
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Elastic Parity Logging for SSD RAID Arrays:
Design, Analysis, and Implementation

Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, Yinlong Xu

Abstract—Parity-based RAID poses a design trade-off issue for large-scale SSD storage systems: it improves reliability against SSD

failures through redundancy, yet its parity updates incur extra I/Os and garbage collection operations, thereby degrading the endurance

and performance of SSDs. We propose EPLOG, a storage layer that reduces parity traffic to SSDs, so as to provide endurance,

reliability, and performance guarantees for SSD RAID arrays. EPLOG mitigates parity update overhead via elastic parity logging, which

redirects parity traffic to separate log devices (to improve endurance and reliability) and eliminates the need of pre-reading data in

parity computations (to improve performance). We design EPLOG as a user-level implementation that is fully compatible with

commodity hardware and general erasure coding schemes. We evaluate EPLOG through reliability analysis and trace-driven testbed

experiments. Compared to the Linux software RAID implementation, our experimental results show that our EPLOG prototype reduces

the total write traffic to SSDs, reduces the number of garbage collection operations, and increases the I/O throughput. In addition,

EPLOG significantly improves the I/O performance over the original parity logging design, and incurs low metadata overhead.

Index Terms—SSD, RAID, parity logging

✦

1 INTRODUCTION

Solid-state drives (SSDs) have seen wide adoption in desk-
tops and even large-scale data centers [37], [44], [52]. Today’s
SSDs mainly build on NAND flash memory. An SSD is
composed of multiple flash chips organized in blocks, each
containing a fixed number (e.g., 64 to 128) of fixed-size pages
of size on the order of KB each (e.g., 2KB, 4KB, or 8KB). Flash
memory performs out-of-place writes: each write programs
new data in a clean page and marks the page with old
data as stale. Clean pages must be reset from stale pages
through erase operations performed in units of blocks. To
reclaim clean pages, SSDs implement garbage collection
(GC), which chooses blocks to erase and relocates any page
with data from a to-be-erased block to another block.

Despite the popularity, SSDs still face deployment issues,
in terms of reliability, endurance, and performance. First, on
the reliability side, bit errors are common in SSDs due to
read disturb, write disturb, and data retention [9], [17], [18],
[38], and the bit error rate of flash memory generally in-
creases with the number of program/erase (P/E) cycles [17],
[29]. Unfortunately, flash-level error correction codes (ECCs)
only provide limited protection against bit errors [29], [58],
especially in large-scale SSD storage systems. Second, on
the endurance side, SSDs have limited lifespans. Each flash
memory cell can only sustain a finite number of P/E cycles

• H. Chan and P. Lee are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong. (emails:
{hwchan,pclee}@cse.cuhk.edu.hk).

• Y. Li and Y. Xu are with the School of Computer Science and
Technology, University of Science and Technology of China (emails:
{ykli,ylxu}@ustc.edu.cn).

• An earlier conference version of the paper appeared in the 46th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2016) [32]. In this journal version, we elaborate the parity commit and
recovery procedures of EPLOG, extend EPLOG with a key-value store
interface, and include substantially more evaluation results.

before wearing out [3], [18], [23]. The sustainable number
of P/E cycles is typically 100K for a single-level cell (SLC)
and 10K for a multi-level cell (MLC), and further drops to
several hundred with a higher flash density [18]. Finally, on
the performance side, small random writes are known to
degrade the I/O performance of SSDs [10], [25], [39], since
they not only aggravate internal fragmentation and trigger
more GC operations (which also degrade SSD endurance),
but also subvert internal parallelism across flash chips.

Parity-based RAID (Redundant Array of Inexpensive
Disks) [48] provides a natural option to enhance the reli-
ability of large-scale storage systems. Its idea is to divide
data into groups of fixed-size units called data chunks, and
each group of data chunks is encoded into redundant infor-
mation called parity chunks. Each group of data and parity
chunks, collectively called a stripe, provides fault tolerance
against the loss of data/parity chunks of the same stripe.
Recent studies examine the deployment of SSD RAID at the
device level [6], [29], [31], [35], [46], [47], so as to protect
against SSD failures.

However, deploying parity-based RAID in SSD storage
systems requires special attention [22], [40]. In particular,
small random writes are even more harmful to parity-based
SSD RAID in both endurance and performance. To maintain
stripe consistency, each write to a data chunk triggers up-
dates to all parity chunks of the same stripe. Small writes
in RAID imply partial-stripe writes [11], which first read
existing data chunks, re-compute new parity chunks, and
then write both new data and parity chunks. In the context
of SSD RAID, parity updates not only incur extra I/Os
(i.e., reads of existing data chunks and writes of parity
chunks), but also aggravate GC overhead due to extra parity
writes. Frequent parity updates inevitably undermine both
endurance and performance of parity-based SSD RAID.

Therefore, parity-based RAID poses a design trade-off is-
sue for large-scale SSD storage systems: it improves reliabil-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

ity against SSD failures; on the other hand, its parity updates
degrade both endurance and performance. This motivates
us to explore a new SSD RAID design that mitigates parity
update overhead, so as to provide reliability, endurance, and
performance guarantees simultaneously.

We propose EPLOG, an elastic parity logging design for
SSD RAID arrays. EPLOG builds on parity logging [55]
to redirect parity write traffic from SSDs to separate log
devices. By reducing parity writes to SSDs, EPLOG slows
down the flash wearing rate, and hence improves both reli-
ability and endurance. It further extends the original parity
logging design by allowing parity chunks to be computed
based on the newly written data chunks only, where the data
chunks may span within a partial stripe or across more than
one stripe. Such an “elastic” parity construction eliminates
the need of pre-reading old data for parity computation, so
as to improve performance. To summarize, this paper makes
the following contributions.

First, we design EPLOG as a user-level block device1 that
manages an SSD RAID array. Specifically, EPLOG uses hard-
disk drives (HDDs) to temporarily log parity information,
and regularly commits the latest parity updates to SSDs to
mitigate the performance overhead due to HDDs. We show
that EPLOG enhances existing flash-aware SSD RAID in dif-
ferent ways: (i) EPLOG is fully compatible with commodity
configurations and does not rely on high-cost components
such as non-volatile RAM (NVRAM); and (ii) EPLOG can
readily support general erasure coding schemes for high
fault tolerance.

Second, we implement an EPLOG prototype, and ad-
ditionally build a key-value store interface atop EPLOG

to demonstrate how EPLOG seamlessly supports upper-
layer applications. Specifically, we show how our key-value
store interface operates on key-value objects and metadata
atop EPLOG. The source code of our EPLOG prototype and
the key-value store interface is available for download at
http://adslab.cse.cuhk.edu.hk/software/eplog.

Third, we conduct mathematical analysis on the system
reliability in terms of mean-time-to-data-loss (MTTDL). We
show that EPLOG improves the system reliability over the
conventional RAID design when SSDs and HDDs have
comparable failure rates [56] (see our digital supplementary
file for details).

Finally, we conduct extensive trace-driven testbed exper-
iments, and demonstrate the endurance and performance
gains of EPLOG in mitigating parity update overhead. We
compare EPLOG with the Linux software RAID implemen-
tation based on mdadm [43], which is commonly used for
managing software RAID across multiple devices. We show
that EPLOG reduces the total write traffic to SSDs by 45.6-
54.9%, reduces the number of GC requests by 77.1-97.6%,
and increases the I/O throughput by 30.1-119.2% under
the (6+2)-RAID-6 setting. Also, EPLOG achieves higher
throughput than the original parity logging design, lim-
ited metadata management overhead, and maintains per-
formance gains in key-value operations.

The rest of the paper proceeds as follows. Section 2 states
our design goals and motivates EPLOG design. Section 3

1. Here, a block refers to the read/write unit at the system level, and
should not be confused with an SSD block at the flash level.

describes the design and implementation details of EPLOG.
Section 4 presents the design of the key-value store interface
atop EPLOG. Section 5 presents trace-driven evaluation
results of our EPLOG prototype. Section 6 reviews related
work, and finally Section 7 concludes the paper. In our dig-
ital supplementary file, we also present the caching design
and the detailed analysis on the system reliability of EPLOG.

2 OVERVIEW

2.1 Goals

EPLOG aims for four design goals.

• General reliability: EPLOG can tolerate a general number
of SSD failures through erasure coding. This differs from
many existing SSD RAID designs that are specific for
RAID-5 (see Section 6).

• High endurance: Since parity updates introduce extra
writes to SSDs, EPLOG aims to reduce the parity traffic
caused by small (or partial-stripe) writes to SSDs, thereby
improving the endurance of SSD RAID.

