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Cross-Rack-Aware Updates in Erasure-Coded
Data Centers: Design and Evaluation

Zhirong Shen and Patrick P. C. Lee

Abstract—The update performance in erasure-coded data centers is often bottlenecked by the constrained cross-rack bandwidth. We
propose CAU, a cross-rack-aware update mechanism that aims to mitigate the cross-rack update traffic in erasure-coded data centers.
CAU builds on three design elements: (i) selective parity updates, which select the appropriate parity update approach based on the
update pattern and the data layout to reduce the cross-rack update traffic; (ii) data grouping, which relocates and groups updated data
chunks in the same rack to further reduce the cross-rack update traffic; and (iii) interim replication, which stores a specified number of
temporary replicas for each newly updated data chunk. We evaluate CAU via trace-driven analysis, local cluster experiments, and
Amazon EC2 experiments. We show that CAU enhances state-of-the-arts by mitigating the cross-rack update traffic as well as
maintaining high update performance in both local cluster and geo-distributed environments.
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1 INTRODUCTION

Modern data centers (DCs) (e.g., [5], [11], [22]) deploy
thousands of storage nodes (or servers) in one or multiple
geographic regions to provide large-scale storage services.
It is critical for DCs to provide data reliability guarantees
in the face of failures, which can be caused by unexpected
factors from hardware (e.g., disk malfunctions) to software
(e.g., file system errors). A common solution to address-
ing data reliability is to keep data with redundancy, in
which replication and erasure coding are two most widely de-
ployed approaches. Compared to replication, which creates
multiple identical copies of data, erasure coding provably
achieves the same degree of fault tolerance while incurring
much less redundancy [40], and has been widely deployed
in enterprise DCs [11], [15], [22]. At a high level, erasure
coding takes a number of data chunks as input and produces
additional redundant chunks called parity chunks, such that
even if some data or parity chunks are lost due to failures,
the lost chunks can still be reconstructed from the remaining
available data and parity chunks.

Although erasure coding is storage-efficient, maintain-
ing the consistency between data and parity chunks incurs
high performance overhead under update-intensive work-
loads, since any update of a data chunk triggers parity
updates for all other dependent parity chunks. We argue
that updates become more common in today’s DC storage
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workloads. For example, the proportion of updates in low-
latency workloads in Yahoo!’s DCs reaches nearly 50% and
continues to increase [32]. Deletes, which can be viewed as a
special case of updates, are also common operations in Mi-
crosoft’s erasure-coded DCs [7]. Furthermore, updates are
mostly of small sizes (e.g., in online transactional processing
[31] and enterprise server workloads [6]), and frequent
small-size updates in turn lead to intensive parity updates
in erasure-coded storage. Mitigating the update overhead in
erasure-coded DCs is clearly a critical deployment issue.

The hierarchical topological nature of DCs further com-
plicates the design of efficient updates in erasure-coded
storage. Modern DCs organize nodes in racks, in which the
cross-rack bandwidth is often oversubscribed [4] and much
more scarce than the inner-rack bandwidth (typically 5-20×
lower [3], [8]), yet it is heavily consumed by various types
of workloads, such as replica writes [8], failure recovery
[28], and data analytics [3], [16]. The same phenomenon
is also found in geo-distributed DCs, in which nodes are
located in multiple geographical regions and the cross-
region bandwidth is much more scarce than the inner-region
bandwidth [39]. Thus, enabling efficient updates with cross-
rack (or cross-region) awareness is necessary, but is unfor-
tunately largely unexplored by previous work on erasure-
coded updates in the literature (see §6).

In this paper, we propose CAU, a novel cross-rack-aware
update mechanism that mitigates the cross-rack update traffic
(i.e., the cross-rack traffic triggered for maintaining the
consistency of data and parity chunks in update operations)
in erasure-coded DCs; note that CAU is also applicable for
mitigating the cross-region update traffic in geo-distributed
DCs. CAU builds on three design elements. First, CAU
adopts selective parity updates, which selectively perform the
appropriate parity update approach based on the update
pattern and the data layout in a DC. Second, CAU can
be extended to support data grouping, which relocates and
groups updated data chunks into the same rack, so as to
allow aggregate updates in the same rack and further reduce
the cross-rack update traffic. Furthermore, CAU performs
interim replication, which creates a specified number of short-
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lived replicas to maintain high data reliability against a
number of rack failures, while limiting the addition of cross-
rack traffic. Note that CAU is generic and can be applied to
any practical erasure code that performs encoding based
on linear combinations (see §2.3). Our contributions are
summarized below:
• We present CAU, a novel cross-rack-aware update mech-

anism that mitigates the cross-rack update traffic through
selective parity updates and data grouping.

• We show via reliability analysis that CAU maintains relia-
bility guarantees through interim replication, as compared
to traditional erasure coding that performs parity updates
immediately for each updated data chunk.

• We implement a CAU prototype that is deployable in
distributed environments, and evaluate CAU under real-
world workloads from three perspectives: (i) trace-driven
analysis, (ii) local cluster experiments, and (iii) Amazon
EC2 experiments. Our trace-driven analysis shows that for
some configurations, CAU saves 25.6-74.5% of cross-rack
update traffic over the baseline approach and the recently
proposed erasure-coded update scheme PARIX [18]. Also,
our CAU prototype improves the update performance by
29.1-54.6% and 24.9-33.8% in local cluster and Amazon
EC2 experiments, respectively.

The source code of our CAU prototype is available for
download at http://adslab.cse.cuhk.edu.hk/software/cau.

2 BACKGROUND

2.1 DC Architecture

We consider erasure-coded storage in a DC with a two-level
hierarchical architecture. Specifically, a DC comprises multi-
ple nodes (or servers) that provide storage space. It partitions
nodes into different racks, such that multiple nodes within
the same rack are connected via a top-of-rack (ToR) switch,
while multiple racks are connected by the aggregation and
core switches that collectively form the network core. Figure 1
depicts the DC architecture. Such a two-level hierarchical
architecture is also employed in modern DC deployment
[11], [22] and assumed by previous work [8], [14], [19], [36].

Our goal is to mitigate the cross-rack update traffic
triggered by update operations in erasure-coded storage.
We assume that the performance bottleneck of a DC lies
in the cross-rack data transfer over the network core as in
prior work [8], [14], [19], [36], as modern DCs are often
oversubscribed and have constrained cross-rack bandwidth
(see §1). Also, each node can be attached with multiple disks
to achieve high I/O throughput [8], thereby further pushing
the bottleneck to the network core. While our work focuses
on rack-based DCs, we can also generalize our analysis
to geo-distributed DCs, in which cross-region data transfer
over the wide-area network is the performance bottleneck
and the cross-region update traffic should be mitigated.

2.2 Erasure Coding

In this paper, we focus on a well-known family of erasure
codes called Reed-Solomon (RS) codes [29], which are de-
ployed in today’s production DCs [11], [22], [24]. Specifi-
cally, we construct RS codes with two configurable integers

Node
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Parity ChunkNetwork CoreNetwork Core

Rack

Fig. 1. A DC that comprises four racks with four nodes each. Suppose
that the DC employs RS(14,10) for erasure coding. It may distribute the
data and parity chunks of a stripe across 14 different nodes that reside
in the four racks.

n and k (where 0 < k < n), and denote the code construc-
tion by RS(n,k). Suppose that the data is organized in fixed-
size units called chunks. For every k (uncoded) chunks called
data chunks, RS codes encode them into n − k additional
(coded) chunks called parity chunks via linear combinations
(see §2.3 for details), such that any k out of the n data and
parity chunks can reconstruct the original k data chunks. We
call the set of the n data and parity chunks a stripe, which
is distributed across n nodes to tolerate any n − k node
failures. In our discussion, we refer to the nodes that store
data chunks and parity chunks as data nodes and parity nodes,
respectively. In practice, a DC stores many stripes that are
independently encoded and distributed across n different
nodes, so each node can act as a data node or a parity node
for different stripes. In this paper, we focus on the update
operation for a single stripe.

