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Abstract—One top vulnerability in today’s web applications is
request forgery, in which an attacker triggers an unintentional
request from a client browser to a target website and exploits
the client’s privileges on the website. To defend against a general
class of cross-site and same-site request forgery attacks, we
propose DeRef, a practical defense mechanism that allows a
website to apply fine-grained access control on the scopes within
which the client’s authentication credentials can be embedded in
requests. One key feature of DeRef is to enable privacy-preserving
checking, such that the website does not know where the browser
initiates requests, while the browser cannot infer the scopes being
configured by the website. DeRef achieves this by using two-
phase checking, which leverages hashing and blind signature to
make a trade-off between performance and privacy protection.
We implement a proof-of-concept prototype of DeRef on FireFox
and WordPress 2.0. We also evaluate our DeRef prototype and
justify its performance overhead in various deployment scenarios.

I. INTRODUCTION

Session state management [17] is a critical component in

modern web applications. It augments stateless HTTP and

embeds authentication credentials of web clients into HTTP

messages (e.g., in the form of cookies or the HTTP authentica-

tion header), so that a website can determine the privileges of

different clients. However, HTTP session state management

is subject to various security vulnerabilities [23]. One such

vulnerability is Cross-Site Request Forgery (CSRF), in which

an attacker’s website triggers a client’s browser to send an

HTTP request to a target website. If the HTTP request carries

the client’s credentials, then the attacker can perform actions

on the website using the client’s privileges, without the client

being notified. There are different variants of CSRF, such as

Clickjacking [12] and Login CSRF [4].

There have been extensive studies on how to defend against

CSRF (e.g., see [4], [15], [16], [18]). One approach is

Referer checking, in which the target website can determine

the complete URL from which the request is initiated. How-

ever, the URL information can reveal the access history of the

client [4]. A more robust approach is token validation (e.g.,

see [26]), in which the target website embeds secret tokens in

HTTP responses, so that the browser can include those tokens

in HTTP requests to authorize the request initiations. These

tokens are inaccessible by third-party websites due to the same

origin policy (SOP) [24]. However, such protection fails if both

target and malicious websites have the same origin but are
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owned by different parties (e.g., http://www.foo.com/∼alice/

and http://www.foo.com/∼trudy/), as the malicious party can

steal the tokens from another same-origin website and trigger

forged requests. We call this attack the same-site request

forgery (SSRF) attack.

To effectively defend against both CSRF and SSRF attacks,

we consider an approach based on fine-grained access control

of scopes. A scope defines a combination of the protocol,

domain, and path (see Section III-B). A website can configure,

in a policy file, the scopes that are legitimate to initiate or re-

ceive sensitive requests that contain authentication credentials.

The browser can download the policy file from the website to

check the validity of each of its initiated requests, and exclude

sensitive credentials from any requests that are considered to

be forged. This fine-grained access control is also considered

in previous studies (e.g., [9], [22]).

However, one shortcoming of existing fine-grained access

control approaches is that the policy file carries sensitive

scope information in plain format that is accessible by every

browser to check against its initiated requests. Users can find

out sensitive information from the policy file, such as how

a website designs its access control policies and its trust

relationships with other websites. The need of protecting the

sensitive access-control information has been justified in prior

studies (e.g., [25], [10], [7]). Thus, our goal is to allow

the browser and the website to exchange sensitive scope

information while they may not need to fully trust each other,

in the context of defending against request forgery attacks.

In this paper, we propose DeRef, a practical defense

mechanism against cross-site and same-site request forgery

attacks using privacy-preserving fine-grained access control.

By privacy-preserving, we mean to not only protect a browser

from revealing the URLs from which it initiates requests, but

also protect a website from revealing how it configures the

legitimate scopes, except for those that have been visited by

the browser. The main idea of DeRef is to employ two-phase

checking. First, the website configures (i) the scopes that are

permitted to initiate sensitive requests and (ii) the scopes on

the website that are protected by DeRef. Then the website

sends the hash values of the scopes to the browser, where

the hash values are incomplete and reveal only partial scope

information. In the first phase, the browser checks to see if its

initiated requests potentially fall within the configured scopes,

and eliminate those that are known to be not configured by the

website. In the second phase, the browser sends the blinded



scopes of its initiated requests to confirm if these scopes

actually match the configured scopes. In a nutshell, DeRef uses

two-phase checking to make a trade-off between performance

and privacy protection in real deployment.