• High performance: EPLOG eliminates the extra I/Os
due to parity updates and maintains high read/write
performance.

• Low-cost deployment: EPLOG is deployable using com-
modity hardware, and does not assume high-end compo-
nents such as NVRAM as in previous SSD RAID designs
(e.g., [16], [20], [29]).

EPLOG targets workloads that are dominated by small
random writes, which lead to frequent partial-stripe writes
to RAID. For example, such workloads can be found in
database applications [21], [30] and enterprise servers [24].
Note that real-world workloads often exhibit high locality
both spatially and temporally [39], [50], [54], such that
recently updated chunks and their nearby chunks tend to
be updated more frequently. It is thus possible to exploit
caching to batch-process chunks in memory to boost both
endurance and performance (by reducing write traffic to
SSDs). On the other hand, modern storage systems also
tend to force synchronous writes through fsync/sync
operations [19], which make small random writes inevitable.
Thus, our baseline design should address synchronous
small random writes, but allows an optional caching feature
for potential performance gains.

2.2 Parity Logging

Parity logging [55] has been a well-studied solution in tradi-
tional RAID to mitigate the parity update overhead. We first
review the design of parity logging, and then motivate how
we extend its design in the context of SSD RAID.

We demonstrate how parity logging can improve en-
durance of an SSD RAID array by limiting parity traffic
to SSDs. The idea is to add separate log devices to keep
track of parity information that we refer to as log chunks. To
illustrate, Figure 1 shows an SSD RAID-5 array with three
SSDs for data and one SSD for parity (i.e., the array can
tolerate single SSD failure). In addition, one log device is
used for storing log chunks. Suppose that a stream of write
requests is issued to the array. The first two write requests,
respectively with data chunks {A0, B0, C0} and {A1, B1,
C1}, constitute two stripes. Also, the following write request



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Incoming requests: {A0, B0, C0}, {A1, B1, C1}, {B0’, C0’, A1’}

A0 B0’ C0’ P0

A1’ B1 P1 C1

Stripe 0

Stripe 1

SSD RAID-5

B0+B0’+C0+C0’

A1+A1’

Log Device

(a) Original parity logging

A0 B0 C0 P0

A1 B1 P1 C1

Stripe 0

Stripe 1

SSD RAID-5

B0’+C0’+A1’

Log Device

B0’ C0’

A1’

(b) Elastic parity logging

Fig. 1: Illustration of parity logging schemes in SSD RAID-5.

updates data chunks B0, C0, and A1 to B0’, C0’, and A1’,
respectively. Figure 1(a) illustrates how the original parity
logging works. It first reads and buffers the old data chunks
to update (i.e., B0, C0, and A1). It then computes a log
chunk by XOR-ing the old and new data chunks on a per-
stripe basis. Finally, it updates data chunks in-place at the
system level above the SSDs (note that an SSD adopts out-of-
place updates at the flash level), and appends all log chunks
(i.e., B0+B0’+C0+C0’ and A1+A1’) to the log device. Thus,
updating the data chunks trigger three read I/Os followed
by five write I/Os.

To recover any lost data chunk, parity logging first
combines both the log chunks and the existing parity chunks
in each stripe to form the up-to-date parity chunks, followed
by decoding the lost data chunks. If either parity chunks
or log chunks are lost, we directly regenerate them from
existing data chunks.

2.3 Elastic Parity Logging

The original parity logging limits parity traffic to SSDs,
thereby slowing down their wearing rates. Nevertheless, we
identify two constraints of this design. First, it needs to pre-
read old data to compute each log chunk, and hence incurs
extra read requests. Second, the log chunks are computed
on a per-stripe basis. This generates additional log chunks if
a write request spans across stripes.

We build on the original parity logging and relax its
constraints, and propose a new parity update scheme called
elastic parity logging. Figure 1(b) illustrates its idea. Specifi-
cally, when the write request updates data chunks B0, C0,
and A1 to B0’, C0’, and A1’, respectively, we perform out-
of-place updates at the system level, such that we directly
write the new data chunks to the corresponding SSDs with-
out overwriting the old data chunks. In other words, both
the old and new versions of each data chunk are kept and
accessible at the system level. In addition, we compute a
log chunk by XOR-ing only the new data chunks to form
B0’+C0’+A1’, and append it to the log device. Compared
to the original parity logging, we now store only one log
chunk instead of two. Note that the old versions of data
chunks are needed to preserve fault tolerance. For example,

if data chunk A0 is lost, we can recover it from B0, C0,
and P0, although both B0 and C0 are old versions. Overall,
elastic parity logging updates the data chunks with zero
read I/O and four write I/Os.

Unlike the original parity logging, elastic parity logging
does not need to pre-read old data chunks. It also relaxes the
constraint that the log chunks must be computed on a per-
stripe basis; instead, a log chunk can be computed from the
data chunks within part of a stripe or across more than one
stripe (hence we call the parity logging scheme “elastic”).

3 DESIGN AND IMPLEMENTATION

EPLOG is designed as a user-level block device. It runs on
top of an SSD RAID array composed of multiple SSDs, and
additionally maintains separate log devices for elastic parity
logging. In this work, we choose HDDs as log devices to
achieve low-cost deployment; while SSDs can also be used
as log devices, we do not see significant performance gains
as shown in our experiments (see our digital supplementary
file). In this section, we address the following design and
implementation issues.

• How do we construct log chunks for a write request,
such that we maintain reliability as in conventional RAID
without using parity logging?

• How do we minimize the access overheads for log chunks
in log devices, so as to maintain high performance?

• How do we manage metadata in a persistent manner in
our EPLOG implementation?

3.1 Architecture

EPLOG stores data chunks in a set of SSDs (which we
collectively call the main array) and log chunks in a set
of HDD-based log devices. Accessing log chunks in HDD-
based log devices is expensive. Thus, EPLOG issues only
sequential writes of log chunks to log devices. In addition,
it regularly commits the latest parity updates in the main
array in the background, such that the main array stores
the latest versions of data chunks and the corresponding
parity chunks. We call the whole operation parity commit.
For example, referring to Figure 1(b), we update P0 and
P1 to reflect the sets of latest data chunks {A0, B0’, C0’}
and {A1’, B1, C1}, respectively. Thus, accessing data in
degraded mode (i.e., when an SSD fails) can operate in
the main array only (as in conventional SSD RAID without
parity logging), and hence preserve performance.

EPLOG realizes the above design via a modularized
architecture, as shown in Figure 2. The log module schedules
write requests and works with the coding module for parity
computations. The data chunks are issued to the main array
via the SSD write module, while the log chunks are issued
to the log devices via the log write module. To tolerate the
same number of device failures, we require the number of
log devices in EPLOG be equal to the number of tolerable
device failures in the main array. For example, if the main
array uses RAID-6 (which can tolerate two device failures),
two log devices are needed. The commit module regularly
performs parity commit to ensure that the data and parity
chunks in the main array reflect the latest updates.

To further reduce parity traffic, we introduce two types
of buffers in the log module, namely a stripe buffer and



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

EPLog

Main Array Log Devices

. . .. . .
SSD SSD

Chunks

Coding Module

Log Write ModuleSSD Write Module

Commit
Module

Log Module

Stripe
Buffers

Device
Buffers

Incoming Writes

Fig. 2: EPLOG architecture.

multiple device buffers, to batch-process write requests in
memory. The use of buffers is optional, and does not affect
the correctness of our design. In the interest of space, we
elaborate the caching design and evaluate its performance
in the digital supplementary file.

Limitations: Before presenting the design of EPLOG, we
discuss its design limitations. First, EPLOG requires addi-
tional storage footprints to keep log chunks, although we
employ HDDs as log devices to limit the extra system cost.
Second, EPLOG keeps multiple versions of data chunks dur-
ing updates before parity commit, so we need to provision
extra space in SSDs. Third, if a failure happens before parity
commit, recovery performance may hurt due to the need
of accessing log chunks, especially when we use HDDs as
log devices. Finally, parity commit may create additional
performance overhead. Our design rationale is that if we
perform parity commit regularly on every fixed number of
write requests in batch, we can limit parity commit overhead
and the drawbacks as described above.

3.2 Write Processing

We describe how EPLOG processes a single write request
and constructs log chunks. Note that read requests under
no device failures are processed in the same way as in
traditional RAID. Thus, we omit the read details.