RS codes are both storage-optimal and general: by storage-
optimal, we mean that the storage overhead (i.e., n/k) is the
minimum to provide fault tolerance against any n− k node
failures (such storage-optimal fault tolerance is also called
the Maximum Distance Separable property); by general, we
mean that n and k can be arbitrary integers (provided that
0 < k < n). The RS code construction that we consider is
systematic, meaning that the k data chunks are included in a
stripe after encoding.

To provide rack-level fault tolerance, existing erasure-
coded DCs distribute each stripe across n nodes in n distinct
racks [11], [15], [22]. Recent studies [14], [21], [36] propose
to store each stripe in n nodes that reside in r racks, for
some parameter r < n, to cut down the cross-rack traffic
during failure repair at the expense of reduced rack-level
fault tolerance. It is shown in [14] that the overall reliability
can be improved under independent failures due to the
reduction of cross-rack repair traffic, but drops when corre-
lated failures become more common. For example, Figure 1
shows that the 14 chunks of a stripe coded by RS(14,10) are
stored in r = 4 racks. Here, we assume that each rack should
store no more than n − k chunks per stripe, so that an erasure-
coded DC can tolerate at least a single rack failure. In this work,
we study how to mitigate the cross-rack update traffic by
placing a stripe in r < n racks.

2.3 Parity Updates in Erasure Coding
Most practical erasure codes perform encoding via lin-
ear combinations. We use RS codes as an example. Let
D1, D2, · · · , Dk be the k data chunks, P1, P2, · · · , Pn−k be
the n− k parity chunks, and {γi,j}1≤i≤k,1≤j≤n−k be the set
of some encoding coefficients. Each parity chunk Pj , where
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1 ≤ j ≤ n − k, can be computed based on Galois Field
arithmetic [26] as follows:

Pj =
k∑

i=1

γi,jDi. (1)

From Equation (1), we can also efficiently update a parity
chunk for any update of a data chunk. Suppose that a data
chunk Di (where 1 ≤ i ≤ k) is updated to D′i. Then we can
update each parity chunk Pj (where 1 ≤ j ≤ n− k) into P ′j
as follows:

P ′j = Pj + γi,j(D
′
i −Di). (2)

Equation (2) implies that a parity chunk can be updated
directly from the delta of the data chunk D′i − Di, without
accessing other unchanged data chunks of the same stripe.
We call this type of parity updates delta-based updates. To
elaborate, when a data node updates a data chunk Di to
a new data chunk D′i, it sends the delta D′i − Di to each
of the n− k parity nodes, which update their parity chunks
based on Equation (2) (note that the coefficient γi,j is known
and determined by the erasure code construction). If we
distribute a stripe across r = n racks, the amount of cross-
rack traffic for parity updates is equal to n−k chunks, as the
delta D′i − Di has the same size as a data chunk. An open
question is: if we distribute a stripe across r < n racks, can
we reduce the cross-rack update traffic?

3 CROSS-RACK-AWARE UPDATES

CAU is a cross-rack-aware update mechanism that aims to
mitigate the cross-rack update traffic. It builds on three
design elements: selective parity updates, data grouping,
and interim replication.

3.1 Append-Commit Procedure
To avoid frequent parity updates, CAU adopts an iterative
append-commit procedure to update data chunks. Each itera-
tion consists of the append and commit phases (see Figure 2).
In the append phase, when a data chunk is updated, CAU
first identifies the data node where the original data chunk
resides. It then appends the new data chunk to an append-
only log that is co-located with and maintained by the data
node, without immediately updating the associated parity
chunks. The length of the append phase can be adjusted
depending on the update frequency; for example, it lasts
for a fixed time period if the update frequency is low, or
until the append-only log reaches a size limit if the update
frequency is high. Then CAU switches to the commit phase,
in which it updates the parity chunks (via delta-based
updates) based on the new data chunks in the append-only
log of each data node. CAU performs the two phases of the
append-commit procedure iteratively.

The append-commit procedure defers parity updates to
exploit the opportunity of aggregating the updates of data
or parity chunks in batch, and we use this property to design
selective parity updates (see §3.2) and data grouping (see
§3.3). However, it also degrades reliability as there is no
redundancy to protect the updated data chunks until the
commit phase. We address this issue via interim replication
(see §3.4) and conduct reliability analysis (see §3.5) to justify
that the fault tolerance is preserved.
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Fig. 2. Append-commit procedure (DN: data node; PN: parity node).

3.2 Selective Parity Updates

In the commit phase, parity updates incur cross-rack trans-
fers when the data and parity chunks being updated reside
in different racks. Here, we extend the delta-based updates
(see §2.3) into selective parity updates so as to mitigate the
cross-rack update traffic.

Problem: We first formalize the parity update problem as
follows. Consider a stripe of n erasure-coded chunks, with
k data chunks {D1, D2, · · · , Dk} and n − k parity chunks
{P1, P2, · · · , Pn−k} that are spread across r racks denoted
by {R1, R2, · · · , Rr}. Without loss of generality, suppose
that rack Ri has i′ data chunks being updated, denoted
by {D1, D2, · · · , Di′}, and another rack Rj has j′ parity
chunks of the same stripe, denoted by {P1, P2, · · · , Pj′},
where 1 ≤ i 6= j ≤ r, 1 ≤ i′ ≤ k, and 1 ≤ j′ ≤ n − k.
To update each parity chunk Pm into P ′m in Rj (where
1 ≤ m ≤ j′), we can generalize Equation (2) as:

P ′m = Pm +
i′∑

h=1

γh,m(D′h −Dh), (3)

where γh,m is the encoding coefficient used by Dh (where
1 ≤ h ≤ i′) for the parity chunk Pm.

Based on Equation (3), we observe that there are two
different ways to update a parity chunk in the commit
phase. We call them data-delta commit and parity-delta commit.
Figure 3 illustrates the two parity update approaches, as
elaborated below.

Data-delta commit: A data-delta commit operation updates
multiple parity chunks based on the change of each single
data chunk (see Figure 3(a)). Specifically, for each data
chunkDh (where 1 ≤ h ≤ i′) being updated, CAU computes
a data-delta chunk D′h − Dh. It then sends each of the i′

data-delta chunks from Ri to one of the j′ parity nodes in
Rj , which then forwards a copy of each data-delta chunk
to each of the remaining j′ − 1 parity nodes. To update
each parity chunk Pm into P ′m (where 1 ≤ m ≤ j′), the
corresponding parity node adds all i′ data-delta chunks to
Pm as in Equation (3). We see that a data-delta commit
operation incurs a cross-rack transfer of i′ data-delta chunks.
Figure 3(a) shows the data-delta commit operation with
i′ = 2 and j′ = 3.

Parity-delta commit: A parity-delta commit operation up-
dates each parity chunk by aggregating the changes of mul-
tiple data chunks (see Figure 3(b)). Specifically, to update
each parity chunk Pm into P ′m (where 1 ≤ m ≤ j′) in
Rj , CAU collects all changes of data chunks in one of the
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Fig. 3. Selective parity updates: (a) data-delta commit and (b) parity-
delta commit. In (a), CAU sends i′ = 2 data-delta chunks from Ri to
Rj ; in (b), CAU sends j′ = 2 parity-delta chunks from Ri to Rj .

data nodes in Ri. The data node then computes a parity-
delta chunk

∑i′

h=1 γh,m(D′h −Dh) and sends it to the parity
node that stores Pm. The parity node adds the received
parity delta chunk to Pm to form P ′m based on Equation (3).
We see that a parity-delta commit operation incurs a cross-
rack transfer of j′ parity-delta chunks. Figure 3(b) shows the
parity-delta commit operation with i′ = 3 and j′ = 2.