To show that DeRef is deployable in practice, we implement

a proof-of-concept prototype of DeRef on FireFox [19] (as

a browser plugin) and WordPress 2.0 [30]. We also address

how the prototype is backward compatible with the original

client/server operations without DeRef. We evaluate our DeRef

prototype, and show that its response time overhead can be

reduced to within 19% by caching the already checked scopes.

The rest of the paper proceeds as follows. Section II reviews

the background on request forgery attacks and their defense

mechanisms. Section III presents the design and implementa-

tion details of DeRef. Section IV evaluates the performance

and scalability of DeRef. Finally, Section V concludes.

II. BACKGROUND AND RELATED WORK

A. Request Forgery Attacks

A request forgery attack is to trigger a forged HTTP request

from a victim client browser to a target website without the

knowledge of the client. A forged request may carry the

client’s authentication credentials that an attacker can exploit

to perform malicious actions on the website using the client’s

privileges. In the following, we describe different variants of

request forgery attacks.

Cross Site Request Forgery (CSRF) [4], [15], [16], [18].

In CSRF, an attacker uses an external website to trigger an

HTTP request from a client to a target website. Suppose that

a client currently has an active session with a target website A

and then visits a malicious website B. The attacker can put a

malicious URL on website B that triggers the client’s browser

to send an HTTP request to website A using the currently

active session. Then the credentials associated with website A

will be attached to the triggered HTTP request, and website A

will process the request using the client’s privileges. There are

variants of the CSRF attack, including Clickjacking [12] and

Login CSRF [4].

Same Site Request Forgery (SSRF) [21], [22]. Different

websites may have the same origin [24] (i.e., same protocol,

hostname, and port number), while these websites corre-

spond to different owners. For example, Alice (target) and

Trudy (attacker) may individually own websites on the URLs

http://www.foo.com/∼alice/ and http://www.foo.com/∼trudy/.

Suppose that a client currently has an active session with

Alice’s website and then visits Trudy’s website. In this case,

Trudy’s malicious page can read the content in Alice’s website,

which is permitted under the same-origin policy [24]. This

is referred to as an SSRF attack. Note that the attack still

works even though Alice uses token validation [26], which

can effectively defend against CSRF attacks.

Note that there are many real cases in which both attacker

and victim host their websites under the same domain, such

as the personal websites hosted under many legacy university

domains. The personal websites are partitioned by path (e.g.,

http://www.foo.edu/∼alice) rather than by subdomain (e.g.,

http://alice.foo.edu/). In this case, SSRF attacks are possible.

B. Current Defense Approaches

There have been various defense approaches against request

forgery attacks.

Header checking. A simple approach is to let the website

check the Referer header and determine where the request is

initiated. However, this approach has privacy concerns, as the

Referer header reveals the last visited URL of a client from

which the request is initiated. To protect a client’s privacy,

the origin header approach [4] introduces the Origin header,

which is similar to the Referer header except that it only

contains the origin information with the path details removed.

Token validation (e.g., [26]). Token validation is widely

deployed to defend against CSRF. The website generates a

secret token in a client session, and validates the token when

the client initiates requests to perform privileged actions. The

token is protected from other websites by the same-origin

policy. However, token validation is difficult to implement due

to the possibility of leaking the token value [4].

Client-side defense. Unlike the above approaches, some stud-

ies consider client-side approaches that do not require server-

side participation, thereby making deployment easier. Reque-

stRodeo [15] is a client-side proxy that strips credentials from a

request whose URL has a different origin from the originating

webpage. Since it is proxy-based, it cannot examine HTTPS

traffic. BEAP [18] is implemented as a browser plugin so that it

can examine HTTP and HTTPS traffic. It focuses on inferring

the intentions of clients in generating cross-site requests.

Fine-grained access control. The aforementioned approaches

mainly focus on CSRF attacks, and do not address how to

defend against SSRF attacks. Fine-grained defense approaches

allow website owners configure the access scopes from which

requests can be initiated. SOMA [22] requires a website to set

up the policy files that specify the external websites with which

the website can communicate. The browser can use the policy

files to enforce protection. Csfire [9] is a browser plugin that

parses a fine-grained policy file that specifies which third-party

sites can initiate cross-site requests. Other studies, such as

MashupOS [3], Subspace [13], and OMash [8], consider more

fine-grained access control for cross-site communications in

mashup applications. W3C [28] also drafts a specification that

states how websites can configure the objects that can be

shared across origins. Note that while the above approaches

focus on protecting against cross-site attacks, we can extend

them to defend against SSRF attacks by configuring the access

scopes within the same site.