EPLOG distinguishes (in the log module) write requests
into two types. If the incoming write request is a new
write and spans a full stripe in the main array, we directly
write the data and parity chunks to the main array as
in conventional RAID; otherwise, if the request is a new
partial-stripe write or an update, then we write data chunks
to the main array and the computed parity logs (i.e., log
chunks) to log devices. The rationale is that both types of
writes do not pre-read data chunks from the main array
for parity computation. By issuing new full-stripe writes
directly to the main array, we save the subsequent parity
commit overhead.

Recall from Section 3.1 that EPLOG first stores data
chunks in the main array and log chunks in log devices;
after parity commit, it stores both data and parity chunks in
the main array. For ease of presentation, we call a stripe that
has data chunks stored in the main array and log chunks
stored in the log devices a log stripe, and call a stripe that

has both data and parity chunks stored in the main array a
data stripe.

Stripe generation: We first explain how we generate a data
stripe, followed by how we generate a log stripe. For a data
stripe, EPLOG applies (in the coding module) k-of-n erasure
coding (where k < n) to encode the k data chunks into
additional n−k parity chunks, such that any k out of n data
and parity chunks can reconstruct the data chunks in the
data stripe. We configure n to be the number of SSDs in the
main array, and configure k such that n − k is the tolerable
number of device failures. For example, if we construct an
SSD RAID-5 array, we set n − k = 1; for an SSD RAID-6
array, we set n− k = 2.

To generate a log stripe, we first require that the data
chunks of a log stripe belong to different SSDs. To achieve
this, we first identify the destined SSD for each data chunk
included in a write request, and then group the data chunks
written to different SSDs to form a log stripe. In particular,
for a new partial-stripe write, since the data chunks can be
written to any SSD, we combine them into a single log stripe
and distribute them across SSDs. For an update request,
since the destination of each data chunk included in the
request is given, if multiple data chunks belong to the same
SSD, then we separate them into different log stripes to
ensure that each log stripe only contain at most one data
chunk belonging to each SSD. We still use the example in
Figure 1(b) to illustrate the idea. Since the data chunks B0,
C0, and A1 belong to different SSDs, we can combine the
newly updated data chunks B0’, C0’, and A1’ into a single
log stripe. We generate only one log chunk B0’+C0’+A1’
and write it to the log device.

Suppose now that a log stripe contains k′ data chunks
to be stored in k′ different SSDs, where k′ is less than or
equal to the number of SSDs in the main array. EPLOG then
applies k′-of-n′ erasure coding to generate additional n′ − k′

log chunks, such that n′−k′ = n−k, or equivalently, n′−k′

equals the tolerable number of device failures. For example,
referring to the example in Figure 1, we can group k′ = 3

data chunks {B0’, C0’, A1’} into a log stripe. We then set
n′

= 4 and generate n′ − k′ = 1 log chunk.

EPLOG can tolerate the same number of device failures
(including SSD failures and log device failures) as we deploy
conventional RAID directly in the main array. Note that data
chunks in EPLOG are now protected by either the parity
chunks in the main array or the log chunks in the log
devices. Specifically, if a failed data chunk is not updated
since the last parity commit, then it can be recovered from
other data and parity chunks of the same data stripe in
the main array. On the other hand, if a failed data chunk
is updated before the next parity commit, then it can be
recovered by the log chunks in log devices and other data
chunks of the same log stripe. The same argument applies
when either a parity chunk or a log chunk fails. In our digital
supplementary file, we conduct mathematical analysis to
investigate how EPLOG affects the system reliability.

Chunk writes: EPLOG writes both data and parity chunks
of a data stripe, as well as the data chunks of a log stripe,
to the main array via the SSD write module, while writing
the log chunks of a log stripe to the log devices via the log
write module. The two modules use different write policies.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Algorithm 1 Parity commit

1: Scan the metadata of all log stripes and identify latest versions of
updated data chunks

2: Read latest versions of updated data chunks from the main array
3: if any data chunk is unavailable then
4: Read alive data chunks and log chunks from the associated

log stripe
5: Recover the unavailable data chunk
6: end if
7: Identify data stripes associated with the updated data chunks
8: for each identified data stripe do
9: Generate new parity chunks from the latest data chunks of

the data stripe
10: Write new parities to SSDs
11: Update stripe metadata
12: end for
13: Free all old versions of data chunks
14: Free all obsolete log chunks

First, the SSD write module uses the no-overwrite policy.
When it updates a data chunk in an SSD, it writes the new
data chunk to a new logical address instead of overwriting
the old one, and maintains a pointer to refer to the old
data chunk. This makes both the old and new data chunks
accessible after the update request. Since the parity chunks
in the main array are not yet updated, keeping both the old
and new versions of data chunks is necessary to preserve
fault tolerance (see Section 2.3 for example). When the parity
chunks in the main array are updated after parity commit,
the old versions of the data chunks can be removed. On
the other hand, the log write module uses the append-only
policy, so as to ensure sequential writes of log chunks to the
log devices and hence preserve performance.

3.3 Parity Commit

EPLOG regularly performs the parity commit operation to
ensure all data and parity chunks of data stripes are based
on the latest updates. It can trigger parity commit in one
of the following scenarios: (i) the system is idle, (ii) there is
no available space in any SSD and log device, (iii) an upper-
layer application issues a parity commit, and (iv) after every
fixed number of write requests.

Algorithm 1 shows the parity commit workflow in
EPLOG. First, EPLOG scans the metadata of all log stripes
and identifies the latest versions of updated data chunks
(line 1). It then reads the latest versions of the updated data
chunks from the SSDs of the main array (line 2). If any data
chunk is unavailable, EPLOG reconstructs the data chunk by
reading the alive data chunks and log chunks from the asso-
ciated log stripe (lines 3-6). Then EPLOG identifies the data
stripes that are associated with the updated data chunks
(line 7). For each identified data stripe, EPLOG computes the
corresponding parity chunks from the latest data chunks,
writes them back to the main array, and updates metadata
for stripe maintenance (lines 8-12). Finally, it releases the
space occupied by both the old versions of data chunks from
the main array and obsolete log chunks from the log devices
(lines 13-14).

We emphasize that parity commit does not need to
access any log chunks in the log devices in normal mode
when there is no SSD failure. The reason is that all latest
data chunks, which will be used for computing parities, are
kept in SSDs. In case there exist SSD failures during parity

commit, we can prefetch log chunks from the log devices
in batches, so as to mitigate the access overhead to the
log devices. Note that the parity commit operation remains
unaffected even if any log device fails.

In addition, although parity commit introduces extra
writes to the main array, the write traffic remains limited
compared to conventional RAID according to our evaluation
results (see Section 5.2). The reason is that we only need to
perform parity commit on the latest versions of data chunks
in the main array to construct the corresponding parity
chunks, while a data chunk may have received multiple
updates before parity commit.

We may explore the use of TRIM to explicitly remove
the obsolete data chunks during parity commit and further
remove GC overhead. On the other hand, the use of TRIM
can be tricky and it requires special handling in SSD RAID
arrays [22]; for example, we need to ensure the consistency
among data and parity chunks of each stripe after removing
a chunk from TRIM. Currently, our testbed does not support
TRIM under the RAID configuration.

3.4 Recovery

In the presence of SSD failures, EPLOG recovers lost data
and parity chunks using erasure coding. EPLOG first per-
forms parity commit to ensure that the data stripes in the
main array have the latest data and parity chunks. Then for
each data stripe, EPLOG recovers the lost chunks via erasure
coding in a new SSD.

To improve the recovery performance, we design opti-
mization techniques that favor parallelism and large I/Os to
mitigate recovery overhead. First, EPLOG issues reads and
writes across multiple SSDs in parallel via multi-threading.
In addition, EPLOG performs recovery of multiple data
stripes in batches. Specifically, it performs metadata scans
to identify a batch of data stripes to be recovered, where
the batch size (i.e., the number of data stripes) is config-
urable. It reorders and merges any read/write operations
to consecutive chunks for each SSD into a single large
read/write operation. Finally, it issues (large) reads/writes
for the available chunks and recovers the lost chunks via
erasure coding.

During the ongoing metadata scans, EPLOG can also
prefetch chunks into an in-memory cache pool. Thus, it can
directly read any chunks from the cache pool instead of from
the main array to further improve recovery performance.