Discussion: The key difference between data-delta commit
and parity-delta commit lies in where we compute the
change of a parity chunk. In data-delta commit, we compute
the change of a parity chunk in Rj , where the parity chunks
are stored; in contrast, in parity-delta commit, we first
compute the change of a parity chunk in Ri and then send
the result to Rj . Both approaches incur different amounts of
cross-rack update traffic. CAU performs the following deci-
sion: if i′ ≤ j′, CAU performs data-delta commit; otherwise,
it performs parity-delta commit. Thus, the amount of cross-
rack update traffic is min{i′, j′}.

Note that the current design of selective parity updates
does not necessarily achieve the theoretically minimum
cross-rack update traffic. For example, in data-delta commit,
we treat all i′ data-delta chunks different, but if they are
identical, we may send only one data-delta chunk from Ri

to Rj . Also, in parity-delta commit, we update each parity
chunks independently. However, if the underlying erasure
code allows one parity chunk to be computed from another
parity chunk (e.g., RDP [10]), we may send only one parity-
delta chunk (instead of j′ parity-delta chunks) from Ri to
Rj , and compute all parity chunks within Rj . How to find
the theoretically minimum cross-rack update traffic is posed
as future work.

3.3 Data Grouping

The effectiveness of selective parity updates is restricted
by the underlying chunk placement. Here, we further re-
duce the cross-rack update traffic by relocating chunks to
different nodes. Our observation is that the same group
of data chunks is likely updated across several append-
commit iterations due to high spatial locality in updates
[37]. Thus, CAU performs data grouping, which relocates
the data chunks that are updated in the current append-
commit iteration to be stored in the same rack, so that
they can be updated together within the same rack in the
following append-commit iterations; meanwhile, the reloca-
tion should maintain the same degree of fault tolerance.

To limit parity recomputations, our current data group-
ing design processes each stripe independently, rather than

Ri1 Rj1

parity nodedata node

Ri1 Ri2 Rj1

data-delta chunk

swap

Rj2 Rj3

Rj2 Rj3
parity-delta chunk

(a) before data grouping

(b) after data grouping

Fig. 4. Data grouping: we can swap the updated data chunk in Ri2 with
one of the chunks in Ri1, such that the four updated data chunks are
now stored in Ri1.

multiple stripes. Also, to limit expensive data relocations,
it only selects two racks for each stripe to perform data
grouping, by relocating the data chunks of one rack into
another rack. Such design choices are sufficient for reducing
the cross-rack update traffic (see §5).

Algorithm 1 shows how data grouping works. CAU
performs data grouping on a per-stripe basis at the end of
each append-commit iteration. For each stripe that has data
chunks updated in an append-commit iteration, CAU first
identifies rack Ri that has the highest number of updated
data chunks in the stripe in the last append phase (step 2).
Suppose that Ri stores ci data chunks including the i′

updated data chunks, where we require that ci ≤ n − k for
single-rack fault tolerance (see §2.2). Then CAU checks the
remaining r−1 racks. For each rackRl (where 1 ≤ i 6= l ≤ r)
that has l′ updated data chunks of the same stripe, CAU
first checks if i′ + l′ ≤ ci (step 4). The rationale is that if
we swap all the l′ updated chunks from Rl with l′ non-
updated data chunks in Ri, and the next append phase only
updates the i′ + l′ chunks, then we can eliminate the cross-
rack update traffic from Rl in the future commit phases.
Specifically, we calculate bl and b∗l , which correspond to
the amounts of cross-rack update traffic (in units of chunks)
before and after relocating l′ chunks from Rl to Ri, based
on selective parity updates in §3.2. Since the relocation will
swap the l′ updated data chunks in Rl and another l′

non-updated data chunks in Ri, it also incurs a cross-rack
traffic of 2l′ chunks. Thus, the gain of such data grouping
is bl − (b∗l + 2l′) (step 5). Finally, CAU finds the rack Rl

that has the maximum gain, and swaps its l′ updated data
chunks with the l′ non-updated chunks inRi (steps 8-9). The
complexity of Algorithm 1 isO(tr), where t is the number of
stripes that have data chunks updated and r is the number
of racks.

Figure 4 depicts the idea of data grouping. Before data
grouping, rack Ri1 has i′1 = 3 updated data chunks and
rack Ri2 has i′2 = 1 updated data chunk. Suppose that
we want to relocate the updated data chunk in Ri2 to Ri1

(which has the most updated data chunks). Before data
grouping (see Figure 4(a)), in order to update the three
parity chunks in racks Rj1 , Rj2 , and Rj3 , CAU needs to send
one parity-delta chunk from Ri1 and one data-delta chunk
from Ri2 to each of the three racks (i.e., bi2 = 6 chunks of
cross-rack update traffic). Now we swap i′2 = 1 updated
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Algorithm 1: Data Grouping
1 for each stripe do
2 Identify rack Ri (1 ≤ i ≤ r) with the highest

number of updated data chunks in the stripe in
the last append phase

3 for each rack Rl (1 ≤ l 6= i ≤ r) do
4 if l′ + i′ < ci then
5 Compute the gain Gl = bl − (b∗l + 2l′)

6 else
7 Set the Gl = 0

8 Find Rl where Gl is maximum among all racks
9 Swap l′ data chunks in Rl with l′ non-updated ones in Ri

data chunk from Ri2 with a non-updated data chunk in Ri1

(which incurs two chunks of cross-rack traffic). If the four
data chunks in Ri1 are updated again, CAU only needs to
send b∗i2 = 3 parity-delta chunks from Ri1 to Rj1 , Rj2 , and
Rj3 (see Figure 4(b)). Thus, the gain of data grouping is
bi2 − (b∗i2 + 2× i′2) = 1 chunk.

3.4 Interim Replication

To prevent any data loss of updated data chunks in the
append phase, CAU performs interim replication by storing
replicas temporarily for the updated data chunks until we
perform parity updates in the commit phase. Such replicas
will be removed afterwards, so that they do not incur
additional storage overhead in the long run.

Tolerance of a single rack failure: To balance between fault
tolerance and the amount of cross-rack update traffic, CAU
can store one replica for each newly updated data chunk in
a different rack (i.e., not in the same rack where the data
node with the newly updated data chunk resides), so as to
tolerate any single-node or single-rack failure. For example,
since each rack stores no more than n− k chunks of a stripe
(see §2.2), there must exist one of the n−k parity nodes of the
same stripe residing in a different rack, and we may choose
the parity node to store the replica. We argue that providing
temporary protection against a single-node or single-rack
failure is sufficient in short term, as single failures are
the most common failure pattern in production [15], [28].
Our reliability analysis also shows that CAU preserves fault
tolerance (see §3.5).

Tolerance of multiple rack failures: We also study how to
provide rack-level fault tolerance against a general number
of rack failures via interim replication. Suppose that r∗ de-
notes the number of rack failures to be tolerated by interim
replication (where r∗ < r). To tolerate any r∗ rack failures,
we emphasize that the number of chunks per stripe in any
r∗ racks should be no more than n− k by default, which is
also the number of parity chunks in a stripe of RS(n, k) (see
§2.2).

To protect the reliability of a newly updated data chunk
even in the presence of any r∗ rack failures, we propose to
find the parity nodes of the same stripe from another r∗

racks (apart from the rack where the data node storing the
newly updated data chunk resides) and store additional r∗

replicas of the newly updated data chunk in them. Thus, by
keeping r∗ + 1 replicas of each newly updated data chunk

parity nodedata node

R1

replicas
update

R2 R3 R4

Fig. 5. Interim replication: we store two replicas of a newly updated
data chunk (resided in R2) in two racks (i.e., R3 and R4), in order to
guarantee the reliability of the newly updated data chunk against any
double rack failures.

in a total of r∗ + 1 racks, even any r∗ rack failures happen,
we can always find at least one surviving replica to restore
the newly updated data.

We can easily prove via contradiction that for any newly
updated data chunk, we can always find parity nodes from
another r∗ racks to store the r∗ replicas. Specifically, suppose
that we can only find parity nodes from another r′ racks
(where r′ ≤ r∗ − 1) to keep the replicas of a newly updated
data chunk. That is to say, the r′ racks found plus the rack
that the newly updated chunk resides have all the n − k
parity nodes and at least a data node (i.e., the node storing
the newly updated chunk). Consequently, these r′ + 1 ≤ r∗

racks have at least n − k + 1 chunks of a stripe, thereby
violating the premier requirement that any r∗ racks have no
more than n− k chunks of a stripe for RS(n, k).

We assess the impact of r∗ selected in interim replication
on the induced cross-rack update traffic (see Experiment A.5
in §5.1).

Figure 5 presents an example, where we set the number
of replicas as two in interim replication to tolerate any
double rack failures. When a data chunk in R2 is updated,
we transmit another two replicas of the newly updated data
chunk to two parity nodes of the same stripe selected from
R3 and R4, such that the reliability of the newly updated
data chunk can be still guaranteed even in the face of any
double rack failures.

3.5 Reliability Analysis
We now analyze the reliability of CAU. We show that even
though CAU uses the append-commit procedure to update
data chunks, if interim replication is enabled, then it still
achieves the same level of reliability as the baseline erasure
coding approach, which updates all parity chunks of a
stripe immediately for each data chunk update. Our analysis
studies the reliability of CAU during the append phase; once
all parity chunks are updated in the commit phase, CAU has
the same reliability as the baseline approach.
Setting: We consider both node failures and rack failures.
Let θ1 and θ2 be the expected lifetimes of a node and a rack,
respectively. Suppose that nodes and racks are independent
and their lifetimes are exponentially distributed; such as-
sumptions provide useful approximations [17]. The proba-
bility that a node fails (denoted by f1) and the probability
that a rack fails (denoted by f2) for a duration of time τ can
be computed by:

f1 = 1− e−
τ
θ1 , f2 = 1− e−

τ
θ2 . (4)

For node failures, we set θ1 = 10 years [9]. For rack
failures, we focus on top-of-rack (ToR) switch failures. We
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parity nodedata node

R1 R2 R3

Fig. 6. A stripe with RS(9,6) used for reliability analysis. It can tolerate
any triple-node failures or any single-rack failure.

take the average probability of a ToR switch failure in one
year as 0.0278 [13, Figure 4]. From Equation (4), we estimate
that θ2 = 36 years (by setting f2 = 0.0278 and τ = 1 year).

Failure events and probabilities: Our objective is to calcu-
late the data loss probabilities for the baseline erasure coding
approach as well as CAU in the append phase. For CAU,
we consider two variants: (i) CAU-0, which keeps no replica
for each newly updated data chunk, and (ii) CAU-1, which
enables interim replication and keeps one replica for each
newly updated data chunk in a parity node residing in a
different rack. To simplify our analysis, we assume that the
n − k parity nodes are organized in the same rack, and the
replicas are distributed across all parity nodes in CAU-1.

We first analyze the probability for a general number
of node failures, while there is no rack failure. Let Ei,j

denote the event that i data nodes and j parity nodes
fail concurrently, while all r racks are still available, where
0 ≤ i ≤ k and 0 ≤ j ≤ n − k. We can compute the
probability of Ei,j (denoted by Pr(Ei,j)) as:

Pr(Ei,j) = Pr(Ai)︸ ︷︷ ︸
i data node failures

· Pr(Yj)︸ ︷︷ ︸
j parity node failures

· (1− f2)r︸ ︷︷ ︸
no rack failure

(5)

where Pr(Ai) and Pr(Yj) denote the probabilities when
there are only i data nodes (where 0 ≤ i ≤ k) and j parity
nodes (where 0 ≤ j ≤ n − k) fail, respectively. Then they
can be calculated as follows:

Pr(Ai)=

(
k

i

)
·f i1 ·(1− f1)k−i

Pr(Yj)=

(
n− k
j

)
· f j1· (1− f1)n−k−j .

We next analyze the probability for a general number of
rack failures, while the remaining nodes in other surviving
racks are accessible. Let Fl denote the event that l racks fail,
where 0 ≤ l ≤ r, while the nodes in the remaining r−l racks
are all available. Each rack consists of n/r nodes (assuming
that n/r is an integer), so there are (r − l)n/r remaining
nodes in other surviving racks. We compute the probability
of Fl (denoted by Pr(Fl)) as:

Pr(Fl) =

(
r

l

)
· f l2 · (1− f2)r−l︸ ︷︷ ︸
l rack failures

· (1− f1)(r−l)n/r︸ ︷︷ ︸
remaining nodes are available

. (6)

Using Equations (5) and (6), we compute the data loss
probabilities for baseline erasure coding and CAU as fol-
lows.
Reliability analysis for RS(9,6): We first consider RS(9,6)
for erasure coding in the analysis, as it is also used in
production (e.g., QFS [24]). For RS(9,6), we assume that
the n = 9 chunks of a stripe are stored in n = 9 distinct

nodes organized in r = 3 racks with n/r = 3 nodes each.
For simplicity, we organize all the n − k = 3 parity nodes
within the same rack. This configuration can tolerate any
triple-node failure or any single-rack failure (as shown in
Figure 6).
• Baseline erasure coding: The baseline erasure coding

approach under RS(9,6) ensures data availability in the
following cases: (i) no more than three nodes fail while there
is no rack failure (i.e.,

⋃
0≤i+j≤3Ei,j); and (ii) only one rack

fails while the nodes in the surviving racks are available (i.e.,
F1). The data loss probability (denoted by Prec) is given by:

Prec = 1−
[( ∑

0≤i+j≤3
Pr(Ei,j)

)
+ Pr(F1)

]
.

• CAU-0: Since there is no redundancy to protect newly
updated data chunks in CAU-0, any data node failure will
result in data loss. Thus, CAU-0 only ensures data availabil-
ity in the following cases: (i) no failure happens (i.e., E0,0);
(ii) only parity nodes fail (i.e.,

⋃
1≤j≤3E0,j); (iii) only the

rack in which the parity nodes reside fails. The data loss
probability (denoted by Prcau0) is

Prcau0 = 1−
[
Pr(E0,0) +

( ∑
1≤j≤3

Pr(E0,j)
)
+

Pr(F1)

r

]
.

• CAU-1: Since CAU-1 replicates a new data chunk to
another parity node, a pair of data node and parity node
failures will result in data loss (assuming that each parity
node holds the replicas of some data chunks). Thus, CAU-
1 ensures data availability in the following cases: (i) no
failure happens (i.e., E0,0); (ii) only a single node fails (i.e.,
E0,1∪E1,0); (iii) only two data nodes fail (i.e.,E2,0); (iv) only
two parity nodes fail (i.e., E0,2); (v) only three data nodes
fail (i.e., E3,0); (vi) only three parity nodes fail (i.e., E0,3);
and (vii) a single rack fails while the nodes in the surviving
racks are available (i.e., F1). Thus, the data loss probability
(denoted by Prcau1) is

Prcau1 =1− [Pr(E0,0) + Pr(E0,1) + Pr(E1,0) + Pr(E2,0)

+ Pr(E0,2) + Pr(E3,0) + Pr(E0,3) + Pr(F1)].