C. Lessons Learned

In this paper, we consider how to use fine-grained access

control to defend against both CSRF and SSRF attacks.

Similar to SOMA [22], we allow a website to configure a

policy file that describes how requests can be initiated and

received between a browser and the website. Then the browser

uses the policy file to enforce access control. In our prior work



[11], we provide a preliminary implementation for such a fine-

grained access control mechanism by storing the policy-based

information in the Bloom filter.

Although fine-grained access control is sound, one major

concern is that clients can access the policy file and easily

determine how a website designs its access control policy and

its trust relationships with other websites. This information is

sensitive and should be protected as well. Previous studies

[25], [10], [7] also address the need of protecting access

control information, but they are designed for different types of

applications, such as automated trust establishment [25], per-

vasive systems [10], and firewalls [7]. Besides access control,

there are extensive studies on privacy-preserving mechanisms

in other aspects, such as in data mining (e.g., see [1]) and

two-party communication (e.g., see [5], [20]). Our goal here

is to extend our prior design in [11] and deploy a privacy-

preserving approach that can protect the policy information

from outsiders, while still effectively defending against both

CSRF and SSRF attacks.

III. DEREF DESIGN

DeRef is designed as a privacy-preserving, fine-grained

defense mechanism against request forgery attacks. In sum-

mary, DeRef aims for the following design goals.

• Detecting forged requests. DeRef seeks to defend against

general request forgery attacks, including both cross-site

and same-site.

• Fine-grained access control. DeRef enables a website

owner to configure the scopes that are under protection,

so as to eliminate stringent checking on all incoming

requests.

• Privacy-preserving checking. DeRef can identify forged

requests without requiring both the browser and the

website to disclose private information to the other side.

• Feasible deployment. DeRef can be feasibly deployed in

today’s browsers and websites.

A. Threat Model

DeRef seeks to defend against CSRF and SSRF attacks

described in Section II. Specifically, DeRef enables a browser

to identify “forged” requests and strip any authentication cre-

dentials from these requests or their corresponding responses

before relaying them.

In this paper, we focus on two types of authentication

credentials: (i) cookies and (ii) HTTP authentication (i.e., the

Authorization header). Although authentication credentials

can also appear in the query strings of GET requests or in

the data in POST requests, their definitions and formats are

application-specific and it is difficult to distinguish the creden-

tials from application data. The identification of application-

specific credentials will be posed as future work.

To determine if a request is forged, we need to first

determine how the request is triggered and where the request is

destined for. We define the initiating URLs as the set of URLs

that can directly or indirectly initiate the request. They include

(i) the Referer URL and (ii) the URLs of the current active

iframe 1

iframe 2

Browser tab

Target link

Fig. 1. Suppose that the target link is clicked. The Referer header will
have the URL of iframe1. The target URL will be the URL of the target link,
and there are three initiating URLs, including the URLs of iframe1, iframe2,
and the browser tab.

iframe’s ancestors in the iframe hierarchy [4]. Also, we define

the target URL as the destination URL of the request. Figure 1

depicts an example of how the initiating URLs and target

URLs are defined. We allow a website owner to configure a

set of target URLs on the website that are to be protected, as

well as a set of initiating URLs that are “approved” to initiate

requests that carry authentication credentials to the protected

target URLs (see Section III-B for details). If a request is sent

to a protected target URL from any non-approved initiating

URL, then we say that the request is forged. For example, in

Figure 1, if the URL of the target link is protected, then all

three initiating URLs (i.e., the URLs of iframe1, iframe2, and

the browser tab) must be approved by the website in order

for a request to be able to carry authentication credentials;

otherwise, the credentials will be removed from the request.

Here, we assume that the approved initiating URLs are benign

and no request forgery attacks are launched from there.

B. Fine-Grained Access Control

DeRef is built on two access control lists (ACLs), namely

T-ACL and I-ACL, to enable fine-grained defense against

request forgery attacks. T-ACL stores the target URLs on

the website those are to be protected. The stored URLs

generally correspond to the sensitive web objects that need to

respond to the authentication credentials inside the requests,

and hence they need protection against forged requests. Other

non-sensitive web objects that are not stored in T-ACL will

remain unaffected. Thus, a main purpose of T-ACL is to

eliminate stringent checking on the non-sensitive web objects.

I-ACL stores the initiating URLs that are trusted to initiate

requests to the target URLs configured in T-ACL. A main

purpose of I-ACL is to configure the URLs that have different

origins while being trusted (i.e., the same origin policy can-

not be directly applicable). One real-life example would be

the websites www.asiamiles.com and www.cathaypacific.com.