3.5 Implementation Details

We build EPLOG as a user-level block device that is
compatible with commodity hardware configurations. We
implement the EPLOG prototype in C++ on Linux (with
around 7,300 lines of codes). It exports the basic block device
interface, which operates on logical addresses on underly-
ing physical devices, as a client API to allow upper-layer
applications to access the storage devices. For parity com-
putations, it implements erasure coding based on Cauchy
Reed-Solomon codes [7] using the Jerasure 2.0 library [49].
Note that EPLOG issues writes and reads to raw devices
via system calls pwrite and pread, respectively, without
using any specific block device driver.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

EPLOG is designed to provide persistent metadata man-
agement, and it supports two metadata checkpoint oper-
ations: full checkpoint and incremental checkpoint. The full
checkpoint flushes all metadata, while the incremental
checkpoint flushes any modified metadata since the last
full/incremental checkpoint. Both checkpoint operations
can be triggered regularly in the background, or by the
upper-layer applications.

EPLOG maintains a flat namespace and comprises two
types of metadata: data stripe metadata and log stripe metadata.
The data stripe metadata describes the mapping of each
data stripe to data chunks, including both the latest and old
versions of data chunks. It includes the stripe ID and chunk
locations. The log stripe metadata describes the mapping of
each log stripe to data chunks, referenced by data stripes,
and log chunks on the log devices. It contains stripe ID,
number of chunks, and a list of chunk locations.

EPLOG provides persistent metadata storage on SSDs. It
creates a separate metadata volume from the main array
to keep the metadata checkpoints. The metadata volume
comprises three areas: super block area, full checkpoint area,
and incremental checkpoint area. The superblock area is lo-
cated at the front of the metadata partition, and keeps
the essential information of the metadata layout. The full
checkpoint area follows the super block area, and keeps the
full checkpoints. It has two sub-areas [28], which hold the
latest and previous full checkpoints. The intuition is to write
the full checkpoints alternately to one of the sub-areas, so as
to ensure that there always exists a consistent copy of the
full checkpoint and hence survive any unexpected system
failure during the checkpoint operation. The incremental
checkpoint area follows the full checkpoint area. It stores
all incremental checkpoints in append-only mode.

To create the metadata volume, we first create two
partitions in each SSD in the main array, one for data and
another for metadata. We then mount a RAID-10 volume on
the metadata partitions of all SSDs using mdadm [43], and
EPLOG directly accesses the metadata on the volume. In ad-
dition, EPLOG directly accesses the data partitions of SSDs
and the log devices as raw block devices in JBOD mode.
To maintain high I/O performance, EPLOG uses multi-
threading to read/write data via the devices in parallel.

EPLOG caches all up-to-date metadata in memory to en-
able both fast metadata lookups during normal operations
and fast metadata scans during parity commit and recovery.
It maintains a hash map that indexes both data stripe meta-
data and log stripe metadata by their stripe IDs. If EPLOG

does not store any old version of data chunks (e.g., before
receiving any update or right after parity commit), then the
cache size is proportional to the number of data stripes that
are currently stored. When EPLOG receives updates before
issuing a parity commit operation, the cache size further
increases with the amount of accumulated update traffic
due to the creation of log stripes and the mappings of the
old versions of data chunks in data stripe metadata.

4 CASE STUDY: KEY-VALUE STORAGE

To show that EPLOG can seamlessly support upper-layer
applications, we design and implement a simple key-value
store interface atop the block device interface of EPLOG.

Memory

EPLog block device

Object

metadata cache

...

Obj. ptr.

Key size

Value size

Key

Key size

Value size

Key

Value

Key size

Value size

Key

Value

Key size

Value size

Key

Value

Key size

Value size

Key

Value

Key size

Value size

Key

Value

Key size

Value size

Key

Value

Object 

location table

...

Fig. 3: Key-value store architecture atop EPLOG.

Note that many flash-based key-value stores have been
proposed in the literature (e.g., [13], [14], [33], [51]). We do
not claim the novelty of the key-value store itself; instead
our goal is to demonstrate that the key-value store can easily
access data as key-value pairs in storage via EPLOG and
manage the key-value pairs with limited memory overhead.

Each key-value pair comprises a key, which acts as a
unique identifier, and a value, which contains the actual data
content, and metadata, which contains the attributes of the
key-value pair. Currently, we use 5 bytes of metadata for
each key-value pair to represent the key size in 1 byte and
the value size in 4 bytes, meaning that the key size and
the value size are at most 255 bytes and 232-1 bytes (almost
4GB), respectively.

Figure 3 shows the architecture of the key-value store
atop EPLOG. The key-value store maintains an in-memory
object location table to store the logical addresses (currently
of size 8 byte each) of key-value pairs in EPLOG. We use
cuckoo hashing [45] to realize the object location table to
allow constant-time lookups and updates with high space
utilization (up to 90% [15]). Cuckoo hashing maps each
inserted key to two possible buckets. If both buckets are
not free, it relocates an existing key to make room for the
inserted key. Each bucket holds the (8-byte) logical address
of the mapped key, and we use logical address to identify
the corresponding key to resolve hash collisions. Note that
FlashStore [14] also leverages cuckoo hashing (with a differ-
ent key relocation approach from the original one) to index
key-value pairs.

To mitigate the overhead of accessing keys via EPLOG,
we implement an optional object metadata cache in the key-
value store to cache the key, the key and value sizes, and
the logical address of a key-value pair that is recently
accessed. Like the object location table, we implement the
object metadata cache as a cuckoo hashing table. We also
implement the cache replacement policy using the ARC
algorithm [36], which captures both recency and frequency;
note that designing the best cache replacement policies is
beyond the scope of this work.

Our key-value store currently supports three key-value
operations, namely: (i) SET, which inserts new key-value
pairs, (ii) GET, which retrieves the values of existing key-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

value pairs, and (iii) UPDATE, which updates the values of
existing key-value pairs.

Our key-value store implementation itself contains
around 500 lines of code. We use the libcuckoo library
[2] to implement cuckoo hashing. Note that the integration
of our key-value store with EPLOG does not change the
internals of EPLOG.

5 EXPERIMENTS

We evaluate EPLOG via trace-driven testbed experiments,
and compare its endurance and performance with those
of the original parity logging and conventional RAID im-
plemented by Linux software RAID based on mdadm. Our
main findings are: (i) EPLOG improves the endurance of
SSD RAID by reducing both the write traffic to SSDs and
the number of GC requests, (ii) EPLOG has limited parity
commit overhead, (iii) EPLOG achieves higher I/O through-
put than baseline approaches, and (iv) our key-value store
implementation atop EPLOG preserves the performance
gains over baseline approaches.

In our digital supplementary file, we also show that
EPLOG achieves potential gains with small-sized caching
and has limited overhead on both the storage and metadata
management. We evaluate EPLOG on different aspects: (i)
the performance of EPLOG using SSDs as log devices, (ii)
the trade-off of the object metadata cache in the key-value
store implementation, (iii) the individual SSD write sizes,
and (iv) the basic I/O performance of EPLOG.

5.1 Setup

Testbed: We conduct our experiments on a machine running
Linux Ubuntu 14.04 LTS with kernel 3.13. The machine
has a quad-core 3.4GHz Intel Xeon E3-1240v2, 32GB RAM,
multiple Plextor M5 Pro 128GB SSDs as the main array, and
multiple Seagate ST1000DM003 7200RPM 1TB SATA HDDs
as the log devices. It interconnects all SSDs and HDDs via an
LSI SAS 9201-16i host bus adapter. Also, we attach an extra
SSD to the motherboard as the OS drive. Note that SATA
SSDs are still commonly found in modern data centers [42],
to which our testbed setup applies.

We compare EPLOG with two baseline parity update
schemes. The first one is the Linux software RAID imple-
mentation based on mdadm (denoted by MD) [43], which
implements conventional RAID and writes parity traffic to
SSDs directly. The second one is the original parity logging
(denoted by PL) [55], which performs parity updates at the
stripe level (see Figure 1(a)). We implement PL based on our
EPLOG prototype for fair comparisons.

We focus on RAID-5 and RAID-6, which tolerate one
and two device failures, respectively. We consider four
settings: (4+1)-RAID-5 (i.e., five SSDs), (6+1)-RAID-5 (i.e.,
seven SSDs), (4+2)-RAID-6 (i.e., six SSDs), and (6+2)-RAID-
6 (i.e., eight SSDs). For PL and EPLOG, we allocate one and
two additional HDDs as log devices for RAID-5 and RAID-
6, respectively. In all schemes, we set the chunk size as 4KB.
We use the O_DIRECT mode to bypass the internal cache.
For PL and EPLOG, we disable caching, parity commit,
and metadata checkpointing (i.e., the metadata structure re-
mains in memory), except when we evaluate these features.