Reliability analysis for RS(16,12): We also consider
RS(16,12), as it is also considered in production systems
(e.g., Windows Azure Storage [15]). Like RS(9,6), we assume
that all the n = 16 chunks are distributed in n = 16 nodes,
which are further organized into r = 4 racks with n/r = 4
nodes per rack. In addition, we assume that the n − k = 4
parity nodes are in the same rack. This configuration can
tolerate any four-node failure or any single rack failure.

The analysis of RS(16,12) is similar to that of RS(9,6),
except the following differences. For the baseline erasure
coding, it can tolerate any four-node failure under RS(16,12)
(i.e.,

⋃
0≤i+j≤4Ei,j). For the CAU-0 approach, it can tolerate

up to four parity node failures (i.e.,
⋃

1≤j≤4E0,j). For the
CAU-1 approach, it can tolerate two additional node fail-
ures: (i) only four data node failures (i.e., E4,0), and (ii) any
four parity node failures (i.e., E0,4).

Figure 7 plots the data loss probabilities for Prec, Prcau0,
and Prcau1 for a duration τ from 0 to 18 hours; we can view
this as a duration of the append phase before the parity
chunks are updated in the commit phase. As both f1 and f2
increase with τ , the data loss probabilities increase with τ



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

10-10    
   0

10-8

10-6

10-4

10-2

0 6 12 18
t  (in hours)

P
ro

ba
bi

lit
y 

of
 D

at
a 

Lo
ss

CAU-0
CAU-1
EC

(a) Reliability analysis: RS(9,6) with r = 3
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(b) Reliability analysis: RS(16,12) with r = 4.

Fig. 7. Data loss probabilities for baseline erasure coding, CAU-0 (no
interim replication), and CAU-1 (with one replica in interim replication).

as well. CAU-0 has the highest data loss probability without
any redundancy, so adding redundancy for the append
phase is critical. CAU-1 has higher data loss probability than
the baseline erasure coding approach, but it maintains the
same order of magnitude for the data loss probability. For
example, when τ = 18, we have Prcau1 = 9.83 × 10−7 and
Pec = 2.24× 10−7 under RS(9,6).

4 IMPLEMENTATION

We have implemented a CAU prototype. Figure 8 shows
the CAU architecture, which comprises a metadata server
and multiple storage nodes. The metadata server manages
the metadata information of every chunk being stored,
including the chunk ID, the stripe ID that the chunk belongs
to, the data node ID where the chunk is stored, and the
parity node IDs. It also records the chunk IDs of the updated
data chunks as well as the stripe IDs that have data chunk
updates during the append phase.

Append phase: We first describe the workflow of the ap-
pend phase when a client issues an update request to a
data chunk (see Figure 8). The client first sends the updated
request, with the chunk ID of the updated data chunk, to
the metadata server (step 1). The metadata server returns an
access ticket (step 2), which states the data node ID where the
data chunk is stored, the parity node ID where the replica
of the data chunk is stored for interim replication, and the
parity node IDs where the parity chunks will be stored
in the commit phase. The client attaches the access ticket
to the new data chunk and sends the data chunk to the
corresponding data node (step 3). The data node appends
the updated data chunk to its append-only log (step 4),
and also forwards a replica of the updated data chunk to a
parity node in another rack (step 5). The parity node stores
the replica (step 6) and returns an ACK to the data node

Chunk metadata

Metadata Server

Data Node Data Node Parity Node Parity Node

Client
❶

❹

❷

❸

New Data Chunk

Appended Data Chunk

Data Flow

Control Flow

❻❺

❼

❽

R1 R2

Fig. 8. System architecture of CAU.

(step 7). Finally, the data node sends an ACK to the client to
complete the update request (step 8).
Commit phase: The metadata server triggers the commit
phase to update parity chunks. It first identifies all stripes
that have updated data chunks from its recorded informa-
tion. For each stripe, it sends a commit request to the in-
volved data nodes and specifies whether data-delta commit
or parity-delta commit should be used, and the data nodes
send the data-delta or parity-delta chunks accordingly. Each
parity node returns an ACK to the metadata server upon
completing the parity updates. When the metadata server
receives the ACKs from all n − k parity nodes, it ensures
that the stripe is correctly committed.
Implementation details: Our CAU prototype is written in
C on Linux. We implement the erasure coding operations
using the Jerasure Library v1.2 [27]. To speed up per-
formance, we also leverage multi-threading to parallelize
data transmissions; for example, a node may send (receive)
chunks to (from) multiple nodes via multiple threads, and
the metadata server issues commit requests to multiple
nodes via multiple threads as well.

5 EVALUATION

We evaluate CAU from three aspects: (i) trace-driven anal-
ysis, which shows that CAU significantly saves cross-rack
update traffic under real-world workloads with different
access characteristics; (ii) local cluster experiments, which
show that CAU achieves high update performance in var-
ious cluster configurations; and (iii) Amazon EC2 experi-
ments, which show that CAU achieves high update perfor-
mance in real-world geo-distributed environments.

5.1 Trace-Driven Analysis

Preliminary trace analysis: We conduct trace-driven anal-
ysis on Microsoft Cambridge Traces [23], which record
the access characteristics of enterprise storage servers. The
traces span 36 volumes of 179 disks from 13 servers in one
week. Each trace lists the read/write requests, including the
timestamps, request addresses, request sizes, etc. We further
classify the volumes based on a new metric called update
locality. We sequentially partition the access requests of a
volume into a collection of non-overlapped update request
sets, each of which includes e consecutive update requests.
Suppose that for a volume, the requests of an update request
set are issued to u stripes on average. Then its update
locality (denoted by l) can be calculated as

l =
e

u
. (7)
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(a) Update locality in RS(9,6)
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(b) Update locality in RS(16,12)

Fig. 9. An analysis of the update locality for MSR Cambridge Traces.

A lower u implies higher update locality, as the updates
are more clustered in fewer stripes. To demonstrate, we
conduct a preliminary analysis of the update locality for all
the 36 volumes of the MSR Cambridge Traces, where e is
set as 1,000. We pay special attention to two erasure codes:
RS(9,6) and RS(16,12), as they are extensively considered in
today’s commodity storage systems [15], [24]. We set the
size of a chunk as 1 MB.

Figure 9 shows the results. We make two observations.
First, the update locality varies across different volumes. For
example, the update locality of web_3 is 385.6 in RS(9,6) (see
Figure 9(a)), indicating that every 1,000 write requests in
web_3 only operate on the data chunks across 2.6 stripes on
average (i.e., u = e

l = 1,000
385.6 = 2.6). The volume prn_1 has

the lowest update locality (e.g., 28.3 in Figure 9(a)), implying
that every 1,000 write requests operate on the data chunks
across 35.3 stripes on average (i.e., u = e

l = 1,000
28.3 = 35.3).

Second, for a certain volume, its update locality increases
when being deployed with an erasure code with a larger
k. For example, the update locality of the volume web_3 is
385.6 in RS(9,6), and reaches 455.3 in RS(16,12). The reason
lies in that an erasure code with a larger k includes more
data chunks in a stripe and therefore has a broader access
range to receive more update requests.