While they have different origins, they are mutually trusted as

they deploy the Single Sign-On (SSO) mechanism [27]. Thus,

I-ACL is used to customize the trusted initiating URLs that

may have the same or different origins. If any initiating URL

of a request is not configured in I-ACL, while the request is

destined for the target URL that is configured in T-ACL, then

the request is considered to be forged.

Scope. Before deploying DeRef, the website on the server

side first configures the ACLs with a set of scopes. A scope

is defined based on the same origin policy for cookies [32],

and it specifies the range of URLs using scheme://domain/

path, where (i) the scheme corresponds to the protocol of the



request (e.g., http or https), (ii) the domain includes the

domain itself, its sub-domains, and its underlying hosts, and

(iii) the path includes the path itself and its path suffixes. To

show how a scope is used, let us configure a scope http://.foo.

com/dir/. Then examples of URLs that match our configured

scope are http://www.foo.com/dir/ and http://www1.foo.com/

dir/sub/. On the other hand, examples of URLs that do not

match our configured scope are http://www.abc.com/dir/ and

http://www.foo.com/, since they have a different domain and

different path, respectively. Note that a scope can be simply

an individual URL.

Creating privacy-preserving lists. The website should keep

the ACLs private to browsers to avoid revealing its defense

strategy. Instead, it releases the privacy-preserving lists of

scopes derived from the configurations in the ACLs, so that

the lists will be used in our two-phase checking approach (see

Section III-C). The lists will be stored in a policy file that is

accessible by client browsers.

Publicizing the policy file. The website owner specifies the

base URL, which states the exact hostname and path of the

website under which the policy file will be stored. We assume

that only the website owner has the write permission to store

the policy file under the specified base URL. The base URL

will be included in a response message to let the browser know

where to download the policy file. Note that a browser may

have downloaded multiple policy files from different websites.

To choose the policy file for a given request, we use the longest

prefix match based on the target URL of the request. For exam-

ple, if the target URL is http://www.foo.com/∼alice/login.php

and there are two policy files with base URLs http://www.foo.

com/ and http://www.foo.com/∼alice/, then according to the

longest prefix match, the browser chooses the policy file with

the base URL http://www.foo.com/∼alice/.

Checking. For each request to be sent to the website, the

browser checks the initiating URLs and the target URL

associated with the request against the scopes configured in

the policy file. Since a scope may not state the complete URL,

we incrementally check each URL. The main idea is to check

all possible scopes associated with each URL, including all

levels of domains starting from the top-level domain, as well

as all levels of paths starting from the root path. That is, each

scope is formed by the concatenation of each possible level of

domain and each possible level of path. To illustrate, suppose

that we are given a URL http://foo.com/a/b.html. Then there

are six possible scopes to check: including (1) http://.com/,

(2) http://.com/a/, (3) http://.com/a/b.html, (4) http://foo.com/,

(5) http://foo.com/a/, and (6) http://foo.com/a/b.html. We then

apply two-phase checking on all possible scopes (see Sec-

tion III-C).

Checking all possible scopes may incur high overhead. In

Section IV-B, we evaluate the impact of the number of scopes

to check in two-phase checking. We also apply caching (see

below) to mitigate the overhead of checking too many scopes.

Caching. If a URL has been checked, then the DeRef on

the client side will cache the URLs in memory to eliminate

Client Server
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Fig. 2. Main idea of two-phase checking.

checking on the subsequent requests for those URLs. We note

that even with simple caching, we can significantly improve

the performance of DeRef (see Section IV-A).

C. Two-Phase Privacy-Preserving Checking

We now present our two-phase checking approach that acts

as a building block in DeRef. It allows the browser and

the website to exchange information in a privacy-preserving

manner. Let us assume that the website configures L legitimate

scopes in an ACL (either T-ACL or I-ACL), denoted by xi,

where i = 1, 2, · · · , L. Now, if the browser initiates a request

to the website from URL y, then it checks if y belongs to any

of the xi’s, so as to decide whether the request is within the

configured scopes. To do this, the browser derives all possible

scopes for a given URL y (see Section III-B) into y1, y2, · · · ,

ym, where m is the number of scopes that are derived from

y. Then the browser checks if any yj (j =1, 2, · · · , m) equals

any xi (i = 1, 2, · · · , L). Our privacy-preserving goals are:

(1) the browser does not reveal y to the website and (2) the

browser does not know the xi’s configured by the website,

unless a scope of y matches any of these.