Plextor SSD Seagate HDD

Sequential write (MB/s) 93.4 91.6
Random write (MB/s) 93.1 1.1

Sequential read (MB/s) 99.23 94.2
Random read (MB/s) 32.8 0.6

TABLE 1: Device performance under 4KB direct I/Os.

No. of Avg. write Random WSS
writes size (KB) write (%) (GB)

FIN 4,110,563 7.19 76.17 3.67
WEB 1,431,628 12.50 77.62 7.26
USR 1,363,855 10.05 76.19 2.44
MDS 1,069,421 7.22 82.99 3.09

TABLE 2: Trace statistics: total number of writes, average
write size, ratio of random writes, and working set size.

Preliminary benchmarks: Before we start our evaluation,
we first measure the raw device performance of the SSDs
used in the main array and the HDDs used as log devices
in our testbed. We issue 4KB requests, with a total of
2GB data, in O_DIRECT mode using fio [5] to each type
of devices and measure its performance. Table 1 shows
the throughput of the two types of devices under both
sequential and random I/Os. Although HDDs have very
low random read/write performance, its sequential write
performance is only slightly lower than the random write
performance of SSDs by 1.5 MB/s (or 1.6%). Thus, we
expect that the HDD-based log devices will not be the major
bottleneck in small-write dominant workloads targeted by
EPLOG (see Section 2.1). Note that the log-structured design
of SSDs can transform random writes into sequential ones,
so random writes can outperform random reads in SSDs [4,
Chapter “Flash-based SSDs”].

Traces: We consider four real-world I/O traces to replay in
our experiments:

• FIN: It is an I/O trace collected by the Storage Perfor-
mance Council [1]. The trace captures the workloads of
a financial OLTP application over a 12-hour period. We
choose the write-dominant trace file Financial1.spc

out of the two available traces.
• WEB, USR, and MDS: They are three I/O traces collected

by Microsoft Research Cambridge [41]. They describe the
workloads of enterprise servers of three volumes, web0,
usr0, and mds0, respectively, over a one-week period.

Note that each of the original traces spans a very large
address space, yet only a small proportion of the addresses
are actually accessed. To fit the traces into our testbed, which
has a limited storage capacity, we compact each trace by
skipping the addresses that are not accessed. Specifically,
we divide the whole logical address space of each trace
into 1MB segments. We then skip any segment that is not
accessed, and also shift the offsets of the requests in the
following accessed segments accordingly. We keep the same
request order, so as to preserve workload locality.

Before the trace replay for each trace, we first sequen-
tially write to all remaining segments (after we compact the
traces) to fully occupy the working set. Each write request
in a trace will be treated as an update. In addition, we round
up the size of each write request to the nearest multiple of
the chunk size. By making all write requests as updates, we
can stress-test the impact of parity updates.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

 0

 20

 40

 60

 80

FIN WEB USR MDS

W
ri

te
 s

iz
e 

(G
B

) MD

PL

EPLog

 0

 20

 40

 60

 80

RAID-5
(4+1)

RAID-5
(6+1)

RAID-6
(4+2)

RAID-6
(6+2)

W
ri

te
 s

iz
e 

(G
B

)

(a) Different traces under
(6+2)-RAID-6

(b) Different RAID settings
under FIN

Fig. 4: Experiment 1: Total size of write traffic to SSDs.

Table 2 summarizes the write statistics of the four traces,
after we round up the sizes of all write requests. It shows
a few key properties. First, their average write sizes are
generally small (7-13KB). Second, if we examine the access
pattern, we see that all traces have a high proportion of
random write requests. Here, by a random write request,
we mean that a write request whose starting offset differs
from the ending offset of the last write request by at least
64KB. Finally, if we examine the working set size (i.e., the
size of unique data accessed throughout the trace duration),
all traces have small working set sizes.

5.2 Results

Experiment 1 (Write traffic to SSDs): We first show the
effectiveness of EPLOG in reducing write traffic to SSDs
due to parity updates, given that our traces are dominated
by small random writes. Figure 4(a) shows the total size
of write traffic to SSDs across different traces under (6+2)-
RAID-6. Overall, EPLOG achieves a 45.6-54.9% reduction
in write size when compared to MD. Both PL and EPLOG

have the same results, since they write the same amount
of data updates to SSDs (see Figure 1), while redirecting
parity traffic to log devices. We emphasize that even though
EPLOG has the same write traffic to SSDs with PL, it
achieves much higher I/O throughput than PL due to elastic
parity logging (see Experiment 4). Figure 4(b) shows the
reduction of write traffic to SSDs across four different RAID
settings under the FIN trace (which has the most write
requests among all traces). EPLOG reduces 38.6-39.9% and
49.3-57.0% of write traffic over MD for RAID-5 and RAID-
6, respectively. Note that RAID-6 shows more significant
reduction of write traffic than RAID-5.

Experiment 2 (GC overhead): We study the endurance in
terms of GC overhead, which we measure by the average
number of GC requests to each SSD. Since SSD controllers
do not expose GC information, we resort to trace-driven
simulations using Microsoft’s SSD simulator [3] that builds
on Disksim [8]. For the simulator, we configure each SSD
with 20GB raw capacity and 16,384 blocks with 64 4KB
pages each (i.e., 256KB per block). Also, based on the default
simulator settings, each SSD over-provisions 15% of blocks
for GC (i.e., the effective capacity of each SSD is 17GB) and
triggers GC when the number of clean blocks drops below
5%. We use the default greedy algorithm in the simulator
and disable the wear-leveling block migration.

We replay the traces and use the blktrace utility
to capture block-level I/O requests for each SSD in the

 0

 10

 20

 30

FIN WEB USR MDS

N
o
. 

o
f 

re
q
u
es

ts
 (

1
0

3
)

MD

PL

EPLog

 0

 20

 40

 60

RAID-5
(4+1)

RAID-5
(6+1)

RAID-6
(4+2)

RAID-6
(6+2)

N
o
. 

o
f 

re
q
u
es

ts
 (

1
0

3
)

(a) Different traces under
(6+2)-RAID-6

(b) Different RAID settings
under FIN

Fig. 5: Experiment 2: GC overhead, measured in the average
number of GC requests to each SSD.

 0

 20

 40

 60

 80

FIN WEB USR MDS

W
ri

te
 s

iz
e 

(G
B

) MD
EPLog (1K)

EPLog (10K)
EPLog (all)
EPLog (nil)

 0

 10

 20

 30

FIN WEB USR MDS

N
o
. 

o
f 

re
q
u
es

ts
 (

1
0

3
)

MD
EPLog (1K)

EPLog (10K)
EPLog (all)
EPLog (nil)

(a) Total write size to SSDs (b) GC overhead

Fig. 6: Experiment 3: Total size of write traffic to SSDs and
GC overhead under different parity commit cases and (6+2)-
RAID-6 setting.

background. Then we feed the block I/O requests into the
simulator. We measure the total number of GC requests per
SSD, and take an average over all SSDs in the main array.

Figure 5 plots the total number of GC requests per SSD,
averaged over all SSDs. Figure 5(a) shows the results across
different traces under (6+2)-RAID-6. EPLOG significantly
reduces the number of GC requests over MD by 77.1-97.6%.
This implies EPLOG significantly improves endurance. We
also note that EPLOG reduces at least 8.1% of GC requests
over PL in all traces. The reason is that EPLOG updates data
chunks by using the no-overwrite updating policy, which
reserves part of the logical address space for data updates.
Thus, EPLOG introduces higher sequentiality for writes to
SSDs. Note that EPLOG triggers no GC under MDS and
(6+2)-RAID-6, since it reduces the amount of writes to each
SSD and does not cause the number of clean blocks to drop
below the threshold. Also, Figure 5(b) shows that EPLOG

reduces 59.6-77.1% of GC requests over MD across different
RAID settings under the FIN trace.

Experiment 3 (Parity commit overhead): Parity commit
introduces additional writes (see Section 3.3). We study the
impact of parity commit on endurance. We consider the
following cases of parity commit: (i) without any parity
commit (labeled as “nil”), (ii) commit only at the end of
trace replay (labeled as “all”), and (iii) commit every 1,000
or 10,000 write requests (labeled as “1K” and “10K”, respec-
tively). We also include the results of MD from Experiment 1
for comparison.

Figure 6 shows the parity commit overhead for different
traces under (6+2)-RAID-6. Figure 6(a) shows the total size
of write traffic to SSDs (as in Experiment 1). Compared to
the case without any parity commit, the write size increases
by up to 4.3%, 17.4%, and 24.9% when we perform par-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

 0

 5

 10

 15

 20

RAID-5
(4+1)

RAID-5
(6+1)

RAID-6
(4+2)

RAID-6
(6+2)

R
eq

u
es

ts
 p

er
 s

ec
. 
(1

0
3
)

MD PL EPLog

 0

 5

 10

 15

 20

FIN WEB USR MDSR
eq

u
es

ts
 p

er
 s

ec
. 
(1

0
3
)

MD
EPLog (10K)

EPLog (all)
EPLog (nil)

 0

 5

 10

 15

 20

FIN WEB USR MDSR
eq

u
es

ts
 p

er
 s

ec
. 
(1

0
3
)

10K, Norm.
10K, Deg.

all, Norm.
all, Deg.

(a) Different RAID settings under FIN (b) Different traces under (6+2)-RAID-6
without SSD failure

(c) Different traces under (6+2)-RAID-6
with double-SSD failure

Fig. 7: Experiment 4: I/O performance comparisons under real-world traces.

ity commit at the end of trace replay, every 10,000 write
requests, and every 1,000 write requests, respectively. The
write size with parity commit is still less than MD (e.g.,
by over 40% in some cases). Figure 6(b) plots the average
number of GC requests to each SSD (as in Experiment 2).
The number of GC requests of EPLOG is 74.8-97.1%, 68.1-
93.0%, and 67.8-88.2% less than that of MD when we per-
form parity commit at the end of trace replay, every 10,000
write requests, and every 1,000 write requests, respectively.
The results show that the parity commit overhead in write
size remains limited if we perform parity commit in groups
of writes.

Experiment 4 (I/O performance): We examine the I/O
performance of EPLOG via trace replay of the real-world
I/O traces in Table 2. We replay each trace as fast as possible
to obtain the maximum possible performance. We measure
the performance by the number of requests issued to MD,
PL, and EPLOG per unit time (in requests per second). Note
that in PL and EPLOG, the measured performance includes
the overhead of writes to the HDD-based log devices.

Figure 7(a) shows the throughput across different RAID
settings under the FIN trace without parity commit and
without any SSD failure. EPLOG outperforms MD and PL
by 119.2-197.3% and 295.7-366.1%, respectively. Both MD
and PL read data before updating or logging parity on the
update path. MD is faster than PL as MD directly updates
parities on SSDs, while PL logs parity updates to HDD-
based log devices for endurance. While the performance gap
between random writes on SSDs and sequential write on
HDDs is small (see Preliminary benchmarks in Section 5.1),
PL writes log chunks to log devices for multiple stripes un-
der cross-stripe updates, which increases the performance
overhead of logging in PL. EPLOG eliminates pre-reads of
existing data in log chunk computation, thereby increasing
the I/O throughput. In addition, EPLOG reduces the total
size of log chunks by 8-15% compared to PL (not shown
in the figure) due to elastic parity logging, which also
contributes to the throughput gains.

Figure 7(b) shows the throughput across different traces
under (6+2)-RAID-6 when parity commit is enabled, while
there is no SSD failure. First, if there is no parity commit (la-
beled as “nil”), EPLOG’s throughput is higher than MD’s by
30.1-119.2% and PL’s by 186.9-305.5% across different traces.
If we perform parity commit at the end of the trace (labeled
as “all”), EPLOG’s throughput only slightly decreases by at
most 4.79%, compared to that without parity commit. Even
if we commit every 10,000 write requests (labeled as “10K”),

 0

 50

 100

 150

 200

Before After After
(prefetch)

T
h

ro
u

g
h

p
u

t 
(M

B
/s

) 1
10
50

100
250
500

Fig. 8: Experiment 5: Recovery throughput of EPLOG under
FIN and (6+2)-RAID-6 for different batch sizes. Recovery is
performed (i) before trace replay, (ii) after trace replay, and
(iii) after trace replay with chunk prefetching.

EPLOG’s throughput drops by 23.8% on average, but it is
still higher than MD’s by 37.2% on average across traces.

We now compare the parity commit overhead in normal
mode (i.e., no SSD failure) and in degraded mode (i.e., in the
presence of SSD failures). Figure 7(c) shows the throughput
of EPLOG across different traces under (6+2)-RAID-6 when
it performs parity commit in normal and degraded modes.
To activate degraded mode, we bring down two SSDs
(i.e., a double-SSD failure) at the end of trace replay but
before the last parity commit operation is performed. Thus,
our results reflect the impact of a single degraded parity
commit operation on the overall performance. We observe
from the figure that the performance drop from normal
mode to degraded mode depends on the parity commit
frequency. When EPLOG performs parity commit every
10,000 requests, its throughput drops by up to 3.03% only
from normal mode (labeled as “10K, Norm.”) to degraded
mode (labeled as “10K, Deg.”). On the other hand, when
EPLOG performs parity commit at the end of trace replay,
its throughput drops by up to 64.8% (for the WEB trace) from
normal mode (labeled as “all, Norm.”) to degraded mode
(labeled as “all, Deg.”).

The results in Figure 7(c) illustrate the trade-off be-
tween normal and degraded performance at different parity
commit frequencies. If we perform parity commit more
frequently, EPLOG has a higher throughput drop in normal
mode, but has a lower throughput drop in degraded mode
as it needs to access fewer log chunks from the log devices.
The results also show the trade-off between endurance
and performance, as lowering the parity commit frequency
improves endurance (see Experiment 3).

Experiment 5 (Recovery performance): We evaluate the
recovery performance of EPLOG under failures. We focus on



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

the (6+2)-RAID-6 setting under the FIN trace. We consider
two cases of recovery: (i) before trace replay (i.e., chunks are
sequentially stored on SSDs) and (ii) after trace replay (i.e.,
the up-to-date chunks are stored on SSDs). We assume that
parity commit has been performed in both cases, and then
we erase the data of two SSDs to simulate a double-SSD
failure. We recover the lost data on the same two SSDs and
measure the recovery throughput as the amount of recovered
data over the total recovery time.

We also study the performance gains of our optimization
techniques (see Section 3.4). We study the impact of batched
recovery versus the batch size (i.e., the number of data
stripes to be recovered in each batched). We also consider
the impact of chunk prefetching during metadata scans.

Figure 8 shows the recovery performance of EPLOG.
Before trace replay, the recovery throughput is 60.3MB/s
and 182.9MB/s when EPLOG recovers lost data on a per-
stripe basis (i.e., batch size is one) and in batches of 100 data
stripes, respectively. This shows that batched recovery im-
proves recovery performance. Note that batching 100 data
stripes only incurs around 3MB of memory for buffering
(i.e., 4KB chunk size × 8 chunks per stripe × 100). The
performance becomes stable when the batch size is 100
or above. After trace replay, the recovery throughput is
35.0MB/s and 62.9MB/s when EPLOG recovers lost data
on a per-stripe basis and in batches of 100 stripes, respec-
tively. Since EPLOG adopts the no-overwrite policy for data
updates, the latest data chunks are no longer sequentially
stored and EPLOG issues random reads to alive chunks for
recovery. Nevertheless, chunk prefetching can improve the
recovery performance for the after-trace-replay case by at
least 43.9%.

Experiment 6 (Key-value store performance): We evaluate
our key-value store interface atop EPLOG. We also integrate
our key-value store interface with PL and MD, and evaluate
them for comparisons. We use YCSB [12] to generate two
types of key-value store workloads: (i) update-only, which
comprises UPDATE requests only, and (ii) hybrid, which
comprises 50% of UPDATE requests and 50% of GET requests.
Before running each workload, we first load 1 million key-
value pairs via SET into storage. For each workload, we then
issue 3 million requests over the 1 million key-value pairs,
such that the access pattern follows a heavy-tailed Zipf
distribution with the shape parameter 0.99. For each key-
value pair, we fix its key size as 24 bytes. Also, by varying
the value size, we configure the total size of a key-value pair
(including the metadata, key, and value) as 4KB and 8KB,
both of which align with the 4KB chunk size. To evaluate
the impact of the object metadata cache, we configure its
size as 0%, 25%, 50%, 75%, and 100% of the total number
of key-value pairs. We focus on the (6+2)-RAID-6 setting,
and disable parity commit. Figure 9 shows the throughput
results, and we make the following observations.

First, EPLOG still achieves higher throughput than MD
and PL, conforming to the results in Experiment 4 when
they run without the key-value store. For example, for 4KB
key-value pairs, EPLOG outperforms MD and PL by 70.7-
395.5% and 17.6-279.3%, respectively, in the update-only
workload, and by 28.8-92.2% and 6.4-71.2%, respectively, in
the hybrid workload.