In the interest of space, we select 20 volumes for our
analysis: 10 of them have the highest update locality and
another 10 of them have the lowest update locality among
all 36 volumes. We consider two configurations of erasure-
coding deployment: (i) RS(9,6) over n = 9 nodes and r = 3
racks; and (ii) RS(16,12) over n = 16 nodes and r = 4 racks1.
We partition the address space of the trace for each volume
into units of chunks, which we select 1 MB by default in our
analysis. Our analysis assumes that the chunks are stored
in a DC based on each of the above two configurations.
For each volume of traces, we replay the write requests,
which are treated as updated requests and will trigger parity

1. Recall that in practice, a DC contains much more than n nodes (see
§2.2). Our analysis can be viewed as focusing on the stripes stored in
the same n nodes.

DN PN PN PN
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new
update

delta

new
update
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old & new 
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update

append 
to log

new data 
chunk

repeated
update

update 
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Parity Update

Data 
Logging

append 
to log

(a) Baseline (b) PARIX

Fig. 10. Update flow of the baseline and PARIX.

updates.
In CAU, when the metadata server finds that the num-

ber of updated stripes (i.e., the stripes with updated data
chunks) exceeds some threshold (denoted by us), it triggers
the commit phase; by default, we set us = 100. We also
enable both data grouping and interim replication (with
one replica), so our analysis includes the cross-rack transfer
overhead due to both features.

We compare CAU with two approaches (see Figure 10):
the baseline delta-based update approach and PARIX [18].
The baseline transmits n−k delta chunks to update all n−k
parity chunks immediately for each data chunk update. On
the other hand, PARIX handles updates in two stages. If a
data chunk is updated for the first time, PARIX sends the
new data chunk and the old data chunk to all n − k parity
nodes. If the same data chunk is updated again, PARIX
only sends the new data chunk to the parity nodes, each
of which appends the received data chunk to a log. Later
when the metadata server finds that the number of updated
stripes exceeds us (by default, we set us = 100 as in CAU),
it notifies each parity node to fetch the old and new data
chunks from the log to update the parity chunk. Compared
to the baseline, PARIX incurs slightly more network traffic
(for sending the old data chunk), but saves I/Os for reading
parity chunks to perform individual parity updates (each
parity chunk can now be computed from multiple updated
data chunks in batch). Note that both the baseline and
PARIX provide the same degree of reliability protection (see
the reliability analysis of the baseline erasure coding in §3.5).

When comparing CAU with PARIX and the baseline, we
plot the average results over five runs, as well as the error
bars that show the maximum and minimum across the five
runs throughout the trace-driven analysis (some may be
invisible).

Experiment A.1 (Comparisons of cross-rack update traffic):
Figure 11 shows the amounts of cross-rack update traffic
of the baseline, PARIX, and CAU, in which the results are
normalized to that of PARIX. Overall, CAU significantly
saves the cross-rack update traffic. For example, among
all 20 volumes, CAU saves 48.4% and 51.4% of cross-rack
update traffic on average compared to the baseline and
PARIX, respectively, in the first configuration (i.e., RS(9,6)
with r = 3 racks) (see Figures 11(a) and 11(b)), while the
savings further increase to 60.9% and 63.4%, respectively,
in the second configuration (i.e., RS(16,12) with r = 4 racks)
(see Figures 11(c) and 11(d)). The second configuration com-
prises more racks and includes more parity chunks for fault
tolerance, in which case the cross-rack update overhead in
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Fig. 11. Experiment A.1 (Comparisons of cross-rack update traffic). The
less cross-rack update traffic is better.

both the baseline and PARIX is higher.
Also, CAU generally saves more cross-rack update traffic

when the update locality is high. For example, in RS(16,12)
with four racks, CAU saves 56.3% of cross-rack update traffic
over PARIX for the volumes with low update locality (see
Figure 11(c)), while the saving increases to 66.9% for the
volumes with high update locality (see Figure 11(d)). The
reason is that the volumes with high update locality have
more update requests clustered, thereby allowing CAU to
be more likely to aggregate update requests within a rack in
selective parity updates.

Experiment A.2 (Analysis on selective parity updates): We
next analyze the performance gain of selective parity up-
dates. We reconfigure the append-commit phase of our CAU
prototype to perform different parity update approaches in
the commit phase (see §3.2 for details): (i) data-delta commit
only, which always performs data-delta commit for cross-
rack parity updates, (ii) parity-delta commit only, which
always performs parity-delta commit for cross-rack parity
updates, and (iii) selective parity updates, in which we select
the minimum of data-delta commit and parity-delta commit
for each stripe to mitigate the cross-rack update traffic. We
focus on the configuration RS(16,12) with r = 4 racks.

Figure 12 shows the results for all 20 volumes, in which
we normalize the results with respect to data-delta commit
only. Both data-delta commit only and parity-delta commit
only may outperform each other for different volumes, yet
selective parity updates achieve the least cross-rack up-
date traffic in all volumes. Overall, selective parity updates
reduce 20.7% and 20.0% of cross-rack update traffic on
average compared to data-delta commit only and parity-
delta commit only, respectively.

Experiment A.3 (Analysis of data grouping): As data
grouping triggers cross-rack data reallocation (see §3.3), we
also analyze its overhead and justify that the cross-rack
update traffic saving brought by data grouping outweighs
the data allocation overhead. We compare the saving ratio of
the cross-rack update traffic with data grouping compared
to that without data grouping. We focus on RS(16,12) with
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Fig. 13. Experiment A.3 (Analysis of data grouping). The larger saving
ratio is better.

r = 4 racks. We also examine how the number of updated
stripes us kept in the append phase affects the results.

Figure 13 shows the saving ratio of data grouping for
all 20 volumes, where us = 2, 20, and 100. A positive
saving ratio means that data grouping reduces the cross-
rack update traffic. We see that 85% of cases (51 out of 60)
have a positive saving ratio. The savings reach up to 27.4%,
17.6%, and 16.3% for us = 2, 20, and 100, respectively. For
the other cases with a negative saving ratio, data group may
incur up to 5.8% more cross-rack update traffic (src2_2
when us = 100). We further examine the effect of us on the
update performance in §5.2.
Experiment A.4 (Impact of interim replication and data
grouping): As interim replication and data grouping both
introduce additional cross-rack update traffic, we investi-
gate their impact on the total cross-rack update traffic in
CAU. We consider the configuration RS(16,12) with r = 4
racks, and calculate the proportions of cross-rack update
traffic in CAU that are taken up by interim replication and
data grouping.

Figure 14 shows the results for all 20 volumes, where
us is varied from 2 to 100. We first notice that interim
replication and data grouping incur 74.0% and 1.8% of the
cross-rack update traffic in CAU on average, respectively.
The reason is that CAU performs interim replication for each
updated data chunk for reliability, while data grouping is
carried out in the commit operation only. As the commit
operation is performed infrequently, the proportion of the
cross-rack update traffic taken up by data grouping is
marginal. In addition, the proportion of interim replication
increase with us, while that of the data grouping exhibits
an opposite tendency. The reason is that a larger us leads to
fewer commit operations and hence less cross-rack update
traffic in CAU. Thus, the proportion of the cross-rack update
traffic caused by data grouping decreases with the increase
of us. On the other hand, as the cross-rack update traffic
induced by interim replication is still unchanged even if us
varies, its proportion in the overall cross-rack update traffic
increases with us instead.
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Fig. 14. Experiment A.4 (Impact of interim replication and data group-
ing).