Figure 2 summarizes the idea of two-phase checking, which

consists of two phases: hash checking and blind checking.

Hash checking. In hash checking, the website sends the

browser a list of k-bit hashes of the configured scopes, i.e.,

h(s, x1), h(s, x2), · · · , h(s, xL), where h(.) is a function

derived by the first k bits of some one-way hash function,

and s is a random salt [29] that is sent alongside the hash list.

When the browser initiates a request from URL y, it computes

h(s, yj) (j = 1, 2, · · · , m) and checks if it matches any h(s, xi)
(i = 1, 2, · · · , m). Note that the checking process does not

reveal y to the website (i.e., goal (1) is achieved).

The value of k determines the degree of privacy that the

website reveals its configured scopes. If k is large (e.g., k

= 128 bits as in MD5) and h(.) is collision resistant, then

we claim that it is unlikely for two URLs to have the same

hash value1. However, having a large k is susceptible to the

dictionary attack. For example, after downloading the hash

1As of December 2010, the number of indexed webpages in the web space
is about 22 billion (less than 2

35) [31], which is significantly less than the
MD5 space size.



list, an attacker can use the popular URLs (e.g., the frequently

visited URLs) and the salt s as inputs, and see if the resulting

hash values equal any h(s, xi).

On the other hand, if k is small, then the browser cannot

surely tell if a xi is being configured since there are many

false positives that create “noise” to prevent xi from being

fully revealed. For example, if k = 4, then there are 24 = 16
possible values of h(.). If h(.) is uniformly distributed, then on

average 1/16 of URLs in the entire web can potentially match

a h(s, xi). However, we need to eliminate the false positives

through blind checking (see below) to see if URL y is actually

within a configured scope.

Blind checking. Blind checking is built on the privacy-

preserving matching protocol [20], which uses Chaum’s RSA-

based blind signature [6]. We adapt the matching protocol to

allow the browser to query the website in a privacy-preserving

manner. Specifically, we use the potentially matched scopes re-

turned by hash checking as inputs, and conduct blind checking

as follow:

• Initialization. The website prepares a RSA public-private

key pair (e, d) with modulus n. The public key (n, e)
will be sent to the browser. Also, the website sends the

list to the browser: H ′(xi, H(s, xi)
d mod n) for i=1, 2,

· · · , L, where H(.) and H ′(.) are some one-way hash

functions and s is the salt value (which is also sent to

the browser). We assume that H(.) and H ′(.) return a

long-enough hash (e.g., 128 bits in MD5) so that it is

unlikely for two inputs to return the same hash.

• Step 1. For each scope yj (for j = 1, 2, · · · , m) that

matches any h(s, xi) in the first phase, it generates a

random value rj and sends the blinded hash rejH(s, yj)
mod n to the website.

• Step 2. The website signs and returns rjH(s, yj)
d

mod n to the browser, which removes rj and re-

trieves H(s, yj)
d mod n. It then computes and checks

if H ′(yj , H(s, yj)
d mod n) equals any signed hashes

H ′(xi, H(s, xi)
d mod n).

Since the browser sends only blinded hashes to the website,

it does not reveal y to the website (i.e., goal (1) is achieved).

Also, an attacker cannot feasibly launch the dictionary attack

offline as in hash checking, since it is computationally infea-

sible to generate the signature of the website for a given input

y without knowing the website’s private key. Although the

attacker can launch the dictionary attack online by querying

the website with different values of yj , the attack becomes

more difficult than the offline one as it can easily alert the

website if the querying rate is too high. By limiting the query

rate of a browser, the privacy of the configured xi’s of the

website is also protected (i.e., goal (2) is achieved).

We emphasize that using blind checking alone can still

achieve our privacy-preserving goals. A key drawback is that

there will be significant process overhead. In blind checking,

the browser needs to take a round trip to send every potentially

matched scope to the website and have the website sign the

scope. Also, each signing consists of an expensive asymmetric

Browser DeRef(client) DeRef(server) Website

Send login request

Return login response

Set Protection-Policy 

header

Download policy file

Return login request

Send request

Relay request

Return response

Check login request

Check request

Fig. 3. Flow of DeRef.

cryptographic computation. Thus, we introduce hash checking

to ignore any scopes that are guaranteed to be not configured,

so as to reduce the overhead of blind checking.

D. Putting It All Together

DeRef is implemented on both client and server sides to

examine the communication between the browser and the

website. We now explain the flow of DeRef and how it

enforces protection. Figure 3 shows the flow of DeRef.

