
This source code is a simple implementation to evaluate the delta-based update in erasure coded data
centers. Please refer to the paper: Cross-Rack-Aware Updates in Erasure-Coded Data Centers (in Proceedings of
47th International Conference on Parallel Processing (ICPP'18)) for more technical details.

In what follows, we will describe how to install and run CAU code on Ubuntu. Before running the code,
please make the following preparations first.

Preparations

1: ensure that the necessary libraries and compile tools are installed, including gcc and make.

2: change the default configurations in "config.h", including the erasure code you wish to use, and the data
center architecture (e.g., the number of racks, and the number of nodes in each rack). Notice that we
currently assume all the racks are composed of the same number of nodes. The next figure shows an
example of our configurations, in which we use RS(4,2) code, and the cluster is composed of two racks with
two nodes per rack.

3: generate a big file named "data_file" which will be used for simulating disk reads and writes. In our test,
we generally set its size as 60GB.

4: In the code, we need to read the ip address from network interface . The network interface name in our
testbed is "enp0s31f6" (see the global variable "NIC" in common.c). If your machine has a different network
interface name, please replace "enp0s31f6" with it. You can use the "ifconfig" command to see the network
interface name and the inner ip address of a node. The following example shows that the default network
interface name of the node is "enp0s31f6" and its inner ip address is 192.168.0.51.

$ sudo apt-get install gcc make

$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 4c:cc:6a:e3:de:3b
 inet addr:192.168.0.51 Bcast:192.168.0.255 Mask:255.255.255.0

af://n5

For example, if the default network interface name of your node is "eth0", then you can replace "enp0s31f6"
with "eth0" by assigning "eth0" to the global variable "NIC" in common.c.

5: two kinds of ip addresses are needed in the evaluation: inner ip and public ip. "Inner-ip" denotes the ip
address read from the default network interface, while "public ip" denotes the ip address used in socket
communications.

In this step, you should fill the two kinds of ip addresses you will use in the file common.c.

Zhirong_Think
文本框

Zhirong_Think
文本框

6: fill in the public ip addresses of the metadata server and the client.

7: fill the architecture information including the number of nodes per rack and the rack names.

8: In our evaluation, we use a gateway server to mimic cross-rack data transfers in a local cluster (see our
paper for more details). If you wish to do this, take the following two steps:

set the GTWY_OPEN as 1 in config.h

Zhirong_Think
文本框

Zhirong_Think
文本框

set the gateway_ip (the public ip for socket communication) and the gateway_local_ip (the inner ip read
from network interface) in common.c

9: If you wish to deploy the code onto Amazon EC2, please do the following two things.

carefully specify the "security group" by only allowing the communications among the VMs used in the
test. We have ever encountered unexpected connections (may be from other VMs), which will definitely
affect the running status of evaluations.

each VM in Amazon EC2 has two ip addresses, the public ip and the inner ip. You have to fill them in
common.c.

An example of running CAU code:

After filling the configuration information, we will show how to run CAU code in next steps. The running of
the baseline delta-based update approach and the PARIX is similar.

extract the files from cau-1.0.0.tar

generate the needed object files of Jerasure

$ tar zxvf cau-1.0.0.tar
$ cd cau-1.0.0/
$ export CAU_HOME=$(pwd)

$ cd ${CAU_HOME}/Jerasure
$ make

af://n58
Zhirong_Think
文本框

generate the executable files in CAU

run "gen_chunk_distribn" on the metadata server (MDS), which will generate the mapping information
between the logical chunks and the associated storage nodes. The mapping information will be
recorded in a file named "chunk_map" in the MDS. The MDS will read it for chunk addressing. Notice
that the mapping information is generated based on the selected erasure coding and the data center
architecture specified in "config.h".

copy the executable files with the suffix of "_mds" and the "chunk_map" file to the MDS.

copy the executable files with the suffix of "_server" to storage nodes (including the gateway server if
enabled).

run the executable files with the suffix of "_mds" (e.g., cau_mds) on MDS

run the executable files with the suffix of "_server" on storage nodes (including data nodes, parity
nodes, and the gateway server if enabled).

run the executable file with the suffix "_client" on the client with the trace file to evaluate. Some
example traces are included in "example-traces"

If you have any question, please feel free to contact me (zhirong.shen2601@gmail.com).

$ cd ${CAU_HOME}
$ make

$ cd ${CAU_HOME}
$./gen_chunk_distribn

$ cd ${CAU_HOME}
$./cau_mds

$ cd ${CAU_HOME}
$./cau_server

$ cd ${CAU_HOME}
$./cau_client example-traces/wdev_1.csv

mailto:zhirong.shen2601@gmail.com

	Preparations
	An example of running CAU code:

