and integrity properties
of REED under our security definitions. Furthermore, we propose a similarity-based
approach to mitigate MLE key generation overhead of REED. We finally implement a
REED prototype and conduct trace-driven evaluation in a LAN testbed to demonstrate
its performance and storage efficiency. In future work, we plan to address the open
issues of our current REED design (see Section 4.6), investigate how we mitigate the
storage overhead of stub data (see Section 7.2), and evaluate how REED performs for
other storage workloads.

REFERENCES

Martı́n Abadi, Dan Boneh, Ilya Mironov, Ananth Raghunathan, and Gil Segev. 2013. Message-locked en-
cryption for lock-dependent messages. In Advances in Cryptology (CRYPTO’13). 374–391.

Michel Abdalla and Mihir Bellare. 2000. Increasing the lifetime of a key: A comparative analysis of the
security of re-keying techniques. In Advances in Cryptology (ASIACRYPT’00). 546–559.

Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R. Douceur, Jon
Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Wattenhofer. 2002. Farsite: Federated, available,
and reliable storage for an incompletely trusted environment. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI’02). 1–14.

Amazon. 2014. Architecting for Genomic Data Security and Compliance in AWS. Retrieved from
https://d0.awsstatic.com/whitepapers/compliance/Genomics_on_AWS_Best_Practices.pdf.

Paul Anderson and Le Zhang. 2010. Fast and secure laptop backups with encrypted de-duplication. In
Proceedings of the 24th International Conference on Large Installation System Administration (LISA’10).
1–8.

Frederik Armknecht, Jens-Matthias Bohli, Ghassan O. Karame, and Franck Youssef. 2015. Transparent
data deduplication in the cloud. In Proceedings of the 22nd ACM Conference on Computer and Commu-
nications Security (CCS’15). 886–900.

Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary Peterson, and Dawn
Song. 2007. Provable data possession at untrusted stores. In Proceedings of the 14th ACM Conference
on Computer and Communications Security (CCS’07). 598–609.

Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. 2006. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9, 1 (Feb. 2006),
1–30.

Michael Backes, Christian Cachin, and Alina Oprea. 2006. Secure key-updating for lazy revocation. In
Computer Security (ESORICS’06). 327–346.

Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. 2012. NIST Special Publication
800-57 Recommendation for Key Management. Technical Report. National Institute of Standards &
Technology.

Mihir Bellare and Sriram Keelveedhi. 2015. Interactive message-locked encryption and secure deduplication.
in Public-Key Cryptography (PKC’15). 516–538.

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. 2013a. DupLESS: Server-aided encryption for
deduplicated storage. In Proceeding of the 22nd USENIX Security Symposium (USENIX Security’13).
179–194.

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. 2013b. Message-locked encryption and secure
deduplication. In Advances in Cryptology (EUROCRYPT’13). 296–312.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

9:28 C. Qin et al.

John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-policy attribute-based encryption. In
Proceeding of the 2007 IEEE Symposium on Security and Privacy (SP’07). 321–334.

John Bethencourt, Amit Sahai, and Brent Waters. 2011. CP-ABE Toolkit. Retrieved from http://acsc.cs.
utexas.edu/cpabe/.

Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long, and Mark Lillibridge. 2009. Extreme binning: Scalable,
parallel deduplication for chunk-based file backup. In Proceeding of IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS’09). 1–9.

John Black. 2006. Compare-by-hash: A reasoned analysis. In Proceeding of USENIX Annual Technical
Conference (USENIX ATC’06). 85–90.

Dan Boneh, Craig Gentry, and Brent Waters. 2005. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In Advances in Cryptology (CRYPTO 2005). 258–275.

Dan Boneh and Richard Lipton. 1996. A revocable backup system. In Proceeding of the 6th USENIX Security
Symposium (USENIX Security’96). 9–9.

Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the weil pairing. In Advances in
Cryptology (ASIACRYPT 2001). 514–532.

Andrei Z. Broder. 1997. On the resemblance and containment of documents. In Proceeding of the Compression
and Complexity of Sequences (SEQUENCES’97). 21–29.

Landon P. Cox, Christopher D. Murray, and Brian D. Noble. 2002. Pastiche: Making backup cheap and easy.
In Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI’02).
285–298.

Dick Csaplar. 2011. Building Business Resillience through Active Archiving. Retrieved from http://www.
dataspan.com/uploads/pdf/aberdeen-report-business-resilience-with-active-archive.pdf.

Debian Security Advisory. 2008. DSA-1571-1 openssl – Predictable Random Number Generator. Retrieved
May 2008 from https://www.debian.org/security/2008/dsa-1571.

Sarah M. Diesburg and An-I Andy Wang. 2010. A survey of confidential data storage and deletion methods.
ACM Comput. Surv. 43, 1 (Dec. 2010), 2:1–2:37.

Wei Dong, Fred Douglis, Kai Li, and Hugo Patterson. 2011. Tradeoffs in scalable data routing for deduplica-
tion clusters. In Proceedings of the 9th USENIX Conference on File and Stroage Technologies (FAST’11).
15–29.

John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. 2002. Reclaiming space
from duplicate files in a serverless distributed file system. In Proceeding of 22nd International Conference
on Distributed Computing Systems (ICDCS’02). 617–624.

Yitao Duan. 2014. Distributed key generation for encrypted deduplication: Achieving the strongest privacy.
In Proceedings of the 6th edition of the ACM Workshop on Cloud Computing Security (CCSW’14). 57–68.

File systems and Storage Lab. 2014. FSL Traces and Snapshots Public Archive. Retrieved from
http://tracer.filesystems.org/.

Kevin Fu, Seny Kamara, and Tadayoshi Kohno. 2006. Key regression: Enabling efficient key distribution for
secure distributed storage. In Proceedings of the Network and Distributed System Security Symposium
(NDSS’06).

Yinjin Fu, Hong Jiang, and Nong Xiao. 2012. A scalable inline cluster deduplication framework for big data
protection. In Proceeding of Middleware 2012. 354–373.

Shafi Goldwasser and Mihir Bellare. 2008. Lecture Notes on Cryptography. Retrieved July 2008 from
https://cseweb.ucsd.edu/mihir/papers/gb.html.

Google. 2016. Google Genomics. Retrieved from https://cloud.google.com/genomics/.
Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-based encryption for fine-

grained access control of encrypted data. In Proceedings of the 13th ACM conference on Computer and
Communications Security (CCS’06). 89–98.

Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. 2011. Proofs of ownership in
remote storage systems. In Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS’11). 491–500.

Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. 2010. Side channels in cloud services: Dedu-
plication in cloud storage. IEEE Secur. Priv. 8, 6 (2010), 40–47.

Keren Jin and Ethan L. Miller. 2009. The effectiveness of deduplication on virtual machine disk images. In
Proceeding of the Israeli Experimental Systems Conference (SYSTOR’09). 7:1–7:12.

Ari Juels and Burton S. Kaliski, Jr. 2007. PORs: Proofs of retrievability for large files. In Proceedings of the
14th ACM Conference on Computer and Communications Security (CCS’07). 584–597.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

http://acsc.cs.utexas.edu/cpabe/
http://acsc.cs.utexas.edu/cpabe/
http://www.dataspan.com/uploads/pdf/aberdeen-report-business-resilience-with-active-archive.pdf
http://www.dataspan.com/uploads/pdf/aberdeen-report-business-resilience-with-active-archive.pdf
https://www.debian.org/security/2008/dsa-1571
http://tracer.filesystems.org/
https://cseweb.ucsd.edu/mihir/papers/gb.html
https://cloud.google.com/genomics/

The Design and Implementation of a REED Storage System 9:29

Mahesh Kallahall, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. 2003. Plutus: Scalable secure
file sharing on untrusted storage. In Proceedings of USENIX Conference on File and Stroage Technologies
(FAST’03). 29–42.

Dan Kaminsky. 2011. These Are Not The Certs You’re Looking For. Retrieved August 2011 from http://
dankaminsky.com/2011/08/31/notnotar/.

Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. 2010. Bimodal content defined chunking for backup
streams. In Proceedings of the 8th USENIX Conference on File and Stroage Technologies (FAST’10).
239–252.

Jingwei Li, Chuan Qin, Patrick P. C. Lee, and Jin Li. 2016. Rekeying for encrypted deduplication storage. In
Proceeding of 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’16). 618–629.

Mingqiang Li, Chuan Qin, and Patrick P. C. Lee. 2015. CDStore: Toward reliable, secure, and cost-efficient
cloud storage via convergent dispersal. In Proceeding of USENIX Annual Technical Conference (USENIX
ATC’15). 111–124.

Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezise, and Peter Camble. 2009.
Sparse indexing: Large scale, inline deduplication using sampling and locality. In Proceeding of USENIX
Conference on File and Storage Technologies (FAST’09). 111–123.

Jian Liu, N. Asokan, and Benny Pinkas. 2015. Secure deduplication of encrypted data without additional
independent servers. In Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS’15). 874–885.

Linda Musthaler. 2013. Cloud Encryption: Control Your Own Keys in a Separate Storage Vault. Re-
trieved from http://www.networkworld.com/article/2170564/cloud-computing/cloud-encryption-control-
your-own-keys-in-a-separate-storage-vault.html.

National Institutes of Health. 2015. NIH Security Best Practices for Controlled-Access Data Subject
to the NIH Genomic Data Sharing Policy. Retrieved from https://www.ncbi.nlm.nih.gov/projects/gap/
pdf/dbgap_2b_security_procedures.pdf.

NetApp. 2008. NetApp Deduplication Helps Duke Institute for Genome Sciences and Policy Reduce
Storage Requirements for Genomic Information by 83 Percent. Retrieved from http://www.netapp.
com/us/company/news/press-releases/news-rel-20081008.aspx.

OpenSSL. 2015. OpenSSL: Cryptography and SSL/TLS Toolkit. Retrieved from https://www.openssl.org.
Zachary N. J. Peterson, Randal Burns, Joe Herring, Adam Stubblefield, and Aviel D. Rubin. 2005. Secure

deletion for a versioning file system. In Proceedings of the 4th USENIX Conference on File and Storage
Technologies (FAST’05). 143154.

Krishna P. N. Puttaswamy, Christopher Kruegel, and Ben Y Zhao. 2011. Silverline: Toward data confiden-
tiality in storage-intensive cloud applications. In Proceedings of the 2nd ACM Symposium on Cloud
Computing. 10:1–10:13.

Michael O. Rabin. 1981. Fingerprinting by random polynomials. Center for Research in Computing Technol-
ogy, Harvard University. Tech. Report TR-CSE-03-01. (1981).

A. Rahumed, H. C. H. Chen, Yang Tang, P. P. C. Lee, and J. C. S. Lui. 2011. A secure cloud backup system with
assured deletion and version control. In Proceedings of the 40th International Conference on Parallel
Processing Workshops (ICPPW’11). 160–167.

Joel Reardon, David Basin, and Srdjan Capkun. 2013. SoK: Secure data deletion. In Proceedings of IEEE
Symposium on Security and Privacy (SP’13). 301–315.

Jason K. Resch and James S. Plank. 2011. AONT-RS: Blending security and performance in dispersed storage
systems. In Proceedings of the 9th USENIX Conference on File and Stroage Technologies (FAST’11). 191–
202.

Ronald L. Rivest. 1997. All-or-nothing encryption and the package transform. In Proceeding of International
Workshop on Fast Software Encryption (FSE’97). 210–218.

Peter Shah and Won So. 2015. Lamassu: Storage-efficient host-side encryption. In Proceedings of USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC’15). 333–345.

Victor Shoup. 2000. Practical threshold signatures. In Advances in Cryptology (EUROCRYPT’00). 207–220.
Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David Molnar, Dag Arne Osvik, and

Benne de Weger. 2008. MD5 Considered Harmful Today. Retrieved December 2008 from http://www.
win.tue.nl/hashclash/rogue-ca/.