Start-up. When a user signs in a website, it initiates a login

request with valid authentication credentials. Then the website

replies a login response, in which the server-side DeRef

includes a new header Protection-Policy, whose syntax is

Protection-Policy: Last Update Time=[ Time stamp

]; Expiry Time=[ Time stamp ]; Base URL=[ Base

URL ]. This header serves two purposes: to indicate DeRef

is implemented in this website and to state the base URL in

which the policy file is stored. Also, the header includes the

last update time and the expiry time of the policy file. If the

policy file with the same base URL has been downloaded

before, while the last update time remains the same and the

expiry time is not yet reached, then the client-side DeRef will

not download it again.

Downloading the policy file. If no up-to-date policy file is

available, then the client-side DeRef downloads the policy file

as specified in the base URL and stores it locally. However,

an attacker may intercept and modify the policy file when

it is being downloaded, for example, by deleting some of

the entries in the policy file. To prevent the policy file from

being modified, we propose to have it transmitted through

HTTPS, which authenticates all message transmissions. Since

the policy file is downloaded during the login process, we

expect that HTTPS has been enabled by default.

Checking Process. The client-side DeRef performs two-phase

checking on the login request that is previously relayed

before returning the login response to the browser, so as to

defend against any possible login CSRF attack. For subsequent

requests originated from the browser, the client-side DeRef



checks the target URLs and the initiating URLs against the

policy file. It strips any authentication credentials (i.e., cookies

and HTTP authentication headers) from the requests and the

corresponding responses if the requests are considered forged.

E. Implementation

We implement a prototype of DeRef to justify its practicality

in deployment. DeRef is built on the components residing on

both server and client sides. We now explain in detail the

implementation on both sides, and address the deployment

issues if only one side enables DeRef.

Server side implementation. The server-side DeRef is imple-

mented in PHP, and hence is applicable in any PHP-enabled

websites. There is a PHP program genPolicy.php, which

generates the policy file with respect to the URLs defined by

the website owner. Here, we use MD5 for hash operations

and 1024-bit RSA for blind checking. In addition, we use

the header function of PHP to specify a new custom HTTP

header Protection-Policy to indicate the base URL that

specifies the locations of the policy file. The browser can

retrieve the policy file by visiting genPolicy.php.

Client side implementation. We implement a Firefox browser

plugin compatible with Firefox versions 3 and 4. It retrieves

the policy file from the base URL stated by the server-

side DeRef, and inspects any outgoing requests for any

forged requests. Our plugin intercepts requests and responses

by listening to the events http-on-modify-request and

http-on-examine-response, respectively, both of which

are available in the Firefox implementation. Our implemen-

tation of the plugin consists of about 1000 lines of code.

Incremental deployment. DeRef requires the supports of both

the client and server sides. If only one side has DeRef enabled,

then our implementation is backward compatible with the

normal operations without DeRef. To elaborate, if the client

side implementation is absent, then the browser simply ignores

the custom header Protection-Policy defined by the server

side and will not download any policy file. On the other hand,

if the server side implementation is absent, then the browser

plugin will find that the custom header Protection-Policy

is absent and will directly forward all outgoing requests.

IV. EVALUATION

We now evaluate our implemented DeRef prototype in real

network settings. The client-side DeRef is deployed as a plugin

in Firefox 4.0, where the browser is deployed in a desktop PC

with CPU 2.4GHz. We deploy the server-side implementation

of DeRef in WordPress 2.0 [30]. We choose WordPress 2.0

as it has a known CSRF vulnerability [14], which allows

us to test the security effectiveness of DeRef in defending

against request forgery attacks. Note that we also verify that

the modification we make in this version is applicable to the

latest WordPress versions as well.

Suppose that Alice wants to host WordPress 2.0 on her

personal website http://www.foo.com/∼alice/ (note that we

anonymize the real hostname here), on which she deploys

DeRef. First, Alice needs to first configure T-ACL to specify

the target URLs to be protected. Here, we include three scopes

in T-ACL for WordPress, including:

• http://www.foo.com/∼alice/wp-admin/,

• http://www.foo.com/∼alice/wp-login.php, and

• http://www.foo.com/∼alice/wp-comments-post.php.

The folder wp-admin/ contains the webpages that manage all

WordPress operations, and hence needs to be protected. We in-

clude wp-login.php so as to defend against the Login CSRF

attack by restricting all login actions to be initiated from autho-

rized URLs only. We also include wp-comments-post.php,

which handles the comments posted by visitors.