 0

 5

 10

 15

 20

MD PL EPLog MD PL EPLog

R
eq

u
es

ts
 p

er
 s

ec
. 

(1
0

3
)

1.52-
2.72

2.20-
3.56

2.59-
13.49

2.21-
3.75

2.68-
4.22

2.85-
7.22

HybridUpdate-only

 0

 5

 10

 15

 20

MD PL EPLog MD PL EPLog

R
eq

u
es

ts
 p

er
 s

ec
. 

(1
0

3
)

0%
25%
50%
75%

100%

1.56-
2.69

1.61-
2.78

2.42-
12.24

1.89-
3.40

1.80-
3.23

2.24-
5.47

HybridUpdate-only

(a) 4KB key-value pairs (b) 8KB key-value pairs

Fig. 9: Experiment 6: Key-value store performance under
(6+2)-RAID-6 and different cache settings.

In most cases, EPLOG achieves higher throughput in
the update-only workload than in the hybrid workload, by
up to 86.9% and up to 123.8% for 4KB and 8KB key-value
pairs, respectively. In EPLOG, the update-only workload
(with UPDATE requests only) contains only random writes
without pre-reading old chunks for parity updates, while
the hybrid workload contains a mix of random reads and
random writes and the random write performance is better
than the random read performance (see Preliminary bench-
marks in Section 5.1). On the other hand, both PL and MD
achieve higher throughput in the hybrid workload than in
the update-only workload. Recall that they both pre-read
chunks for parity updates in UPDATE requests. Thus, the
overhead of UPDATE is higher than that of GET, making the
update-only workload more expensive.

In some cases, PL achieves higher throughput than
MD, for example, by 30.6-45.2% and 12.3-21.1% in the
update-only and hybrid workloads for the 4KB key-value
pairs, respectively. Such results are opposite to the ones
in Experiment 4 (see Figure 7(a)). One possible reason is
that our workloads for 4KB key-value pairs here do not
contain cross-stripe requests, as opposed to the FIN trace
in Experiment 4. This limits the parity logging overhead in
PL, making PL faster than MD.

As expected, increasing the size of the object metadata
cache significantly improves the throughput, as the over-
head of accessing the keys in storage for resolving hash
collisions decreases. The performance gain with the object
metadata cache in particular is more significant in EPLOG.
For example, when the object metadata cache size increases
from 0% to 100%, EPLOG’s throughput increases by 420.9%
and 153.4% in the update-only and hybrid workloads for
4KB key-value pairs, respectively.

6 RELATED WORK

Researchers have proposed various techniques for enhanc-
ing the performance and endurance of a single SSD, such
as disk-based write caching [54], read/write separation via
redundancy [53], and flash-aware file systems (e.g., [27],
[28], [34], [39]). EPLOG targets an SSD RAID array and
is currently implemented as a user-level block device. It
can also incorporate advanced techniques of existing flash-
aware designs, such as hot/cold data grouping [28], [39]
and efficient metadata management [27], [34], for further
performance and endurance improvements.

Flash-aware RAID designs have been proposed either
at the chip level [16], [20], [26] or at the device level [6],
[29], [31], [35], [46], [47]. For example, Greenan et al. [16]



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

keep outstanding parity updates in NVRAM and defer
them until a full stripe of data is available. FRA [31] also
defers parity updates, but keeps outstanding parity updates
in DRAM, which is susceptible to data loss. Balakrishnan
et al. [6] propose to unevenly distribute parities among
SSDs to avoid correlated failures. Lee et al. [29] and Im
et al. [20] propose the partial parity idea, which generates
parity chunks from partial stripes and maintains the parity
chunks in NVRAM. HPDA [35] builds an SSD-HDD hybrid
architecture which keeps all parities in HDDs and uses the
HDDs as write buffers. Kim et al. [26] propose an elastic
striping method that encodes the newly written data to form
new data stripes and writes the data and parity chunks
directly to SSDs without NVRAM. Pan et al. [47] propose
a diagonal coding scheme to address the system-level wear-
leveling problem in SSD RAID, and the same research group
[46] extends the elastic striping method by Kim et al. [26]
with a hotness-aware design. LDM [57] stores both data and
parities in SSDs in a RAID-5 setting, while it buffers writes
in mirrored HDDs as in HPDA [35].

EPLOG relaxes the constraints of parity construction
in which parity can be associated with a partial stripe,
following the same rationale as previous work [20], [26],
[29], [46]. Compared to previous work, EPLOG keeps log
chunks with elastic parity logging using commodity HDDs
rather than NVRAM as in [20], [29]. Also, instead of directly
writing parity chunks to SSDs [26], [46], EPLOG keeps
log chunks in log devices to limit parity write traffic to
SSDs, especially when synchronous writes are needed (see
Section 2.1). While HPDA [35] also uses HDDs to keep
parities as in EPLOG, it always keeps all parities in HDDs
and treats HDDs as a write buffer, but does not explain
how parities in HDDs are generated and stored. In contrast,
EPLOG ensures sequential writes of log chunks to HDD-
based log devices and regularly performs parity commit
in SSDs (note that parity commit does not need to access
log devices in normal mode). In addition, EPLOG employs
an elastic logging policy, which does not need to pre-read
old data chunks and also relaxes the constraint of per-stripe
basis in computing parity logs, so as to reduce the amount of
logs and fully utilize device-level parallelism among SSDs.
We point out that EPLOG targets general RAID schemes that
tolerate a general number of failures, as opposed to single
fault tolerance as assumed in most existing approaches
discussed above.

7 CONCLUSIONS

We present EPLOG, a user-level block device that mitigates
parity update overhead in SSD RAID arrays through elastic
parity logging. It encodes new data chunks to form log
chunks and appends the log chunks into separate log de-
vices, while the data chunks may span in a partial stripe or
across more than one stripe. We carefully build our EPLOG

prototype and its integration with a key-value store interface
on commodity hardware. Our evaluation shows that EPLOG

improves reliability, endurance, and performance.

ACKNOWLEDGMENTS

The work was supported in part by National Nature Sci-
ence Foundation of China (61772484), and Anhui Provincial

Natural Science Foundation (1508085SQF214).

REFERENCES

[1] Storage Performance Council.
http://traces.cs.umass.edu/index.php/Storage/Storage, 2002.

[2] libcuckoo. https://github.com/efficient/libcuckoo, 2013.
[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,

and R. Panigrahy. Design Tradeoffs for SSD Performance. In Proc.
of USENIX ATC, 2008.

[4] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating
Systems: Three Easy Pieces. Arpaci-Dusseau Books, 2015.

[5] J. Axboe. Flexible I/O Tester. https://github.com/axboe/fio,
2005.

[6] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi. Dif-
ferential RAID: Rethinking RAID for SSD Reliability. ACM Trans.
on Storage, 6(2):4:1–4:22, Jul 2010.

[7] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman. An XOR-Based Erasure-Resilient Coding Scheme.
Technical Report TR-95-048, International Computer Science Insti-
tute, UC Berkeley, Aug. 1995.

[8] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger. The
DiskSim Simulation Environment Version 4.0 Reference Manual,
2008.

[9] Y. Cai, E. Haratsch, O. Mutlu, and K. Mai. Error Patterns in
MLC NAND Flash Memory: Measurement, Characterization, and
Analysis. In Prof. of DATE, 2012.

[10] F. Chen, D. A. Koufaty, and X. Zhang. Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based
Solid State Drives. In Proc. of ACM SIGMETRICS, 2009.

[11] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-Performance, Reliable Secondary Storage.
ACM Computing Surveys, 26(2):145–185, 1994.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proc. of ACM
SoCC, 2010.

[13] B. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding up inline
storage deduplication using flash memory. In Proc. of USENIX
ATC, 2010.

[14] B. Debnath, S. Sengupta, and J. Li. Flashstore: High throughput
persistent key-value store. Proc. of VLDB Endowment, 3(1-2):1414–
1425, Sept. 2010.

[15] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact
and Concurrent MemCache with Dumber Caching and Smarter
Hashing. In Proc. of USENIX NSDI, 2013.

[16] K. Greenan, D. D. E. Long, E. L. Miller, T. Schwarz, and A. Wildani.
Building Flexible, Fault-Tolerant Flash-based Storage Systems. In
Proc. of USENIX HotDep, 2009.

[17] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing Flash Memory:
Anomalies, Observations, and Applications. In Proc. of IEEE/ACM
MICRO, 2009.