Experiment A.5 (Impact of number of racks): We evaluate
the impact of the number of racks on the induced cross-
rack update traffic. We select four volumes from the MSR
Cambridge Traces: two volumes with high update locality
(i.e., wdev_1 and wdev_3), and another two volumes with
low update locality (i.e., rsrch_1 and src2_1). We con-
sider a data center with 16 nodes and select the erasure
code RS(16,12). We set us = 100, meaning that the parity
commit occurs only when there are 100 stripes updated
in the append phase. We set the number of replica in the
interim replication as one, and then measure the cross-rack
update traffic for the four volumes when the 16 nodes of the
data center are organized into 4 racks (i.e., four nodes per
rack), 8 racks (i.e., two nodes per rack), and 16 racks (i.e.,
one node only per rack), respectively.

Figure 15 shows the results. We observe that CAU always
introduces the least cross-rack update traffic under different
numbers of racks. In particular, CAU can reduce the cross-
rack update traffic of the baseline and PARIX by 58.5-
74.1% and 60.0-74.5% under different numbers of racks.
Besides, even when the number of racks varies, CAU can
still save a significant amount of cross-rack update traffic for
the volumes with different update localities. For example,
when the number of racks is configured as 16, CAU can
reduce 74.2% (resp. 74.4%) of the cross-rack update traffic
on average for the two volumes with high update locality
(i.e., wdev_1 and wdev_3) when compared to the baseline
(resp. PARIX). The traffic reductions are 59.5% and 60.8%
for the volumes with low update locality (i.e., rsrch_1 and
src2_1), respectively.

Experiment A.6 (Impact of general rack-level fault tol-
erance): We evaluate the induced cross-rack update traffic
when CAU allocates different numbers of replicas in the
interim replication (see §3.4 for details). To allow the wide-
range selection for the number of replicas in the interim
replication, we consider a data center with 16 nodes, which
are organized into 16 racks (i.e., one node per rack). We then
select RS(16,12) as the erasure coding scheme, such that each
rack stores exactly one chunk of a stripe. We set us = 100,
vary the number of replicas in the interim replication from
1 to 4, and measure the amount of data transferred across
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Fig. 15. Experiment A.5 (Impact of number of racks). The less cross-rack
update traffic is better.
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Fig. 16. Experiment A.6 (Impact of general rack-level fault tolerance).
The less cross-rack update traffic is better.

racks for parity updates.
Figure 16 depicts the results. We make three observa-

tions. First, the amount of cross-rack update traffic caused
by CAU linearly increases with the number of replicas in
the interim replication. The reason is that for each update
request, CAU will store the specified number of replicas for
each newly updated data chunk in other racks, to promise
that these newly updated data chunks can still be available
even in the presence of a certain number of rack failures.
Second, CAU may even require more cross-rack update
traffic than the baseline and PARIX when the number of
replicas is set as four (i.e., n− k in RS(16,12)) in the interim
replication, especially for the volumes with low update
locality (e.g., rsrch_1 and src2_1 in Figures 16(c) and
16(d)). The reason is that when CAU keeps four replicas
(i.e., n − k in RS(16,12)) in other racks for each newly
updated data chunk, the amount of cross-rack update traffic
of CAU in the append phase is equal to that of the baseline
approach. As CAU needs additional cross-rack traffic in both
selective parity updates (see §3.2) and data grouping (see
§3.3), it finally introduces more cross-rack update traffic
than the baseline approach. Third, as the baseline and
PARIX do not rely on interim replication for protecting data
reliability, their cross-rack update traffics are constant when
the number of replicas in the interim replication changes.
Experiment A.7 (Impact of threshold number of updated
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Fig. 17. Experiment A.7 (Impact of threshold number of updated stripes).
The less cross-rack update traffic is better.
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Fig. 18. Experiment A.8 (Impact of chunk sizes). The less cross-rack
update traffic is better.

stripes): We also assess the cross-rack update traffic when
the threshold number of updated stripes (i.e., us) that is
allowed in the append phase changes. We deploy RS(16,12)
in a data center with 16 nodes organized into r = 4 racks
(i.e., four nodes per rack). We require the interim replication
storing one replica for each newly updated data chunk. We
vary the value of us from 2 to 100.

Figure 17 presents the results. The required cross-rack
update traffic in CAU is less if CAU can wait for more stripes
being updated in the append phase. For example, for the
volume rsrch_1, CAU can reduce 25.9% of the cross-rack
update traffic by setting us from 2 to 100. The reason is
that by keeping more updated stripes before commit, CAU
can avoid the frequent parity update and data grouping
operations, thereby eliminating additional cross-rack update
traffic. Also, for the volumes with high update locality
(e.g., wdev_1 and wdev_3 in Figures 17(a) and 17(b)), the
reduction of the cross-rack update traffic is prone to be less
significant even for a larger us.
Experiment A.8 (Impact of chunk size): We analyze the
impact of the chunk size on the cross-rack update traffic. We
consider RS(16,12) in a data center with 16 nodes organized
into four racks (i.e., four nodes per rack). We set us = 100
and store one replica in the interim replication. We vary the
chunk size from 16 KB to 1 MB and measure the induced
cross-rack update traffic (in units of MBs).

Figure 18 depicts the results. We make two observations.
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Fig. 19. Experiment B.1 (Impact of gateway bandwidth). The higher
update throughput is better.

First, the amount of cross-rack update traffic drastically
increases with the chunk size. Second, CAU preserves the
savings of cross-rack update traffic under different chunk
sizes. For example, for the volume wdev_1 (Figure 18(a)),
when the chunk size is 16 KB, CAU reduces 67.4% and 69.8%
of the cross-rack update traffic compared to the baseline
and PARIX, respectively. The reductions are still 68.7% and
68.9% when the chunk size increases to 1 MB.

5.2 Local Cluster Experiments

We evaluate our CAU prototype on a local cluster with 12
machines to study its update performance under various
cluster settings. Each machine runs Ubuntu 16.04.3 LTS,
and has a quad-core 3.4 GHz Intel Core i5-7500 CPU, 32 GB
RAM, and 1 TB TOSHIBA DT01ACA100 SATA disk. All
nodes are connected via a 10 Gb/s Ethernet switch.

We consider RS(9,6) with r = 3 racks for erasure coding
deployment. Among the 12 machines, we assign nine of
them as storage nodes, one as the client, one as the metadata
server, and the remaining one as the gateway that resembles
the network core (see Figure 1). To simulate a hierarchical
DC, we partition the nine storage nodes into three logical
racks with three storage nodes each. Any inner-rack transfer
can go through the 10 Gb/s switch directly, while any cross-
rack transfer is redirected to the gateway, which relays the
traffic to the destination node. We use the Linux traffic
control command tc to limit the gateway bandwidth, so
as to mimic the over-subscription scenario (see §1) where
the cross-rack bandwidth is constrained and less than the
inner-rack bandwidth. Also, unless otherwise specified, our
CAU prototype issues buffered I/Os (the default I/O mode
in Linux), in which read/write requests may be served by
the buffer cache of each storage node.

We again compare CAU with the baseline and PARIX
as in §5.1. We focus on four volumes: wdev_1, wdev_3,
rsrch_1, and src2_1. Both wdev_1 and wdev_3 have
high update locality, while both rsrch_1 and src2_1 have
low update locality. We plot the average results over five
runs, as well as the error bars that show the maximum and
minimum across the five runs.

Experiment B.1 (Impact of gateway bandwidth): We first
evaluate the update performance for different values of
gateway bandwidth. We vary the gateway bandwidth (i.e.,
the cross-rack bandwidth) as 0.5 Gb/s, 1 Gb/s, 2 Gb/s; note
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Fig. 20. Experiment B.2 (Impact of non-buffered I/O). The higher update
throughput is better.

that the cross-rack bandwidth in production is 1 Gb/s [30],
while the inner-rack bandwidth is 10 Gb/s.