Alice also needs to configure the valid initiating URLs

in I-ACL to specify where the requests can be triggered to

the protected scopes. Here, we assume that Alice includes

http://www.foo.com/∼alice/, meaning that all requests must be

initiated from within Alice’s website.

Both T-ACL and I-ACL are transformed into a privacy-

preserving policy file (see Section III-B). Alice can store

the policy file on http://www.foo.com/∼alice/, from which

different browsers can retrieve.

We set up a testbed that consists of three entities: a

client browser (Firefox), a target website (WordPress), and

a malicious website. We deploy all entities in the same local

area network of a university department, so as to minimize the

overhead of network transmission and enable us to focus on

evaluating the performance overhead due to DeRef.

Summary of results. Overall, DeRef incurs minimal response

time overhead (within 4%) when browsing insensitive web-

pages, which we believe are the majority of webpages that we

visit in practice. The overhead of DeRef is mainly observed

when we visit the sensitive webpages, but this tradeoff can

be justified if security protection is necessary. By caching

the already checked scopes, we can reduce the response time

overhead to within 19%. In addition, we evaluate the overhead

of two-phase checking in DeRef, and demonstrates how we

tune the parameter settings to trade-off between performance

and privacy preserving protection.

A. Performance Overhead of DeRef in Real Deployment

We first evaluate the performance overhead of our DeRef

prototype in real deployment using Firefox and WordPress.

Our goal is to understand the overhead of DeRef in surfing

different types of webpages. We also evaluate how the use of

caching (see Section III-B) on the client-side DeRef improves

the performance.

Recall that DeRef uses two-phase checking. Here, we focus

on the case where there is no false positive returned by hash

checking by setting a large enough value of k (e.g., using k

= 128 bits as in MD5). In Section IV-B, we evaluate how

different values of k affect the performance.

We measure the response time, i.e., from the time when the

browser sends the first request until it receives all response

messages from the WordPress website. Note that the response

time also includes the processing time of performing two-

phase checking between the browser and the website. The



TABLE I
PERFORMANCE OVERHEAD OF DEREF IN DIFFERENT SETTINGS.

Exp. A.1 Exp. A.2 Exp. A.3

Index Admin Login CSRF Login CSRF

No DeRef 132.44ms 174.56ms 230.06ms 64.41ms 55.83ms

DeRef 137.23ms 654.72ms 585.15ms 117.57ms 111.09ms

(no cache) (4%) (275%) (154%) (83%) (99%)

DeRef 138.01ms 200.27ms 254.27ms 76.07ms 66.4ms

(w/ cache) (4%) (15%) (11%) (18%) (19%)

measurements are averaged over 100 runs. Table I summarizes

the results of our experiments.

Experiment A.1 (Browsing insensitive webpages). We first

consider the case where the browser visits an insensitive

webpage that is not under the protection of DeRef, i.e., the

URL of the webpage is not configured in T-ACL. Here, we

measure the response time when we visit the index page

index.php on WordPress. Since the index page is insensitive,

DeRef does not need to perform blind checking (provided that

no false positive is returned in hash checking). Thus, we expect

that DeRef incurs minimal overhead. Table I shows that the

additional overhead of DeRef is around 4%, which conforms

to our intuition. Note that the performance is similar with or

without cache.

Experiment A.2 (Browsing sensitive webpages). We next

consider the case when the browser visits a sensitive webpage.

In this case, the DeRef browser plugin will perform both hash

checking and blind checking, to confirm that the URL of the

sensitive webpage is in T-ACL and the initiating URL is in

I-ACL. Here, we measure the time when the browser visits

/wp-login.php and /wp-admin/ on WordPress from a legitimate

initiating URL.

Table I shows that both cases incur significant performance

overhead, mainly due to the RSA blind signature computation

in blind checking. If no caching is used, then the overheads

are 154% and 275% for /wp-login.php and /wp-admin/, re-

spectively. We argue that such tradeoffs only apply to browsing

sensitive webpages, by trading performance for security. Also,

we can mitigate the overhead via caching, which stores the

URLs that are known to be configured in T-ACL and I-ACL.

When we visit the webpages /wp-login.php and /wp-admin/

again, the overheads decrease to 11% and 15%, respectively.