Lincoln D. Stein. 2010. The case for cloud computing in genome informatics. Genome Biology (2010), 11:207.
Mark W. Storer, Kevin Greenan, Darrell D. E. Long, and Ethan L. Miller. 2008. Secure data deduplica-

tion. In Proceedings of the 4th ACM International Workshop on Storage Security and Survivability
(StorageSS’08). 1–10.

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

http://dankaminsky.com/2011/08/31/notnotar/
http://dankaminsky.com/2011/08/31/notnotar/
http://www.networkworld.com/article/2170564/cloud-computing/cloud-encryption-control-your-own-keys-in-a-separate-storage-vault.html
http://www.networkworld.com/article/2170564/cloud-computing/cloud-encryption-control-your-own-keys-in-a-separate-storage-vault.html
https://www.ncbi.nlm.nih.gov/projects/gap/pdf/dbgap2bsecurityprocedures.pdf
https://www.ncbi.nlm.nih.gov/projects/gap/pdf/dbgap2bsecurityprocedures.pdf
http://www.netapp.com/us/company/news/press-releases/news-rel-20081008.aspx
http://www.netapp.com/us/company/news/press-releases/news-rel-20081008.aspx
https://www.openssl.org

9:30 C. Qin et al.

Zhu Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily Tarasov, Nong Xiao, and Erez Zadok. 2016.
A long-term user-centric analysis of deduplication patterns. In Proceeding of the 32nd Symposium on
Mass Storage Systems and Technologies (MSST’16).

U. S. Computer Emergency Readiness Team. 2014. OpenSSL ‘Heartbleed’ Vulnerability (CVE-2014-0160).
Retrieved April 2014 from https://www.us-cert.gov/ncas/alerts/TA14-098A.

Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone, Mark Chamness, and
Windsor Hsu. 2012. Characteristics of backup workloads in production systems. In Proceedings of the
10th USENIX Conference on File and Storage Technologies (FAST’12). 33–48.

Dai Watanabe and Masayuki Yoshino. 2013. Key update mechanism for network storage of encrypted data.
In Proceeding of the 5th IEEE International Conference on Cloud Computing Technology and Science
(CloudCom’13). 493–498.

A. F. Webster and S. E. Tavares. 1985. On the design of s-boxes. In Advances in Cryptology (CRYPTO’85).
523–534.

Zooko Wilcox-O’Hearn and Brian Warner. 2008. Tahoe: The least-authority filesystem. In Proceedings of the
4th ACM International Workshop on Storage Security and Survivability (StorageSS’08). 21–26.

Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. 2011. SiLo: A similarity locality based near exact deduplication
scheme with low RAM overhead and high throughput. In Proceeding of USENIX Annual Technical
Conference (USENIX ATC’11). 285–298.

Yifeng Zheng, Xingliang Yuan, Xinyu Wang, Jinghua Jiang, Cong Wang, and Xiaolin Gui. 2015. Enabling
encrypted cloud media center with secure deduplication. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security (ASIACCS’15). 63–72.

Yukun Zhou, Dan Feng, Wen Xia, Min Fu, Fangting Huang, Yucheng Zhang, and Chunguang Li. 2015.
SecDep: A user-aware efficient fine-grained secure deduplication scheme with multi-level key manage-
ment. In Proceeding of the 31st Symposium on Mass Storage Systems and Technologies (MSST’15).
1–14.

Benjamin Zhu, Kai Li, and R Hugo Patterson. 2008. Avoiding the disk bottleneck in the data domain
deduplication file system. In Proceedings of the 6th USENIX Conference on File and Storage Technologies
(FAST’08). 269–282.

Received August 2016; revised December 2016; accepted December 2016

ACM Transactions on Storage, Vol. 13, No. 1, Article 9, Publication date: February 2017.

https://www.us-cert.gov/ncas/alerts/TA14-098A