Figure 19 shows the results in terms of update through-
put (i.e., the amount of updated data chunks per second).
Overall, CAU significantly improves the update throughput
by 41.8% and 51.4% on average compared to the base-
line and PARIX, respectively. Also, the performance gain
of CAU increases as the gateway bandwidth decreases
(i.e., more constrained cross-rack bandwidth). For exam-
ple, for wdev_3, when the gateway bandwidth is 2 Gb/s,
CAU increases the update throughput of the baseline and
PARIX by 49.3% and 41.4%, respectively; when the gate-
way bandwidth decreases to 0.5 Gb/s, the improvements
increase to 52.6% and 54.6%, respectively. When the cross-
rack bandwidth is more constrained, the reduction of cross-
rack update traffic in CAU is more beneficial for high update
performance.

Note that the baseline generally outperforms (slightly)
than PARIX in most cases, as PARIX is designed to reduce
I/Os in parity updates at the expense of incurring more
cross-rack transfers [18]. Since buffer I/Os are used here and
I/O requests may be served by the buffer cache, the cross-
rack bandwidth plays a more critical role in determining the
update performance.

Experiment B.2 (Impact of non-buffered I/O): We now
study the impact of non-buffered I/O (i.e., the buffered
cache for I/O requests is disabled) on update throughput.
Specifically, we enable the flag O_SYNC in write requests to
flush all data to disk, and also enable the flag O_DIRECT
in read requests to directly retrieve data from disk without
accessing the buffer cache. We consider two settings of the
gateway bandwidth: 0.5 Gb/s and 2 Gb/s.

Figure 20 shows the results. Clearly, compared to the
case with buffered I/O, the update throughput drops when
non-buffered I/O is used and the I/O overhead also plays a
role in determining the update performance. Nevertheless,
CAU still improves the updated throughput by 29.6% and
29.1% compared to the baseline and PARIX, respectively.
CAU not only reduces the cross-rack update traffic, but also
reduces the I/O overhead by aggregating the updates of
data and parity chunks.

We note that PARIX achieves higher update throughput
than the baseline for wdev_1 and wdev_3, both of which
have high update locality. In both volumes, the updates are
more clustered and have less cross-rack traffic, so the reduc-
tion of the I/O overhead in PARIX is more advantageous in
improving the update performance.

Experiment B.3 (Impact of us): We also study how the
number of updated stripes us kept in the append phase
affects the update performance of CAU. We vary us as 2,
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Fig. 21. Experiment B.3 (Impact of us). The higher update throughput is
better.

TABLE 1
Measured bandwidth among regions (Unit: Mb/s)

Regions Seoul Singapore Sydney Tokyo
Seoul 919.0 46.4 43.0 118.0

Singapore 58.0 560.4 43.6 43.6
Sydney 44.8 37.0 840.3 53.9
Tokyo 108.9 53.7 62.6 493.5

5, 10, 20, 50, and 100, and fix the gateway bandwidth as
0.5 Gb/s. For comparisons, we also include the results of
the baseline, which remain fixed for different values of us.

Figure 21 shows the results. When us is small, CAU has
similar performance to the baseline as it triggers parity up-
dates frequently. The update throughput of CAU increases
with us at the beginning since it has more opportunity to
aggregate updates in the append phase, but becomes stable
when us exceeds 10.

5.3 Amazon EC2 Experiments

We further evaluate CAU on Amazon EC2 in geo-distributed
settings. We create a set of virtual machine (VM) in-
stances across four regions, namely Tokyo, Seoul, Sydney,
and Singapore. We select VM instance type t2.small,
in which each VM instance runs Ubuntu 14.04.5 LTS and
has a 2.40GHz Intel Xeon E5-2627 CPU, 2GB memory, and
70GB storage capacity. Before running our experiments, we
first measure the inner-region and cross-region bandwidth
across the four regions using iperf. Table 1 presents the
results from one of our measurements, in which each num-
ber denotes the measured bandwidth from the region in the
row to the region in the column. It shows that the cross-
region bandwidth is much more scarce than the inner-region
bandwidth, such that the inner-region bandwidth is 11.3×
the cross-region bandwidth on average.

We deploy RS(16,12) and store four chunks of each stripe
at four different VM instances in each region. We also create
two additional VM instances as the metadata server and
the client. We compare the baseline, PARIX, and CAU, and
set the chunk size as 512KB. We present the average results
over five runs, and also show the error bars indicating the
maximum and minimum across the five runs.

Figure 22 plots the results. Note that the network band-
width among the VM instances fluctuates across time, so
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Fig. 22. Update throughput on Amazon EC2. The higher update through-
put is better.

the variance of each result is higher than that in local cluster
experiments. Again, CAU outperforms both the baseline and
PARIX, and its performance gain is higher in wdev_1 and
wdev_3 with high update locality. In wdev_1, the average
update throughput of CAU is 31.5% and 32.4% higher than
those of the baseline and PARIX, respectively, while in
wdev_3, the average update throughput of CAU is 24.9%
and 33.8% higher than those of the baseline and PARIX,
respectively.

6 RELATED WORK

We review related work on improving parity update perfor-
mance in erasure-coded storage.

Delta-based updates: Existing parity update solutions
mostly build on delta-based updates for partial-stripe writes
(see §2.3). Parity logging [38] is a well-known approach of
mitigating parity update overhead in RAID-5 by eliminating
the reads of parity chunks and appending parity deltas to
a log device. CodFS [6] realizes parity logging in clustered
storage, by placing parity deltas next to the original parity
chunks to limit disk seeks during recovery. PARIX [18] elim-
inates the reads of old data chunks for parity computations
by directly logging data deltas (i.e., changes of data chunks),
at the expense of extra network transmissions for recon-
structing parity chunks from the original data chunk. Other
studies enhance delta-based updates in different aspects.
FAB [12] proposes quorum-based algorithms for decentral-
ized erasure coding operations. Aguilera et al. [2] propose
distributed protocols for lightweight concurrent updates. T-
Update [25] finds a minimum spanning tree to propagate
parity updates across nodes; while T-Update constructs the
minimum spanning tree given a rack-based DC topology,
it does not reduce the amount of cross-rack update traffic.
CAU also builds on delta-based updates. In contrast to
previous work, CAU mitigates the cross-rack update traffic
in erasure-coded DCs by taking into account the hierarchical
nature of DCs.

Full-stripe updates: To eliminate the reads of parity chunks
in partial-stripe writes, some approaches directly form new
stripes using new data chunks and issue full-stripe updates
in a log-structured manner. They also mark the old data
chunks as invalid and reclaim their space via garbage col-
lection. Full-stripe updates are commonly used in systems
that treat stored data as immutable, such as HDFS-RAID [1],
QFS [24], BCStore [20], and Giza [7]. However, full-stripe
updates not only incur garbage collection overhead to re-
claim the space of stale data chunks, but also require parity
re-computations for the remaining active data chunks.

Data placement: Some approaches (e.g., [34], [35]) propose
new data placement strategies that group the data chunks
that are likely accessed together into the same stripe, so as to
mitigate parity update overhead. CAU also addresses data
placement via data grouping, but is tailored for mitigating
the cross-rack update traffic.

7 CONCLUSION

Erasure coding provides a storage-efficient means for mod-
ern DCs to achieve data reliability. However, it incurs high
update penalty in maintaining the consistency between
data and parity chunks. CAU is a cross-rack-aware update
mechanism that addresses the hierarchical nature of DCs. It
mitigates the cross-rack update traffic through selective par-
ity updates and data grouping, and further maintains data
reliability through interim replication. Trace-driven analysis,
local cluster experiments, and Amazon EC2 experiments
show that CAU reduces a significantly amount of cross-rack
update traffic and achieves high update throughput.
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