Experiment A.3 (Browsing malicious webpages). We now

consider the case when we visit malicious webpages that

trigger request forgery attacks to sensitive webpages. Here, we

consider the CSRF and login CSRF attacks, in which forged

requests are sent from our malicious website that we set up to

the URLs /wp-admin/ and /wp-login.php, respectively. Note

that in both cases, the initiating URLs are not configured

in I-ACL, so DeRef only performs two-phase checking to

confirm that the target URLs are configured in T-ACL. Thus,

the number of URLs to be signed in blind checking is

less than Experiment A.2. Overall, the additional overheads

are 83% and 99% for CSRF and Login CSRF, respectively,

when caching is disabled, and they reduce to 18% and 19%,
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Fig. 4. Experiment B.1: Scalability study of two-phase checking.

respectively, when caching is used.

B. Performance Overhead of Two-Phase Checking

We now conduct a microbenchmark study on different

configurations of two-phase checking.

Experiment B.1 (Scalability study of two-phase checking).

We evaluate the scalability of DeRef in performing a large

number of checking steps during two-phase checking (see

Section III-B). We note that there are two potential perfor-

mance bottlenecks in two-phase checking. First, we apply hash

checking for all possible scopes derived from a URL, and

its performance depends on the number of checked scopes.

Second, we conduct blind checking for all matched scopes

found in hash checking, and its performance depends on the

number of the matched scopes.

We modify our DeRef browser plugin to generate a random

number of scopes and measure the processing times of the two

potential bottlenecks. Figure 4(a) shows the processing time

of incremental checking versus the number of checked scopes.

We observe that the processing time increases with the number

of checked scopes, and it is within 35ms when the number

reaches 100. We expect that this processing time has limited

impact when compared to the overall performance in DeRef in

real deployment (see Section IV-A), where the response time

is on the order of 100ms. Figure 4(b) shows the processing

time of blind checking (i.e., the time from the browser sending

the blinded hashes for all matched scopes until the website

returning the signed hashes) versus the number of matched

scopes. We observe that the processing time increases linearly

with the number of matched scopes, and it reaches 3.6 seconds

when the number of matched scopes is 100. As shown in

Section IV-A, the performance overhead can be significantly

reduced by caching the already checked URLs.

Experiment B.2 (Trade-off between performance and pri-

vacy). Recall that the performance-privacy trade-off of two-

phase checking is determined by the value of k (see Sec-

tion III-C), which decides how much information is revealed

in hash checking. In this experiment, we evaluate the impact

of k. We first collect the top 500 website URLs on Alexa [2].

We then configure the first l of the 500 URLs in I-ACL, where

l = 1, 10, 50, 100, or 200. We generate 500 requests from our

DeRef browser plugin to the WordPress website that we set

up, such that each request has its initiating URL hardcoded

to each of the 500 collected URLs. For different values of
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Fig. 5. Experiment B.2: Performance versus k for different numbers of URLs
configured in I-ACL.

k, we measure the processing time for performing two-phase

checking (i.e., hash checking, followed by blind checking if

needed) on each initiating URL between the browser plugin

and the WordPress website. We do not include the time of

returning the response from WordPress, so the processing time

of two-phase checking is less than the total response time that

we measure in Section IV-A. Note that when k = 0, we assume

that the browser directly conducts blind checking.

Figure 5(a) shows the size of the policy file versus k for

different numbers of URLs configured in I-ACL. The size

of the policy file increases with k and the number of URLs

being configured in I-ACL, but the size is within 4.5 KB in

all cases. Note that the policy file is downloaded once at the

start-up phase and is cached until it expires (see Section III-D).

Thus, we expect that the policy file itself introduces minimal

overhead.

Figure 5(b) shows the processing time of two-phase check-

ing. We observe that when k increases, the time used in

two phase checking decreases, mainly because hash checking

discovers most non-configured URLs and skips the second-

phase blind checking. For example, if I-ACL contains only 10

URLs, then the processing time is reduced by 40% from k

= 0 to k = 4. The trade-off is that more information of the

configured scopes is revealed with a larger value of k. Another

observation is that when the number of configured URLs (i.e.,

l) increases, the processing time is higher. The reason is that

hash checking can only filter non-configured scopes. If more

scopes are configured in an ACL, then more scopes need to

be verified by blind checking as well.

V. CONCLUSIONS

We present DeRef, a practical privacy-preserving approach

to defending against cross-site and same-site request forgery

attacks. DeRef uses fine-grained access control to allow a

website owner to decide how requests should be sent and

received within protection scopes, so as to prevent forged

requests from being initiated outside the scopes. We use two-

phase checking as a building block that allows the browser

and the website to exchange configuration information in a

privacy-preserving manner. We implement a proof-of-concept

prototype of DeRef, and demonstrate that it can successfully

defend against request forgery attacks in real-life applications,

while incurring justifiable performance overhead.
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