[18] L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak Future of
NAND Flash Memory. In Proc. of USENIX FAST, 2012.

[19] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. A File is Not a File: Understanding the I/O
Behavior of Apple Desktop Applications. In Proc. of ACM SOSP,
2011.

[20] S. Im and D. Shin. Flash-Aware RAID Techniques for Depend-
able and High-Performance Flash Memory SSD. IEEE Trans. on
Computers, 60(1):80–92, Jan 2011.

[21] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O Stack Optimization
for Smartphones. In Proc. of USENIX ATC, 2013.

[22] N. Jeremic, G. Mühl, A. Busse, and J. Richling. The Pitfalls of
Deploying Solid-state Drive RAIDs. In Proc. of ACM SYSTOR,
2011.

[23] M. Jung and M. Kandemir. Revisiting Widely Held SSD Expecta-
tions and Rethinking System-level Implications. In Proc. of ACM
SIGMETRICS, 2013.

[24] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda. Charac-
terization of Storage Workload Traces from Production Windows
Servers. In Proc. of IEEE IISWC, 2008.

[25] H. Kim and S. Ahn. BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage. In Proc. of USENIX
FAST, 2008.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

[26] J. Kim, J. Lee, J. Choi, D. Lee, and S. Noh. Improving SSD
Reliability with RAID via Elastic Striping and Anywhere Parity.
In Proc. of IEEE/IFIP DSN, 2013.

[27] J. Kim, H. Shim, S.-Y. Park, S. Maeng, and J.-S. Kim. FlashLight: A
Lightweight Flash File System for Embedded Systems. ACM Trans.
on Embedded Computing Systems, 11S(1):18:1–18:23, June 2012.

[28] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A New File System
for Flash Storage. In Proc. of USENIX FAST, 2015.

[29] S. Lee, B. Lee, K. Koh, and H. Bahn. A Lifespan-aware Reliability
Scheme for RAID-based Flash Storage. In Proc. of ACM SAC, 2011.

[30] S.-W. Lee and B. Moon. Design of Flash-based DBMS: An In-page
Logging Approach. In Proc. of ACM SIGMOD, 2007.

[31] Y. Lee, S. Jung, and Y. H. Song. FRA: A Flash-aware Redun-
dancy Array of Flash Storage Devices. In Proc. of IEEE/ACM
CODES+ISSS, 2009.

[32] Y. Li, H. H. W. Chan, P. P. C. Lee, and Y. Xu. Elastic Parity Logging
for SSD RAID Arrays. In Proc. of IEEE/IFIP DSN, 2016.

[33] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Wisckey: Separating keys from values in
ssd-conscious storage. ACM Trans. on Storage, 13(1):5:1–5:28, Mar.
2017.

[34] Y. Lu, J. Shu, and W. Wang. ReconFS: A Reconstructable File
System on Flash Storage. In Proc. of USENIX FAST, 2014.

[35] B. Mao, H. Jiang, S. Wu, L. Tian, D. Feng, J. Chen, and L. Zeng.
HPDA: A Hybrid Parity-based Disk Array for Enhanced Perfor-
mance and Reliability. ACM Trans. on Storage, 8(1):4:1–4:20, Feb
2012.

[36] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead
Replacement Cache. In Proc. of USENIX FAST, 2003.

[37] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A Large-Scale Study of
Flash Memory Failures in the Field. In Proc. of ACM SIGMETRICS,
2015.

[38] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill. Bit Error Rate in NAND
Flash Memories. In Proc. of IEEE IRPS, 2008.

[39] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS: Random
Write Considered Harmful in Solid State Drives. In Proc. of
USENIX FAST, 2010.

[40] S. Moon and A. L. N. Reddy. Don’t Let RAID Raid the Lifetime of
Your SSD Array. In Proc. of USENIX HotStorage, 2013.

[41] D. Narayanan, A. Donnelly, and A. Rowstron. Write Off-loading:
Practical Power Management for Enterprise Storage. ACM Trans.
on Storage, 4(3):10:1–10:23, Nov. 2008.

[42] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Siva-
subramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid. Ssd
failures in datacenters: What? when? and why? In Proc. of ACM
SYSTOR, 2016.

[43] J. Ostergaard and E. Bueso. The Software-RAID HOWTO. http:
//tldp.org/HOWTO/html single/Software-RAID-HOWTO.

[44] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang. SDF:
Software-defined Flash for Web-scale Internet Storage Systems. In
Proc. of ACM ASPLOS, 2014.

[45] R. Pagh and F. F. Rodler. Cuckoo Hashing. Journal of Algorithms,
51(2):122–144, May 2004.

[46] Y. Pan, Y. Li, Y. Xu, and Z. Li. Grouping-Based Elastic Striping
with Hotness Awareness for Improving SSD RAID Performance.
In Proc. of IEEE/IFIP DSN, 2015.

[47] Y. Pan, Y. Li, Y. Xu, and W. Zhang. DCS5: Diagonal Coding Scheme
for Enhancing the Endurance of SSD-Based RAID-5 Systems. In
Proc. of IEEE NAS, 2014.

[48] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In Proc. of ACM SIGMOD,
1988.

[49] J. S. Plank and K. M. Greenan. Jerasure: A Library in C Facili-
tating Erasure Coding for Storage Applications. Technical Report
UT-EECS-14-721, University of Tennessee, EECS Department, Jan
2014.

[50] C. Ruemmler and J. Wilkes. UNIX Disk Access Patterns. In
USENIX Winter 1993 Technical Conference, 1993.

[51] Z. Shen, F. Chen, Y. Jia, and Z. Shao. Didacache: A deep integration
of device and application for flash based key-value caching. In
Proc. of USENIX FAST, 2017.

[52] R. S. Sinkovits, P. Cicotti, S. Strande, M. Tatineni, P. Rodriguez,
N. Wolter, and N. Balac. Data Intensive Analysis on the Gordon
High Performance Data and Compute System. In Proc. of ACM
KDD, 2011.

[53] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S. Brandt.
Flash on Rails: Consistent Flash Performance through Redun-
dancy. In Proc. of USENIX ATC, 2014.

[54] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wob-
ber. Extending SSD Lifetimes with Disk-based Write Caches. In
Proc. of USENIX FAST, 2010.

[55] D. Stodolsky, G. Gibson, and M. Holland. Parity Logging Over-
coming the Small Write Problem in Redundant Disk Arrays. In
Proc. of ISCA, 1993.

[56] K. Thomas. Solid State Drives No Better Than Others, Survey Says.
www.pcworld.com/article/213442.

[57] S. Wu, B. Mao, X. Chen, and H. Jiang. LDM: Log Disk Mirroring
with Improved Performance and Reliability for SSD-Based Disk
Arrays. ACM Trans. on Storage, 12(4):22:1–22:21, May 2016.

[58] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge. Understanding the
Robustness of SSDs under Power Fault. In Proc. of USENIX FAST,
2013.

Helen H. W. Chan received the B.Eng. degree
in Computer Engineering from The Chinese Uni-
versity of Hong Kong in 2013. She is now pursu-
ing her Ph.D. degree in Computer Science and
Engineering at The Chinese University of Hong
Kong. Her research interests include storage re-
liability and flash-based storage.

Yongkun Li is currently an associate professor
in School of Computer Science and Technology,
University of Science and Technology of China.
He received the B.Eng. degree in Computer Sci-
ence from University of Science and Technol-
ogy of China in 2008, and the Ph.D. degree in
Computer Science and Engineering from The
Chinese University of Hong Kong in 2012. His
research mainly focuses on data-intensive com-
puting systems, with emphasis on file systems
and memory systems.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University
of Hong Kong in 2003, and the Ph.D. degree
in Computer Science from Columbia University
in 2008. He is now an Associate Professor of
the Department of Computer Science and En-
gineering at the Chinese University of Hong
Kong. His research interests are in various ap-

plied/systems topics including storage systems, distributed systems and
networks, operating systems, dependability, and security.

Yinlong Xu received the Bachelor’s degree
in mathematics from Peking University in 1983,
and the master and PhD degrees in computer
science from University of Science and Tech-
nology of China (USTC) in 1989 and 2004, re-
spectively. He is currently a professor with the
School of Computer Science and Technology
at USTC. His research interests include net-
work coding, wireless network, combinatorial op-
timization, design and analysis of parallel algo-
rithm, parallel programming tools, etc. He re-

ceived the Excellent PhD Advisor Award of Chinese Academy of Sci-
ences in 2006.


